pan/midgard: Fix alpha test w.r.t new indexing
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_LOAD(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* For unclear reasons, the condition code is repeated 8 times */
228 uint16_t duplicated_cond =
229 (cond << 14) |
230 (cond << 12) |
231 (cond << 10) |
232 (cond << 8) |
233 (cond << 6) |
234 (cond << 4) |
235 (cond << 2) |
236 (cond << 0);
237
238 midgard_branch_extended branch = {
239 .op = op,
240 .dest_tag = dest_tag,
241 .offset = quadword_offset,
242 .cond = duplicated_cond
243 };
244
245 return branch;
246 }
247
248 static void
249 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
250 {
251 ins->has_constants = true;
252 memcpy(&ins->constants, constants, 16);
253 }
254
255 static int
256 glsl_type_size(const struct glsl_type *type, bool bindless)
257 {
258 return glsl_count_attribute_slots(type, false);
259 }
260
261 /* Lower fdot2 to a vector multiplication followed by channel addition */
262 static void
263 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
264 {
265 if (alu->op != nir_op_fdot2)
266 return;
267
268 b->cursor = nir_before_instr(&alu->instr);
269
270 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
271 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
272
273 nir_ssa_def *product = nir_fmul(b, src0, src1);
274
275 nir_ssa_def *sum = nir_fadd(b,
276 nir_channel(b, product, 0),
277 nir_channel(b, product, 1));
278
279 /* Replace the fdot2 with this sum */
280 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
281 }
282
283 static int
284 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
285 {
286 switch (instr->intrinsic) {
287 case nir_intrinsic_load_viewport_scale:
288 return PAN_SYSVAL_VIEWPORT_SCALE;
289 case nir_intrinsic_load_viewport_offset:
290 return PAN_SYSVAL_VIEWPORT_OFFSET;
291 default:
292 return -1;
293 }
294 }
295
296 static unsigned
297 nir_dest_index(compiler_context *ctx, nir_dest *dst)
298 {
299 if (dst->is_ssa)
300 return (dst->ssa.index << 1) | 0;
301 else {
302 assert(!dst->reg.indirect);
303 return (dst->reg.reg->index << 1) | IS_REG;
304 }
305 }
306
307 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
308 unsigned *dest)
309 {
310 nir_intrinsic_instr *intr;
311 nir_dest *dst = NULL;
312 nir_tex_instr *tex;
313 int sysval = -1;
314
315 switch (instr->type) {
316 case nir_instr_type_intrinsic:
317 intr = nir_instr_as_intrinsic(instr);
318 sysval = midgard_nir_sysval_for_intrinsic(intr);
319 dst = &intr->dest;
320 break;
321 case nir_instr_type_tex:
322 tex = nir_instr_as_tex(instr);
323 if (tex->op != nir_texop_txs)
324 break;
325
326 sysval = PAN_SYSVAL(TEXTURE_SIZE,
327 PAN_TXS_SYSVAL_ID(tex->texture_index,
328 nir_tex_instr_dest_size(tex) -
329 (tex->is_array ? 1 : 0),
330 tex->is_array));
331 dst = &tex->dest;
332 break;
333 default:
334 break;
335 }
336
337 if (dest && dst)
338 *dest = nir_dest_index(ctx, dst);
339
340 return sysval;
341 }
342
343 static void
344 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
345 {
346 int sysval;
347
348 sysval = sysval_for_instr(ctx, instr, NULL);
349 if (sysval < 0)
350 return;
351
352 /* We have a sysval load; check if it's already been assigned */
353
354 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
355 return;
356
357 /* It hasn't -- so assign it now! */
358
359 unsigned id = ctx->sysval_count++;
360 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
361 ctx->sysvals[id] = sysval;
362 }
363
364 static void
365 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
366 {
367 ctx->sysval_count = 0;
368
369 nir_foreach_function(function, shader) {
370 if (!function->impl) continue;
371
372 nir_foreach_block(block, function->impl) {
373 nir_foreach_instr_safe(instr, block) {
374 midgard_nir_assign_sysval_body(ctx, instr);
375 }
376 }
377 }
378 }
379
380 static bool
381 midgard_nir_lower_fdot2(nir_shader *shader)
382 {
383 bool progress = false;
384
385 nir_foreach_function(function, shader) {
386 if (!function->impl) continue;
387
388 nir_builder _b;
389 nir_builder *b = &_b;
390 nir_builder_init(b, function->impl);
391
392 nir_foreach_block(block, function->impl) {
393 nir_foreach_instr_safe(instr, block) {
394 if (instr->type != nir_instr_type_alu) continue;
395
396 nir_alu_instr *alu = nir_instr_as_alu(instr);
397 midgard_nir_lower_fdot2_body(b, alu);
398
399 progress |= true;
400 }
401 }
402
403 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
404
405 }
406
407 return progress;
408 }
409
410 /* Flushes undefined values to zero */
411
412 static void
413 optimise_nir(nir_shader *nir)
414 {
415 bool progress;
416 unsigned lower_flrp =
417 (nir->options->lower_flrp16 ? 16 : 0) |
418 (nir->options->lower_flrp32 ? 32 : 0) |
419 (nir->options->lower_flrp64 ? 64 : 0);
420
421 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
422 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
423 NIR_PASS(progress, nir, nir_lower_idiv);
424
425 nir_lower_tex_options lower_tex_1st_pass_options = {
426 .lower_rect = true,
427 .lower_txp = ~0
428 };
429
430 nir_lower_tex_options lower_tex_2nd_pass_options = {
431 .lower_txs_lod = true,
432 };
433
434 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
435 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
436
437 do {
438 progress = false;
439
440 NIR_PASS(progress, nir, nir_lower_var_copies);
441 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
442
443 NIR_PASS(progress, nir, nir_copy_prop);
444 NIR_PASS(progress, nir, nir_opt_dce);
445 NIR_PASS(progress, nir, nir_opt_dead_cf);
446 NIR_PASS(progress, nir, nir_opt_cse);
447 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
448 NIR_PASS(progress, nir, nir_opt_algebraic);
449 NIR_PASS(progress, nir, nir_opt_constant_folding);
450
451 if (lower_flrp != 0) {
452 bool lower_flrp_progress = false;
453 NIR_PASS(lower_flrp_progress,
454 nir,
455 nir_lower_flrp,
456 lower_flrp,
457 false /* always_precise */,
458 nir->options->lower_ffma);
459 if (lower_flrp_progress) {
460 NIR_PASS(progress, nir,
461 nir_opt_constant_folding);
462 progress = true;
463 }
464
465 /* Nothing should rematerialize any flrps, so we only
466 * need to do this lowering once.
467 */
468 lower_flrp = 0;
469 }
470
471 NIR_PASS(progress, nir, nir_opt_undef);
472 NIR_PASS(progress, nir, nir_undef_to_zero);
473
474 NIR_PASS(progress, nir, nir_opt_loop_unroll,
475 nir_var_shader_in |
476 nir_var_shader_out |
477 nir_var_function_temp);
478
479 NIR_PASS(progress, nir, nir_opt_vectorize);
480 } while (progress);
481
482 /* Must be run at the end to prevent creation of fsin/fcos ops */
483 NIR_PASS(progress, nir, midgard_nir_scale_trig);
484
485 do {
486 progress = false;
487
488 NIR_PASS(progress, nir, nir_opt_dce);
489 NIR_PASS(progress, nir, nir_opt_algebraic);
490 NIR_PASS(progress, nir, nir_opt_constant_folding);
491 NIR_PASS(progress, nir, nir_copy_prop);
492 } while (progress);
493
494 NIR_PASS(progress, nir, nir_opt_algebraic_late);
495
496 /* We implement booleans as 32-bit 0/~0 */
497 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
498
499 /* Now that booleans are lowered, we can run out late opts */
500 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
501
502 /* Lower mods for float ops only. Integer ops don't support modifiers
503 * (saturate doesn't make sense on integers, neg/abs require dedicated
504 * instructions) */
505
506 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
507 NIR_PASS(progress, nir, nir_copy_prop);
508 NIR_PASS(progress, nir, nir_opt_dce);
509
510 /* Take us out of SSA */
511 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
512 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
513
514 /* We are a vector architecture; write combine where possible */
515 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
516 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 }
520
521 /* Do not actually emit a load; instead, cache the constant for inlining */
522
523 static void
524 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
525 {
526 nir_ssa_def def = instr->def;
527
528 float *v = rzalloc_array(NULL, float, 4);
529 nir_const_load_to_arr(v, instr, f32);
530
531 /* Shifted for SSA, +1 for off-by-one */
532 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
533 }
534
535 /* Normally constants are embedded implicitly, but for I/O and such we have to
536 * explicitly emit a move with the constant source */
537
538 static void
539 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
540 {
541 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
542
543 if (constant_value) {
544 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
545 attach_constants(ctx, &ins, constant_value, node + 1);
546 emit_mir_instruction(ctx, ins);
547 }
548 }
549
550 static unsigned
551 nir_src_index(compiler_context *ctx, nir_src *src)
552 {
553 if (src->is_ssa)
554 return (src->ssa->index << 1) | 0;
555 else {
556 assert(!src->reg.indirect);
557 return (src->reg.reg->index << 1) | IS_REG;
558 }
559 }
560
561 static unsigned
562 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
563 {
564 return nir_src_index(ctx, &src->src);
565 }
566
567 static bool
568 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
569 {
570 unsigned comp = src->swizzle[0];
571
572 for (unsigned c = 1; c < nr_components; ++c) {
573 if (src->swizzle[c] != comp)
574 return true;
575 }
576
577 return false;
578 }
579
580 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
581 * output of a conditional test) into that register */
582
583 static void
584 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
585 {
586 int condition = nir_src_index(ctx, src);
587
588 /* Source to swizzle the desired component into w */
589
590 const midgard_vector_alu_src alu_src = {
591 .swizzle = SWIZZLE(component, component, component, component),
592 };
593
594 /* There is no boolean move instruction. Instead, we simulate a move by
595 * ANDing the condition with itself to get it into r31.w */
596
597 midgard_instruction ins = {
598 .type = TAG_ALU_4,
599
600 /* We need to set the conditional as close as possible */
601 .precede_break = true,
602 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
603 .mask = 1 << COMPONENT_W,
604
605 .ssa_args = {
606 .src0 = condition,
607 .src1 = condition,
608 .dest = SSA_FIXED_REGISTER(31),
609 },
610
611 .alu = {
612 .op = midgard_alu_op_iand,
613 .outmod = midgard_outmod_int_wrap,
614 .reg_mode = midgard_reg_mode_32,
615 .dest_override = midgard_dest_override_none,
616 .src1 = vector_alu_srco_unsigned(alu_src),
617 .src2 = vector_alu_srco_unsigned(alu_src)
618 },
619 };
620
621 emit_mir_instruction(ctx, ins);
622 }
623
624 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
625 * r31 instead */
626
627 static void
628 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
629 {
630 int condition = nir_src_index(ctx, &src->src);
631
632 /* Source to swizzle the desired component into w */
633
634 const midgard_vector_alu_src alu_src = {
635 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
636 };
637
638 /* There is no boolean move instruction. Instead, we simulate a move by
639 * ANDing the condition with itself to get it into r31.w */
640
641 midgard_instruction ins = {
642 .type = TAG_ALU_4,
643 .precede_break = true,
644 .mask = mask_of(nr_comp),
645 .ssa_args = {
646 .src0 = condition,
647 .src1 = condition,
648 .dest = SSA_FIXED_REGISTER(31),
649 },
650 .alu = {
651 .op = midgard_alu_op_iand,
652 .outmod = midgard_outmod_int_wrap,
653 .reg_mode = midgard_reg_mode_32,
654 .dest_override = midgard_dest_override_none,
655 .src1 = vector_alu_srco_unsigned(alu_src),
656 .src2 = vector_alu_srco_unsigned(alu_src)
657 },
658 };
659
660 emit_mir_instruction(ctx, ins);
661 }
662
663
664
665 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
666 * pinning to eliminate this move in all known cases */
667
668 static void
669 emit_indirect_offset(compiler_context *ctx, nir_src *src)
670 {
671 int offset = nir_src_index(ctx, src);
672
673 midgard_instruction ins = {
674 .type = TAG_ALU_4,
675 .mask = 1 << COMPONENT_W,
676 .ssa_args = {
677 .src0 = SSA_UNUSED_1,
678 .src1 = offset,
679 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
680 },
681 .alu = {
682 .op = midgard_alu_op_imov,
683 .outmod = midgard_outmod_int_wrap,
684 .reg_mode = midgard_reg_mode_32,
685 .dest_override = midgard_dest_override_none,
686 .src1 = vector_alu_srco_unsigned(zero_alu_src),
687 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
688 },
689 };
690
691 emit_mir_instruction(ctx, ins);
692 }
693
694 #define ALU_CASE(nir, _op) \
695 case nir_op_##nir: \
696 op = midgard_alu_op_##_op; \
697 assert(src_bitsize == dst_bitsize); \
698 break;
699
700 #define ALU_CASE_BCAST(nir, _op, count) \
701 case nir_op_##nir: \
702 op = midgard_alu_op_##_op; \
703 broadcast_swizzle = count; \
704 assert(src_bitsize == dst_bitsize); \
705 break;
706 static bool
707 nir_is_fzero_constant(nir_src src)
708 {
709 if (!nir_src_is_const(src))
710 return false;
711
712 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
713 if (nir_src_comp_as_float(src, c) != 0.0)
714 return false;
715 }
716
717 return true;
718 }
719
720 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
721 * special treatment override this anyway. */
722
723 static midgard_reg_mode
724 reg_mode_for_nir(nir_alu_instr *instr)
725 {
726 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
727
728 switch (src_bitsize) {
729 case 8:
730 return midgard_reg_mode_8;
731 case 16:
732 return midgard_reg_mode_16;
733 case 32:
734 return midgard_reg_mode_32;
735 case 64:
736 return midgard_reg_mode_64;
737 default:
738 unreachable("Invalid bit size");
739 }
740 }
741
742 static void
743 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
744 {
745 bool is_ssa = instr->dest.dest.is_ssa;
746
747 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
748 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
749 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
750
751 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
752 * supported. A few do not and are commented for now. Also, there are a
753 * number of NIR ops which Midgard does not support and need to be
754 * lowered, also TODO. This switch block emits the opcode and calling
755 * convention of the Midgard instruction; actual packing is done in
756 * emit_alu below */
757
758 unsigned op;
759
760 /* Number of components valid to check for the instruction (the rest
761 * will be forced to the last), or 0 to use as-is. Relevant as
762 * ball-type instructions have a channel count in NIR but are all vec4
763 * in Midgard */
764
765 unsigned broadcast_swizzle = 0;
766
767 /* What register mode should we operate in? */
768 midgard_reg_mode reg_mode =
769 reg_mode_for_nir(instr);
770
771 /* Do we need a destination override? Used for inline
772 * type conversion */
773
774 midgard_dest_override dest_override =
775 midgard_dest_override_none;
776
777 /* Should we use a smaller respective source and sign-extend? */
778
779 bool half_1 = false, sext_1 = false;
780 bool half_2 = false, sext_2 = false;
781
782 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
783 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
784
785 switch (instr->op) {
786 ALU_CASE(fadd, fadd);
787 ALU_CASE(fmul, fmul);
788 ALU_CASE(fmin, fmin);
789 ALU_CASE(fmax, fmax);
790 ALU_CASE(imin, imin);
791 ALU_CASE(imax, imax);
792 ALU_CASE(umin, umin);
793 ALU_CASE(umax, umax);
794 ALU_CASE(ffloor, ffloor);
795 ALU_CASE(fround_even, froundeven);
796 ALU_CASE(ftrunc, ftrunc);
797 ALU_CASE(fceil, fceil);
798 ALU_CASE(fdot3, fdot3);
799 ALU_CASE(fdot4, fdot4);
800 ALU_CASE(iadd, iadd);
801 ALU_CASE(isub, isub);
802 ALU_CASE(imul, imul);
803
804 /* Zero shoved as second-arg */
805 ALU_CASE(iabs, iabsdiff);
806
807 ALU_CASE(mov, imov);
808
809 ALU_CASE(feq32, feq);
810 ALU_CASE(fne32, fne);
811 ALU_CASE(flt32, flt);
812 ALU_CASE(ieq32, ieq);
813 ALU_CASE(ine32, ine);
814 ALU_CASE(ilt32, ilt);
815 ALU_CASE(ult32, ult);
816
817 /* We don't have a native b2f32 instruction. Instead, like many
818 * GPUs, we exploit booleans as 0/~0 for false/true, and
819 * correspondingly AND
820 * by 1.0 to do the type conversion. For the moment, prime us
821 * to emit:
822 *
823 * iand [whatever], #0
824 *
825 * At the end of emit_alu (as MIR), we'll fix-up the constant
826 */
827
828 ALU_CASE(b2f32, iand);
829 ALU_CASE(b2i32, iand);
830
831 /* Likewise, we don't have a dedicated f2b32 instruction, but
832 * we can do a "not equal to 0.0" test. */
833
834 ALU_CASE(f2b32, fne);
835 ALU_CASE(i2b32, ine);
836
837 ALU_CASE(frcp, frcp);
838 ALU_CASE(frsq, frsqrt);
839 ALU_CASE(fsqrt, fsqrt);
840 ALU_CASE(fexp2, fexp2);
841 ALU_CASE(flog2, flog2);
842
843 ALU_CASE(f2i32, f2i_rtz);
844 ALU_CASE(f2u32, f2u_rtz);
845 ALU_CASE(i2f32, i2f_rtz);
846 ALU_CASE(u2f32, u2f_rtz);
847
848 ALU_CASE(f2i16, f2i_rtz);
849 ALU_CASE(f2u16, f2u_rtz);
850 ALU_CASE(i2f16, i2f_rtz);
851 ALU_CASE(u2f16, u2f_rtz);
852
853 ALU_CASE(fsin, fsin);
854 ALU_CASE(fcos, fcos);
855
856 /* We'll set invert */
857 ALU_CASE(inot, imov);
858 ALU_CASE(iand, iand);
859 ALU_CASE(ior, ior);
860 ALU_CASE(ixor, ixor);
861 ALU_CASE(ishl, ishl);
862 ALU_CASE(ishr, iasr);
863 ALU_CASE(ushr, ilsr);
864
865 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
866 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
867 ALU_CASE(b32all_fequal4, fball_eq);
868
869 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
870 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
871 ALU_CASE(b32any_fnequal4, fbany_neq);
872
873 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
874 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
875 ALU_CASE(b32all_iequal4, iball_eq);
876
877 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
878 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
879 ALU_CASE(b32any_inequal4, ibany_neq);
880
881 /* Source mods will be shoved in later */
882 ALU_CASE(fabs, fmov);
883 ALU_CASE(fneg, fmov);
884 ALU_CASE(fsat, fmov);
885
886 /* For size conversion, we use a move. Ideally though we would squash
887 * these ops together; maybe that has to happen after in NIR as part of
888 * propagation...? An earlier algebraic pass ensured we step down by
889 * only / exactly one size. If stepping down, we use a dest override to
890 * reduce the size; if stepping up, we use a larger-sized move with a
891 * half source and a sign/zero-extension modifier */
892
893 case nir_op_i2i8:
894 case nir_op_i2i16:
895 case nir_op_i2i32:
896 /* If we end up upscale, we'll need a sign-extend on the
897 * operand (the second argument) */
898
899 sext_2 = true;
900 case nir_op_u2u8:
901 case nir_op_u2u16:
902 case nir_op_u2u32: {
903 op = midgard_alu_op_imov;
904
905 if (dst_bitsize == (src_bitsize * 2)) {
906 /* Converting up */
907 half_2 = true;
908
909 /* Use a greater register mode */
910 reg_mode++;
911 } else if (src_bitsize == (dst_bitsize * 2)) {
912 /* Converting down */
913 dest_override = midgard_dest_override_lower;
914 }
915
916 break;
917 }
918
919 case nir_op_f2f16: {
920 assert(src_bitsize == 32);
921
922 op = midgard_alu_op_fmov;
923 dest_override = midgard_dest_override_lower;
924 break;
925 }
926
927 case nir_op_f2f32: {
928 assert(src_bitsize == 16);
929
930 op = midgard_alu_op_fmov;
931 half_2 = true;
932 reg_mode++;
933 break;
934 }
935
936
937 /* For greater-or-equal, we lower to less-or-equal and flip the
938 * arguments */
939
940 case nir_op_fge:
941 case nir_op_fge32:
942 case nir_op_ige32:
943 case nir_op_uge32: {
944 op =
945 instr->op == nir_op_fge ? midgard_alu_op_fle :
946 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
947 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
948 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
949 0;
950
951 /* Swap via temporary */
952 nir_alu_src temp = instr->src[1];
953 instr->src[1] = instr->src[0];
954 instr->src[0] = temp;
955
956 break;
957 }
958
959 case nir_op_b32csel: {
960 /* Midgard features both fcsel and icsel, depending on
961 * the type of the arguments/output. However, as long
962 * as we're careful we can _always_ use icsel and
963 * _never_ need fcsel, since the latter does additional
964 * floating-point-specific processing whereas the
965 * former just moves bits on the wire. It's not obvious
966 * why these are separate opcodes, save for the ability
967 * to do things like sat/pos/abs/neg for free */
968
969 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
970 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
971
972 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
973 nr_inputs = 2;
974
975 /* Emit the condition into r31 */
976
977 if (mixed)
978 emit_condition_mixed(ctx, &instr->src[0], nr_components);
979 else
980 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
981
982 /* The condition is the first argument; move the other
983 * arguments up one to be a binary instruction for
984 * Midgard */
985
986 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
987 break;
988 }
989
990 default:
991 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
992 assert(0);
993 return;
994 }
995
996 /* Midgard can perform certain modifiers on output of an ALU op */
997 unsigned outmod;
998
999 if (midgard_is_integer_out_op(op)) {
1000 outmod = midgard_outmod_int_wrap;
1001 } else {
1002 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
1003 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1004 }
1005
1006 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1007
1008 if (instr->op == nir_op_fmax) {
1009 if (nir_is_fzero_constant(instr->src[0].src)) {
1010 op = midgard_alu_op_fmov;
1011 nr_inputs = 1;
1012 outmod = midgard_outmod_pos;
1013 instr->src[0] = instr->src[1];
1014 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1015 op = midgard_alu_op_fmov;
1016 nr_inputs = 1;
1017 outmod = midgard_outmod_pos;
1018 }
1019 }
1020
1021 /* Fetch unit, quirks, etc information */
1022 unsigned opcode_props = alu_opcode_props[op].props;
1023 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1024
1025 /* src0 will always exist afaik, but src1 will not for 1-argument
1026 * instructions. The latter can only be fetched if the instruction
1027 * needs it, or else we may segfault. */
1028
1029 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1030 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1031
1032 /* Rather than use the instruction generation helpers, we do it
1033 * ourselves here to avoid the mess */
1034
1035 midgard_instruction ins = {
1036 .type = TAG_ALU_4,
1037 .ssa_args = {
1038 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1039 .src1 = quirk_flipped_r24 ? src0 : src1,
1040 .dest = dest,
1041 }
1042 };
1043
1044 nir_alu_src *nirmods[2] = { NULL };
1045
1046 if (nr_inputs == 2) {
1047 nirmods[0] = &instr->src[0];
1048 nirmods[1] = &instr->src[1];
1049 } else if (nr_inputs == 1) {
1050 nirmods[quirk_flipped_r24] = &instr->src[0];
1051 } else {
1052 assert(0);
1053 }
1054
1055 /* These were lowered to a move, so apply the corresponding mod */
1056
1057 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1058 nir_alu_src *s = nirmods[quirk_flipped_r24];
1059
1060 if (instr->op == nir_op_fneg)
1061 s->negate = !s->negate;
1062
1063 if (instr->op == nir_op_fabs)
1064 s->abs = !s->abs;
1065 }
1066
1067 bool is_int = midgard_is_integer_op(op);
1068
1069 ins.mask = mask_of(nr_components);
1070
1071 midgard_vector_alu alu = {
1072 .op = op,
1073 .reg_mode = reg_mode,
1074 .dest_override = dest_override,
1075 .outmod = outmod,
1076
1077 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1078 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1079 };
1080
1081 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1082
1083 if (!is_ssa)
1084 ins.mask &= instr->dest.write_mask;
1085
1086 ins.alu = alu;
1087
1088 /* Late fixup for emulated instructions */
1089
1090 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1091 /* Presently, our second argument is an inline #0 constant.
1092 * Switch over to an embedded 1.0 constant (that can't fit
1093 * inline, since we're 32-bit, not 16-bit like the inline
1094 * constants) */
1095
1096 ins.ssa_args.inline_constant = false;
1097 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1098 ins.has_constants = true;
1099
1100 if (instr->op == nir_op_b2f32) {
1101 ins.constants[0] = 1.0f;
1102 } else {
1103 /* Type pun it into place */
1104 uint32_t one = 0x1;
1105 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1106 }
1107
1108 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1109 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1110 /* Lots of instructions need a 0 plonked in */
1111 ins.ssa_args.inline_constant = false;
1112 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1113 ins.has_constants = true;
1114 ins.constants[0] = 0.0f;
1115 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1116 } else if (instr->op == nir_op_inot) {
1117 ins.invert = true;
1118 }
1119
1120 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1121 /* To avoid duplicating the lookup tables (probably), true LUT
1122 * instructions can only operate as if they were scalars. Lower
1123 * them here by changing the component. */
1124
1125 uint8_t original_swizzle[4];
1126 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1127 unsigned orig_mask = ins.mask;
1128
1129 for (int i = 0; i < nr_components; ++i) {
1130 /* Mask the associated component, dropping the
1131 * instruction if needed */
1132
1133 ins.mask = 1 << i;
1134 ins.mask &= orig_mask;
1135
1136 if (!ins.mask)
1137 continue;
1138
1139 for (int j = 0; j < 4; ++j)
1140 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1141
1142 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1143 emit_mir_instruction(ctx, ins);
1144 }
1145 } else {
1146 emit_mir_instruction(ctx, ins);
1147 }
1148 }
1149
1150 #undef ALU_CASE
1151
1152 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1153 * optimized) versions of UBO #0 */
1154
1155 void
1156 emit_ubo_read(
1157 compiler_context *ctx,
1158 unsigned dest,
1159 unsigned offset,
1160 nir_src *indirect_offset,
1161 unsigned index)
1162 {
1163 /* TODO: half-floats */
1164
1165 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1166
1167 /* TODO: Don't split */
1168 ins.load_store.varying_parameters = (offset & 7) << 7;
1169 ins.load_store.address = offset >> 3;
1170
1171 if (indirect_offset) {
1172 emit_indirect_offset(ctx, indirect_offset);
1173 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1174 } else {
1175 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1176 }
1177
1178 emit_mir_instruction(ctx, ins);
1179 }
1180
1181 static void
1182 emit_varying_read(
1183 compiler_context *ctx,
1184 unsigned dest, unsigned offset,
1185 unsigned nr_comp, unsigned component,
1186 nir_src *indirect_offset, nir_alu_type type)
1187 {
1188 /* XXX: Half-floats? */
1189 /* TODO: swizzle, mask */
1190
1191 midgard_instruction ins = m_ld_vary_32(dest, offset);
1192 ins.mask = mask_of(nr_comp);
1193 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1194
1195 midgard_varying_parameter p = {
1196 .is_varying = 1,
1197 .interpolation = midgard_interp_default,
1198 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1199 };
1200
1201 unsigned u;
1202 memcpy(&u, &p, sizeof(p));
1203 ins.load_store.varying_parameters = u;
1204
1205 if (indirect_offset) {
1206 /* We need to add in the dynamic index, moved to r27.w */
1207 emit_indirect_offset(ctx, indirect_offset);
1208 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1209 } else {
1210 /* Just a direct load */
1211 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1212 }
1213
1214 /* Use the type appropriate load */
1215 switch (type) {
1216 case nir_type_uint:
1217 case nir_type_bool:
1218 ins.load_store.op = midgard_op_ld_vary_32u;
1219 break;
1220 case nir_type_int:
1221 ins.load_store.op = midgard_op_ld_vary_32i;
1222 break;
1223 case nir_type_float:
1224 ins.load_store.op = midgard_op_ld_vary_32;
1225 break;
1226 default:
1227 unreachable("Attempted to load unknown type");
1228 break;
1229 }
1230
1231 emit_mir_instruction(ctx, ins);
1232 }
1233
1234 static void
1235 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1236 {
1237 unsigned dest = 0;
1238
1239 /* Figure out which uniform this is */
1240 int sysval = sysval_for_instr(ctx, instr, &dest);
1241 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1242
1243 /* Sysvals are prefix uniforms */
1244 unsigned uniform = ((uintptr_t) val) - 1;
1245
1246 /* Emit the read itself -- this is never indirect */
1247 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1248 }
1249
1250 static void
1251 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1252 {
1253 unsigned offset = 0, reg;
1254
1255 switch (instr->intrinsic) {
1256 case nir_intrinsic_discard_if:
1257 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1258
1259 /* fallthrough */
1260
1261 case nir_intrinsic_discard: {
1262 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1263 struct midgard_instruction discard = v_branch(conditional, false);
1264 discard.branch.target_type = TARGET_DISCARD;
1265 emit_mir_instruction(ctx, discard);
1266 break;
1267 }
1268
1269 case nir_intrinsic_load_uniform:
1270 case nir_intrinsic_load_ubo:
1271 case nir_intrinsic_load_input: {
1272 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1273 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1274
1275 /* Get the base type of the intrinsic */
1276 /* TODO: Infer type? Does it matter? */
1277 nir_alu_type t =
1278 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1279 t = nir_alu_type_get_base_type(t);
1280
1281 if (!is_ubo) {
1282 offset = nir_intrinsic_base(instr);
1283 }
1284
1285 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1286
1287 nir_src *src_offset = nir_get_io_offset_src(instr);
1288
1289 bool direct = nir_src_is_const(*src_offset);
1290
1291 if (direct)
1292 offset += nir_src_as_uint(*src_offset);
1293
1294 /* We may need to apply a fractional offset */
1295 int component = instr->intrinsic == nir_intrinsic_load_input ?
1296 nir_intrinsic_component(instr) : 0;
1297 reg = nir_dest_index(ctx, &instr->dest);
1298
1299 if (is_uniform && !ctx->is_blend) {
1300 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1301 } else if (is_ubo) {
1302 nir_src index = instr->src[0];
1303
1304 /* We don't yet support indirect UBOs. For indirect
1305 * block numbers (if that's possible), we don't know
1306 * enough about the hardware yet. For indirect sources,
1307 * we know what we need but we need to add some NIR
1308 * support for lowering correctly with respect to
1309 * 128-bit reads */
1310
1311 assert(nir_src_is_const(index));
1312 assert(nir_src_is_const(*src_offset));
1313
1314 /* TODO: Alignment */
1315 assert((offset & 0xF) == 0);
1316
1317 uint32_t uindex = nir_src_as_uint(index) + 1;
1318 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1319 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1320 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1321 } else if (ctx->is_blend) {
1322 /* For blend shaders, load the input color, which is
1323 * preloaded to r0 */
1324
1325 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1326 emit_mir_instruction(ctx, move);
1327 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1328 midgard_instruction ins = m_ld_attr_32(reg, offset);
1329 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1330 ins.mask = mask_of(nr_comp);
1331
1332 /* Use the type appropriate load */
1333 switch (t) {
1334 case nir_type_uint:
1335 case nir_type_bool:
1336 ins.load_store.op = midgard_op_ld_attr_32u;
1337 break;
1338 case nir_type_int:
1339 ins.load_store.op = midgard_op_ld_attr_32i;
1340 break;
1341 case nir_type_float:
1342 ins.load_store.op = midgard_op_ld_attr_32;
1343 break;
1344 default:
1345 unreachable("Attempted to load unknown type");
1346 break;
1347 }
1348
1349 emit_mir_instruction(ctx, ins);
1350 } else {
1351 DBG("Unknown load\n");
1352 assert(0);
1353 }
1354
1355 break;
1356 }
1357
1358 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1359
1360 case nir_intrinsic_load_raw_output_pan:
1361 reg = nir_dest_index(ctx, &instr->dest);
1362 assert(ctx->is_blend);
1363
1364 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1365 emit_mir_instruction(ctx, ins);
1366 break;
1367
1368 case nir_intrinsic_load_blend_const_color_rgba: {
1369 assert(ctx->is_blend);
1370 reg = nir_dest_index(ctx, &instr->dest);
1371
1372 /* Blend constants are embedded directly in the shader and
1373 * patched in, so we use some magic routing */
1374
1375 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1376 ins.has_constants = true;
1377 ins.has_blend_constant = true;
1378 emit_mir_instruction(ctx, ins);
1379 break;
1380 }
1381
1382 case nir_intrinsic_store_output:
1383 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1384
1385 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1386
1387 reg = nir_src_index(ctx, &instr->src[0]);
1388
1389 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1390 /* gl_FragColor is not emitted with load/store
1391 * instructions. Instead, it gets plonked into
1392 * r0 at the end of the shader and we do the
1393 * framebuffer writeout dance. TODO: Defer
1394 * writes */
1395
1396 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1397 emit_mir_instruction(ctx, move);
1398
1399 /* Save the index we're writing to for later reference
1400 * in the epilogue */
1401
1402 ctx->fragment_output = reg;
1403 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1404 /* We should have been vectorized, though we don't
1405 * currently check that st_vary is emitted only once
1406 * per slot (this is relevant, since there's not a mask
1407 * parameter available on the store [set to 0 by the
1408 * blob]). We do respect the component by adjusting the
1409 * swizzle. If this is a constant source, we'll need to
1410 * emit that explicitly. */
1411
1412 emit_explicit_constant(ctx, reg, reg);
1413
1414 unsigned component = nir_intrinsic_component(instr);
1415
1416 midgard_instruction st = m_st_vary_32(reg, offset);
1417 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1418 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1419 emit_mir_instruction(ctx, st);
1420 } else {
1421 DBG("Unknown store\n");
1422 assert(0);
1423 }
1424
1425 break;
1426
1427 /* Special case of store_output for lowered blend shaders */
1428 case nir_intrinsic_store_raw_output_pan:
1429 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1430 reg = nir_src_index(ctx, &instr->src[0]);
1431
1432 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1433 emit_mir_instruction(ctx, move);
1434 ctx->fragment_output = reg;
1435
1436 break;
1437
1438 case nir_intrinsic_load_alpha_ref_float:
1439 assert(instr->dest.is_ssa);
1440
1441 float ref_value = ctx->alpha_ref;
1442
1443 /* See emit_load_const */
1444 float *v = ralloc_array(NULL, float, 4);
1445 memcpy(v, &ref_value, sizeof(float));
1446 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1447 break;
1448
1449 case nir_intrinsic_load_viewport_scale:
1450 case nir_intrinsic_load_viewport_offset:
1451 emit_sysval_read(ctx, &instr->instr);
1452 break;
1453
1454 default:
1455 printf ("Unhandled intrinsic\n");
1456 assert(0);
1457 break;
1458 }
1459 }
1460
1461 static unsigned
1462 midgard_tex_format(enum glsl_sampler_dim dim)
1463 {
1464 switch (dim) {
1465 case GLSL_SAMPLER_DIM_1D:
1466 case GLSL_SAMPLER_DIM_BUF:
1467 return MALI_TEX_1D;
1468
1469 case GLSL_SAMPLER_DIM_2D:
1470 case GLSL_SAMPLER_DIM_EXTERNAL:
1471 return MALI_TEX_2D;
1472
1473 case GLSL_SAMPLER_DIM_3D:
1474 return MALI_TEX_3D;
1475
1476 case GLSL_SAMPLER_DIM_CUBE:
1477 return MALI_TEX_CUBE;
1478
1479 default:
1480 DBG("Unknown sampler dim type\n");
1481 assert(0);
1482 return 0;
1483 }
1484 }
1485
1486 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1487 * was successful */
1488
1489 static bool
1490 pan_attach_constant_bias(
1491 compiler_context *ctx,
1492 nir_src lod,
1493 midgard_texture_word *word)
1494 {
1495 /* To attach as constant, it has to *be* constant */
1496
1497 if (!nir_src_is_const(lod))
1498 return false;
1499
1500 float f = nir_src_as_float(lod);
1501
1502 /* Break into fixed-point */
1503 signed lod_int = f;
1504 float lod_frac = f - lod_int;
1505
1506 /* Carry over negative fractions */
1507 if (lod_frac < 0.0) {
1508 lod_int--;
1509 lod_frac += 1.0;
1510 }
1511
1512 /* Encode */
1513 word->bias = float_to_ubyte(lod_frac);
1514 word->bias_int = lod_int;
1515
1516 return true;
1517 }
1518
1519 static enum mali_sampler_type
1520 midgard_sampler_type(nir_alu_type t) {
1521 switch (nir_alu_type_get_base_type(t))
1522 {
1523 case nir_type_float:
1524 return MALI_SAMPLER_FLOAT;
1525 case nir_type_int:
1526 return MALI_SAMPLER_SIGNED;
1527 case nir_type_uint:
1528 return MALI_SAMPLER_UNSIGNED;
1529 default:
1530 unreachable("Unknown sampler type");
1531 }
1532 }
1533
1534 static void
1535 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1536 unsigned midgard_texop)
1537 {
1538 /* TODO */
1539 //assert (!instr->sampler);
1540 //assert (!instr->texture_array_size);
1541
1542 int texture_index = instr->texture_index;
1543 int sampler_index = texture_index;
1544
1545 /* No helper to build texture words -- we do it all here */
1546 midgard_instruction ins = {
1547 .type = TAG_TEXTURE_4,
1548 .mask = 0xF,
1549 .ssa_args = {
1550 .dest = nir_dest_index(ctx, &instr->dest),
1551 .src0 = -1,
1552 .src1 = -1,
1553 },
1554 .texture = {
1555 .op = midgard_texop,
1556 .format = midgard_tex_format(instr->sampler_dim),
1557 .texture_handle = texture_index,
1558 .sampler_handle = sampler_index,
1559 .swizzle = SWIZZLE_XYZW,
1560 .in_reg_swizzle = SWIZZLE_XYZW,
1561
1562 /* TODO: half */
1563 .in_reg_full = 1,
1564 .out_full = 1,
1565
1566 .sampler_type = midgard_sampler_type(instr->dest_type),
1567 }
1568 };
1569
1570 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1571 int index = nir_src_index(ctx, &instr->src[i].src);
1572 midgard_vector_alu_src alu_src = blank_alu_src;
1573
1574 switch (instr->src[i].src_type) {
1575 case nir_tex_src_coord: {
1576 emit_explicit_constant(ctx, index, index);
1577
1578 /* Texelfetch coordinates uses all four elements
1579 * (xyz/index) regardless of texture dimensionality,
1580 * which means it's necessary to zero the unused
1581 * components to keep everything happy */
1582
1583 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1584 unsigned old_index = index;
1585
1586 index = make_compiler_temp(ctx);
1587
1588 /* mov index, old_index */
1589 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1590 mov.mask = 0x3;
1591 emit_mir_instruction(ctx, mov);
1592
1593 /* mov index.zw, #0 */
1594 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1595 blank_alu_src, index);
1596 mov.has_constants = true;
1597 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1598 emit_mir_instruction(ctx, mov);
1599 }
1600
1601 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1602 /* texelFetch is undefined on samplerCube */
1603 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1604
1605 /* For cubemaps, we use a special ld/st op to
1606 * select the face and copy the xy into the
1607 * texture register */
1608
1609 unsigned temp = make_compiler_temp(ctx);
1610
1611 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1612 st.ssa_args.src0 = index;
1613 st.load_store.unknown = 0x24; /* XXX: What is this? */
1614 st.mask = 0x3; /* xy */
1615 st.load_store.swizzle = alu_src.swizzle;
1616 emit_mir_instruction(ctx, st);
1617
1618 ins.ssa_args.src0 = temp;
1619 } else {
1620 ins.ssa_args.src0 = index;
1621 }
1622
1623 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1624 /* Array component in w but NIR wants it in z */
1625 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1626 }
1627
1628 break;
1629 }
1630
1631 case nir_tex_src_bias:
1632 case nir_tex_src_lod: {
1633 /* Try as a constant if we can */
1634
1635 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1636 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1637 break;
1638
1639 ins.texture.lod_register = true;
1640 ins.ssa_args.src1 = index;
1641 emit_explicit_constant(ctx, index, index);
1642
1643 break;
1644 };
1645
1646 default:
1647 unreachable("Unknown texture source type\n");
1648 }
1649 }
1650
1651 emit_mir_instruction(ctx, ins);
1652
1653 /* Used for .cont and .last hinting */
1654 ctx->texture_op_count++;
1655 }
1656
1657 static void
1658 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1659 {
1660 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1661 * generic tex in some cases (which confuses the hardware) */
1662
1663 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1664
1665 if (is_vertex && instr->op == nir_texop_tex)
1666 instr->op = nir_texop_txl;
1667
1668 switch (instr->op) {
1669 case nir_texop_tex:
1670 case nir_texop_txb:
1671 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1672 break;
1673 case nir_texop_txl:
1674 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1675 break;
1676 case nir_texop_txf:
1677 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1678 break;
1679 case nir_texop_txs:
1680 emit_sysval_read(ctx, &instr->instr);
1681 break;
1682 default:
1683 unreachable("Unhanlded texture op");
1684 }
1685 }
1686
1687 static void
1688 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1689 {
1690 switch (instr->type) {
1691 case nir_jump_break: {
1692 /* Emit a branch out of the loop */
1693 struct midgard_instruction br = v_branch(false, false);
1694 br.branch.target_type = TARGET_BREAK;
1695 br.branch.target_break = ctx->current_loop_depth;
1696 emit_mir_instruction(ctx, br);
1697 break;
1698 }
1699
1700 default:
1701 DBG("Unknown jump type %d\n", instr->type);
1702 break;
1703 }
1704 }
1705
1706 static void
1707 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1708 {
1709 switch (instr->type) {
1710 case nir_instr_type_load_const:
1711 emit_load_const(ctx, nir_instr_as_load_const(instr));
1712 break;
1713
1714 case nir_instr_type_intrinsic:
1715 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1716 break;
1717
1718 case nir_instr_type_alu:
1719 emit_alu(ctx, nir_instr_as_alu(instr));
1720 break;
1721
1722 case nir_instr_type_tex:
1723 emit_tex(ctx, nir_instr_as_tex(instr));
1724 break;
1725
1726 case nir_instr_type_jump:
1727 emit_jump(ctx, nir_instr_as_jump(instr));
1728 break;
1729
1730 case nir_instr_type_ssa_undef:
1731 /* Spurious */
1732 break;
1733
1734 default:
1735 DBG("Unhandled instruction type\n");
1736 break;
1737 }
1738 }
1739
1740
1741 /* ALU instructions can inline or embed constants, which decreases register
1742 * pressure and saves space. */
1743
1744 #define CONDITIONAL_ATTACH(src) { \
1745 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1746 \
1747 if (entry) { \
1748 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1749 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1750 } \
1751 }
1752
1753 static void
1754 inline_alu_constants(compiler_context *ctx)
1755 {
1756 mir_foreach_instr(ctx, alu) {
1757 /* Other instructions cannot inline constants */
1758 if (alu->type != TAG_ALU_4) continue;
1759
1760 /* If there is already a constant here, we can do nothing */
1761 if (alu->has_constants) continue;
1762
1763 /* It makes no sense to inline constants on a branch */
1764 if (alu->compact_branch || alu->prepacked_branch) continue;
1765
1766 CONDITIONAL_ATTACH(src0);
1767
1768 if (!alu->has_constants) {
1769 CONDITIONAL_ATTACH(src1)
1770 } else if (!alu->inline_constant) {
1771 /* Corner case: _two_ vec4 constants, for instance with a
1772 * csel. For this case, we can only use a constant
1773 * register for one, we'll have to emit a move for the
1774 * other. Note, if both arguments are constants, then
1775 * necessarily neither argument depends on the value of
1776 * any particular register. As the destination register
1777 * will be wiped, that means we can spill the constant
1778 * to the destination register.
1779 */
1780
1781 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1782 unsigned scratch = alu->ssa_args.dest;
1783
1784 if (entry) {
1785 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1786 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1787
1788 /* Force a break XXX Defer r31 writes */
1789 ins.unit = UNIT_VLUT;
1790
1791 /* Set the source */
1792 alu->ssa_args.src1 = scratch;
1793
1794 /* Inject us -before- the last instruction which set r31 */
1795 mir_insert_instruction_before(mir_prev_op(alu), ins);
1796 }
1797 }
1798 }
1799 }
1800
1801 /* Midgard supports two types of constants, embedded constants (128-bit) and
1802 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1803 * constants can be demoted to inline constants, for space savings and
1804 * sometimes a performance boost */
1805
1806 static void
1807 embedded_to_inline_constant(compiler_context *ctx)
1808 {
1809 mir_foreach_instr(ctx, ins) {
1810 if (!ins->has_constants) continue;
1811
1812 if (ins->ssa_args.inline_constant) continue;
1813
1814 /* Blend constants must not be inlined by definition */
1815 if (ins->has_blend_constant) continue;
1816
1817 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1818 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1819 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1820
1821 if (!(is_16 || is_32))
1822 continue;
1823
1824 /* src1 cannot be an inline constant due to encoding
1825 * restrictions. So, if possible we try to flip the arguments
1826 * in that case */
1827
1828 int op = ins->alu.op;
1829
1830 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1831 switch (op) {
1832 /* These ops require an operational change to flip
1833 * their arguments TODO */
1834 case midgard_alu_op_flt:
1835 case midgard_alu_op_fle:
1836 case midgard_alu_op_ilt:
1837 case midgard_alu_op_ile:
1838 case midgard_alu_op_fcsel:
1839 case midgard_alu_op_icsel:
1840 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1841 default:
1842 break;
1843 }
1844
1845 if (alu_opcode_props[op].props & OP_COMMUTES) {
1846 /* Flip the SSA numbers */
1847 ins->ssa_args.src0 = ins->ssa_args.src1;
1848 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1849
1850 /* And flip the modifiers */
1851
1852 unsigned src_temp;
1853
1854 src_temp = ins->alu.src2;
1855 ins->alu.src2 = ins->alu.src1;
1856 ins->alu.src1 = src_temp;
1857 }
1858 }
1859
1860 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1861 /* Extract the source information */
1862
1863 midgard_vector_alu_src *src;
1864 int q = ins->alu.src2;
1865 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1866 src = m;
1867
1868 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1869 int component = src->swizzle & 3;
1870
1871 /* Scale constant appropriately, if we can legally */
1872 uint16_t scaled_constant = 0;
1873
1874 if (midgard_is_integer_op(op) || is_16) {
1875 unsigned int *iconstants = (unsigned int *) ins->constants;
1876 scaled_constant = (uint16_t) iconstants[component];
1877
1878 /* Constant overflow after resize */
1879 if (scaled_constant != iconstants[component])
1880 continue;
1881 } else {
1882 float original = (float) ins->constants[component];
1883 scaled_constant = _mesa_float_to_half(original);
1884
1885 /* Check for loss of precision. If this is
1886 * mediump, we don't care, but for a highp
1887 * shader, we need to pay attention. NIR
1888 * doesn't yet tell us which mode we're in!
1889 * Practically this prevents most constants
1890 * from being inlined, sadly. */
1891
1892 float fp32 = _mesa_half_to_float(scaled_constant);
1893
1894 if (fp32 != original)
1895 continue;
1896 }
1897
1898 /* We don't know how to handle these with a constant */
1899
1900 bool is_int = midgard_is_integer_op(ins->alu.op);
1901 if (mir_nontrivial_raw_mod(*src, is_int) || src->half || src->rep_low || src->rep_high) {
1902 DBG("Bailing inline constant...\n");
1903 continue;
1904 }
1905
1906 /* Make sure that the constant is not itself a
1907 * vector by checking if all accessed values
1908 * (by the swizzle) are the same. */
1909
1910 uint32_t *cons = (uint32_t *) ins->constants;
1911 uint32_t value = cons[component];
1912
1913 bool is_vector = false;
1914 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1915
1916 for (int c = 1; c < 4; ++c) {
1917 /* We only care if this component is actually used */
1918 if (!(mask & (1 << c)))
1919 continue;
1920
1921 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1922
1923 if (test != value) {
1924 is_vector = true;
1925 break;
1926 }
1927 }
1928
1929 if (is_vector)
1930 continue;
1931
1932 /* Get rid of the embedded constant */
1933 ins->has_constants = false;
1934 ins->ssa_args.src1 = SSA_UNUSED_0;
1935 ins->ssa_args.inline_constant = true;
1936 ins->inline_constant = scaled_constant;
1937 }
1938 }
1939 }
1940
1941 /* Dead code elimination for branches at the end of a block - only one branch
1942 * per block is legal semantically */
1943
1944 static void
1945 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1946 {
1947 bool branched = false;
1948
1949 mir_foreach_instr_in_block_safe(block, ins) {
1950 if (!midgard_is_branch_unit(ins->unit)) continue;
1951
1952 /* We ignore prepacked branches since the fragment epilogue is
1953 * just generally special */
1954 if (ins->prepacked_branch) continue;
1955
1956 /* Discards are similarly special and may not correspond to the
1957 * end of a block */
1958
1959 if (ins->branch.target_type == TARGET_DISCARD) continue;
1960
1961 if (branched) {
1962 /* We already branched, so this is dead */
1963 mir_remove_instruction(ins);
1964 }
1965
1966 branched = true;
1967 }
1968 }
1969
1970 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
1971 * the move can be propagated away entirely */
1972
1973 static bool
1974 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
1975 {
1976 /* Nothing to do */
1977 if (comp == midgard_outmod_none)
1978 return true;
1979
1980 if (*outmod == midgard_outmod_none) {
1981 *outmod = comp;
1982 return true;
1983 }
1984
1985 /* TODO: Compose rules */
1986 return false;
1987 }
1988
1989 static bool
1990 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
1991 {
1992 bool progress = false;
1993
1994 mir_foreach_instr_in_block_safe(block, ins) {
1995 if (ins->type != TAG_ALU_4) continue;
1996 if (ins->alu.op != midgard_alu_op_fmov) continue;
1997 if (ins->alu.outmod != midgard_outmod_pos) continue;
1998
1999 /* TODO: Registers? */
2000 unsigned src = ins->ssa_args.src1;
2001 if (src & IS_REG) continue;
2002 assert(!mir_has_multiple_writes(ctx, src));
2003
2004 /* There might be a source modifier, too */
2005 if (mir_nontrivial_source2_mod(ins)) continue;
2006
2007 /* Backpropagate the modifier */
2008 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2009 if (v->type != TAG_ALU_4) continue;
2010 if (v->ssa_args.dest != src) continue;
2011
2012 /* Can we even take a float outmod? */
2013 if (midgard_is_integer_out_op(v->alu.op)) continue;
2014
2015 midgard_outmod_float temp = v->alu.outmod;
2016 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2017
2018 /* Throw in the towel.. */
2019 if (!progress) break;
2020
2021 /* Otherwise, transfer the modifier */
2022 v->alu.outmod = temp;
2023 ins->alu.outmod = midgard_outmod_none;
2024
2025 break;
2026 }
2027 }
2028
2029 return progress;
2030 }
2031
2032 static void
2033 emit_fragment_epilogue(compiler_context *ctx)
2034 {
2035 emit_explicit_constant(ctx, ctx->fragment_output, SSA_FIXED_REGISTER(0));
2036
2037 /* Perform the actual fragment writeout. We have two writeout/branch
2038 * instructions, forming a loop until writeout is successful as per the
2039 * docs. TODO: gl_FragDepth */
2040
2041 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2042 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2043 }
2044
2045 static midgard_block *
2046 emit_block(compiler_context *ctx, nir_block *block)
2047 {
2048 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2049 list_addtail(&this_block->link, &ctx->blocks);
2050
2051 this_block->is_scheduled = false;
2052 ++ctx->block_count;
2053
2054 ctx->texture_index[0] = -1;
2055 ctx->texture_index[1] = -1;
2056
2057 /* Add us as a successor to the block we are following */
2058 if (ctx->current_block)
2059 midgard_block_add_successor(ctx->current_block, this_block);
2060
2061 /* Set up current block */
2062 list_inithead(&this_block->instructions);
2063 ctx->current_block = this_block;
2064
2065 nir_foreach_instr(instr, block) {
2066 emit_instr(ctx, instr);
2067 ++ctx->instruction_count;
2068 }
2069
2070 inline_alu_constants(ctx);
2071 embedded_to_inline_constant(ctx);
2072
2073 /* Append fragment shader epilogue (value writeout) */
2074 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2075 if (block == nir_impl_last_block(ctx->func->impl)) {
2076 emit_fragment_epilogue(ctx);
2077 }
2078 }
2079
2080 if (block == nir_start_block(ctx->func->impl))
2081 ctx->initial_block = this_block;
2082
2083 if (block == nir_impl_last_block(ctx->func->impl))
2084 ctx->final_block = this_block;
2085
2086 /* Allow the next control flow to access us retroactively, for
2087 * branching etc */
2088 ctx->current_block = this_block;
2089
2090 /* Document the fallthrough chain */
2091 ctx->previous_source_block = this_block;
2092
2093 return this_block;
2094 }
2095
2096 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2097
2098 static void
2099 emit_if(struct compiler_context *ctx, nir_if *nif)
2100 {
2101 /* Conditional branches expect the condition in r31.w; emit a move for
2102 * that in the _previous_ block (which is the current block). */
2103 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2104
2105 /* Speculatively emit the branch, but we can't fill it in until later */
2106 EMIT(branch, true, true);
2107 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2108
2109 /* Emit the two subblocks */
2110 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2111
2112 /* Emit a jump from the end of the then block to the end of the else */
2113 EMIT(branch, false, false);
2114 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2115
2116 /* Emit second block, and check if it's empty */
2117
2118 int else_idx = ctx->block_count;
2119 int count_in = ctx->instruction_count;
2120 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2121 int after_else_idx = ctx->block_count;
2122
2123 /* Now that we have the subblocks emitted, fix up the branches */
2124
2125 assert(then_block);
2126 assert(else_block);
2127
2128 if (ctx->instruction_count == count_in) {
2129 /* The else block is empty, so don't emit an exit jump */
2130 mir_remove_instruction(then_exit);
2131 then_branch->branch.target_block = after_else_idx;
2132 } else {
2133 then_branch->branch.target_block = else_idx;
2134 then_exit->branch.target_block = after_else_idx;
2135 }
2136 }
2137
2138 static void
2139 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2140 {
2141 /* Remember where we are */
2142 midgard_block *start_block = ctx->current_block;
2143
2144 /* Allocate a loop number, growing the current inner loop depth */
2145 int loop_idx = ++ctx->current_loop_depth;
2146
2147 /* Get index from before the body so we can loop back later */
2148 int start_idx = ctx->block_count;
2149
2150 /* Emit the body itself */
2151 emit_cf_list(ctx, &nloop->body);
2152
2153 /* Branch back to loop back */
2154 struct midgard_instruction br_back = v_branch(false, false);
2155 br_back.branch.target_block = start_idx;
2156 emit_mir_instruction(ctx, br_back);
2157
2158 /* Mark down that branch in the graph. Note that we're really branching
2159 * to the block *after* we started in. TODO: Why doesn't the branch
2160 * itself have an off-by-one then...? */
2161 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2162
2163 /* Find the index of the block about to follow us (note: we don't add
2164 * one; blocks are 0-indexed so we get a fencepost problem) */
2165 int break_block_idx = ctx->block_count;
2166
2167 /* Fix up the break statements we emitted to point to the right place,
2168 * now that we can allocate a block number for them */
2169
2170 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2171 mir_foreach_instr_in_block(block, ins) {
2172 if (ins->type != TAG_ALU_4) continue;
2173 if (!ins->compact_branch) continue;
2174 if (ins->prepacked_branch) continue;
2175
2176 /* We found a branch -- check the type to see if we need to do anything */
2177 if (ins->branch.target_type != TARGET_BREAK) continue;
2178
2179 /* It's a break! Check if it's our break */
2180 if (ins->branch.target_break != loop_idx) continue;
2181
2182 /* Okay, cool, we're breaking out of this loop.
2183 * Rewrite from a break to a goto */
2184
2185 ins->branch.target_type = TARGET_GOTO;
2186 ins->branch.target_block = break_block_idx;
2187 }
2188 }
2189
2190 /* Now that we've finished emitting the loop, free up the depth again
2191 * so we play nice with recursion amid nested loops */
2192 --ctx->current_loop_depth;
2193
2194 /* Dump loop stats */
2195 ++ctx->loop_count;
2196 }
2197
2198 static midgard_block *
2199 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2200 {
2201 midgard_block *start_block = NULL;
2202
2203 foreach_list_typed(nir_cf_node, node, node, list) {
2204 switch (node->type) {
2205 case nir_cf_node_block: {
2206 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2207
2208 if (!start_block)
2209 start_block = block;
2210
2211 break;
2212 }
2213
2214 case nir_cf_node_if:
2215 emit_if(ctx, nir_cf_node_as_if(node));
2216 break;
2217
2218 case nir_cf_node_loop:
2219 emit_loop(ctx, nir_cf_node_as_loop(node));
2220 break;
2221
2222 case nir_cf_node_function:
2223 assert(0);
2224 break;
2225 }
2226 }
2227
2228 return start_block;
2229 }
2230
2231 /* Due to lookahead, we need to report the first tag executed in the command
2232 * stream and in branch targets. An initial block might be empty, so iterate
2233 * until we find one that 'works' */
2234
2235 static unsigned
2236 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2237 {
2238 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2239
2240 unsigned first_tag = 0;
2241
2242 do {
2243 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2244
2245 if (initial_bundle) {
2246 first_tag = initial_bundle->tag;
2247 break;
2248 }
2249
2250 /* Initial block is empty, try the next block */
2251 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2252 } while(initial_block != NULL);
2253
2254 assert(first_tag);
2255 return first_tag;
2256 }
2257
2258 int
2259 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2260 {
2261 struct util_dynarray *compiled = &program->compiled;
2262
2263 midgard_debug = debug_get_option_midgard_debug();
2264
2265 compiler_context ictx = {
2266 .nir = nir,
2267 .screen = screen,
2268 .stage = nir->info.stage,
2269 .temp_alloc = 0,
2270
2271 .is_blend = is_blend,
2272 .blend_constant_offset = 0,
2273
2274 .alpha_ref = program->alpha_ref
2275 };
2276
2277 compiler_context *ctx = &ictx;
2278
2279 /* Start off with a safe cutoff, allowing usage of all 16 work
2280 * registers. Later, we'll promote uniform reads to uniform registers
2281 * if we determine it is beneficial to do so */
2282 ctx->uniform_cutoff = 8;
2283
2284 /* Initialize at a global (not block) level hash tables */
2285
2286 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2287 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2288 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2289
2290 /* Record the varying mapping for the command stream's bookkeeping */
2291
2292 struct exec_list *varyings =
2293 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2294
2295 unsigned max_varying = 0;
2296 nir_foreach_variable(var, varyings) {
2297 unsigned loc = var->data.driver_location;
2298 unsigned sz = glsl_type_size(var->type, FALSE);
2299
2300 for (int c = 0; c < sz; ++c) {
2301 program->varyings[loc + c] = var->data.location + c;
2302 max_varying = MAX2(max_varying, loc + c);
2303 }
2304 }
2305
2306 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2307 * (so we don't accidentally duplicate the epilogue since mesa/st has
2308 * messed with our I/O quite a bit already) */
2309
2310 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2311
2312 if (ctx->stage == MESA_SHADER_VERTEX) {
2313 NIR_PASS_V(nir, nir_lower_viewport_transform);
2314 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2315 }
2316
2317 NIR_PASS_V(nir, nir_lower_var_copies);
2318 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2319 NIR_PASS_V(nir, nir_split_var_copies);
2320 NIR_PASS_V(nir, nir_lower_var_copies);
2321 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2322 NIR_PASS_V(nir, nir_lower_var_copies);
2323 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2324
2325 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2326
2327 /* Optimisation passes */
2328
2329 optimise_nir(nir);
2330
2331 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2332 nir_print_shader(nir, stdout);
2333 }
2334
2335 /* Assign sysvals and counts, now that we're sure
2336 * (post-optimisation) */
2337
2338 midgard_nir_assign_sysvals(ctx, nir);
2339
2340 program->uniform_count = nir->num_uniforms;
2341 program->sysval_count = ctx->sysval_count;
2342 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2343
2344 nir_foreach_function(func, nir) {
2345 if (!func->impl)
2346 continue;
2347
2348 list_inithead(&ctx->blocks);
2349 ctx->block_count = 0;
2350 ctx->func = func;
2351
2352 emit_cf_list(ctx, &func->impl->body);
2353 emit_block(ctx, func->impl->end_block);
2354
2355 break; /* TODO: Multi-function shaders */
2356 }
2357
2358 util_dynarray_init(compiled, NULL);
2359
2360 /* MIR-level optimizations */
2361
2362 bool progress = false;
2363
2364 do {
2365 progress = false;
2366
2367 mir_foreach_block(ctx, block) {
2368 progress |= midgard_opt_pos_propagate(ctx, block);
2369 progress |= midgard_opt_copy_prop(ctx, block);
2370 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2371 progress |= midgard_opt_combine_projection(ctx, block);
2372 progress |= midgard_opt_varying_projection(ctx, block);
2373 }
2374 } while (progress);
2375
2376 mir_foreach_block(ctx, block) {
2377 midgard_lower_invert(ctx, block);
2378 }
2379
2380 /* Nested control-flow can result in dead branches at the end of the
2381 * block. This messes with our analysis and is just dead code, so cull
2382 * them */
2383 mir_foreach_block(ctx, block) {
2384 midgard_opt_cull_dead_branch(ctx, block);
2385 }
2386
2387 /* Ensure we were lowered */
2388 mir_foreach_instr_global(ctx, ins) {
2389 assert(!ins->invert);
2390 }
2391
2392 /* Schedule! */
2393 schedule_program(ctx);
2394
2395 /* Now that all the bundles are scheduled and we can calculate block
2396 * sizes, emit actual branch instructions rather than placeholders */
2397
2398 int br_block_idx = 0;
2399
2400 mir_foreach_block(ctx, block) {
2401 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2402 for (int c = 0; c < bundle->instruction_count; ++c) {
2403 midgard_instruction *ins = bundle->instructions[c];
2404
2405 if (!midgard_is_branch_unit(ins->unit)) continue;
2406
2407 if (ins->prepacked_branch) continue;
2408
2409 /* Parse some basic branch info */
2410 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2411 bool is_conditional = ins->branch.conditional;
2412 bool is_inverted = ins->branch.invert_conditional;
2413 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2414
2415 /* Determine the block we're jumping to */
2416 int target_number = ins->branch.target_block;
2417
2418 /* Report the destination tag */
2419 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2420
2421 /* Count up the number of quadwords we're
2422 * jumping over = number of quadwords until
2423 * (br_block_idx, target_number) */
2424
2425 int quadword_offset = 0;
2426
2427 if (is_discard) {
2428 /* Jump to the end of the shader. We
2429 * need to include not only the
2430 * following blocks, but also the
2431 * contents of our current block (since
2432 * discard can come in the middle of
2433 * the block) */
2434
2435 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2436
2437 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2438 quadword_offset += quadword_size(bun->tag);
2439 }
2440
2441 mir_foreach_block_from(ctx, blk, b) {
2442 quadword_offset += b->quadword_count;
2443 }
2444
2445 } else if (target_number > br_block_idx) {
2446 /* Jump forward */
2447
2448 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2449 midgard_block *blk = mir_get_block(ctx, idx);
2450 assert(blk);
2451
2452 quadword_offset += blk->quadword_count;
2453 }
2454 } else {
2455 /* Jump backwards */
2456
2457 for (int idx = br_block_idx; idx >= target_number; --idx) {
2458 midgard_block *blk = mir_get_block(ctx, idx);
2459 assert(blk);
2460
2461 quadword_offset -= blk->quadword_count;
2462 }
2463 }
2464
2465 /* Unconditional extended branches (far jumps)
2466 * have issues, so we always use a conditional
2467 * branch, setting the condition to always for
2468 * unconditional. For compact unconditional
2469 * branches, cond isn't used so it doesn't
2470 * matter what we pick. */
2471
2472 midgard_condition cond =
2473 !is_conditional ? midgard_condition_always :
2474 is_inverted ? midgard_condition_false :
2475 midgard_condition_true;
2476
2477 midgard_jmp_writeout_op op =
2478 is_discard ? midgard_jmp_writeout_op_discard :
2479 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2480 midgard_jmp_writeout_op_branch_cond;
2481
2482 if (!is_compact) {
2483 midgard_branch_extended branch =
2484 midgard_create_branch_extended(
2485 cond, op,
2486 dest_tag,
2487 quadword_offset);
2488
2489 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2490 } else if (is_conditional || is_discard) {
2491 midgard_branch_cond branch = {
2492 .op = op,
2493 .dest_tag = dest_tag,
2494 .offset = quadword_offset,
2495 .cond = cond
2496 };
2497
2498 assert(branch.offset == quadword_offset);
2499
2500 memcpy(&ins->br_compact, &branch, sizeof(branch));
2501 } else {
2502 assert(op == midgard_jmp_writeout_op_branch_uncond);
2503
2504 midgard_branch_uncond branch = {
2505 .op = op,
2506 .dest_tag = dest_tag,
2507 .offset = quadword_offset,
2508 .unknown = 1
2509 };
2510
2511 assert(branch.offset == quadword_offset);
2512
2513 memcpy(&ins->br_compact, &branch, sizeof(branch));
2514 }
2515 }
2516 }
2517
2518 ++br_block_idx;
2519 }
2520
2521 /* Emit flat binary from the instruction arrays. Iterate each block in
2522 * sequence. Save instruction boundaries such that lookahead tags can
2523 * be assigned easily */
2524
2525 /* Cache _all_ bundles in source order for lookahead across failed branches */
2526
2527 int bundle_count = 0;
2528 mir_foreach_block(ctx, block) {
2529 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2530 }
2531 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2532 int bundle_idx = 0;
2533 mir_foreach_block(ctx, block) {
2534 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2535 source_order_bundles[bundle_idx++] = bundle;
2536 }
2537 }
2538
2539 int current_bundle = 0;
2540
2541 /* Midgard prefetches instruction types, so during emission we
2542 * need to lookahead. Unless this is the last instruction, in
2543 * which we return 1. Or if this is the second to last and the
2544 * last is an ALU, then it's also 1... */
2545
2546 mir_foreach_block(ctx, block) {
2547 mir_foreach_bundle_in_block(block, bundle) {
2548 int lookahead = 1;
2549
2550 if (current_bundle + 1 < bundle_count) {
2551 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2552
2553 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2554 lookahead = 1;
2555 } else {
2556 lookahead = next;
2557 }
2558 }
2559
2560 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2561 ++current_bundle;
2562 }
2563
2564 /* TODO: Free deeper */
2565 //util_dynarray_fini(&block->instructions);
2566 }
2567
2568 free(source_order_bundles);
2569
2570 /* Report the very first tag executed */
2571 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2572
2573 /* Deal with off-by-one related to the fencepost problem */
2574 program->work_register_count = ctx->work_registers + 1;
2575 program->uniform_cutoff = ctx->uniform_cutoff;
2576
2577 program->blend_patch_offset = ctx->blend_constant_offset;
2578 program->tls_size = ctx->tls_size;
2579
2580 if (midgard_debug & MIDGARD_DBG_SHADERS)
2581 disassemble_midgard(program->compiled.data, program->compiled.size);
2582
2583 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2584 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2585
2586 /* Count instructions and bundles */
2587
2588 mir_foreach_instr_global(ctx, ins) {
2589 nr_ins++;
2590 }
2591
2592 mir_foreach_block(ctx, block) {
2593 nr_bundles += util_dynarray_num_elements(
2594 &block->bundles, midgard_bundle);
2595
2596 nr_quadwords += block->quadword_count;
2597 }
2598
2599 /* Calculate thread count. There are certain cutoffs by
2600 * register count for thread count */
2601
2602 unsigned nr_registers = program->work_register_count;
2603
2604 unsigned nr_threads =
2605 (nr_registers <= 4) ? 4 :
2606 (nr_registers <= 8) ? 2 :
2607 1;
2608
2609 /* Dump stats */
2610
2611 fprintf(stderr, "shader%d - %s shader: "
2612 "%u inst, %u bundles, %u quadwords, "
2613 "%u registers, %u threads, %u loops, "
2614 "%d:%d spills:fills\n",
2615 SHADER_DB_COUNT++,
2616 gl_shader_stage_name(ctx->stage),
2617 nr_ins, nr_bundles, nr_quadwords,
2618 nr_registers, nr_threads,
2619 ctx->loop_count,
2620 ctx->spills, ctx->fills);
2621 }
2622
2623
2624 return 0;
2625 }