panfrost: Compute I/O counts from shader_info
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_STORE(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* For unclear reasons, the condition code is repeated 8 times */
228 uint16_t duplicated_cond =
229 (cond << 14) |
230 (cond << 12) |
231 (cond << 10) |
232 (cond << 8) |
233 (cond << 6) |
234 (cond << 4) |
235 (cond << 2) |
236 (cond << 0);
237
238 midgard_branch_extended branch = {
239 .op = op,
240 .dest_tag = dest_tag,
241 .offset = quadword_offset,
242 .cond = duplicated_cond
243 };
244
245 return branch;
246 }
247
248 static void
249 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
250 {
251 ins->has_constants = true;
252 memcpy(&ins->constants, constants, 16);
253 }
254
255 static int
256 glsl_type_size(const struct glsl_type *type, bool bindless)
257 {
258 return glsl_count_attribute_slots(type, false);
259 }
260
261 /* Lower fdot2 to a vector multiplication followed by channel addition */
262 static void
263 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
264 {
265 if (alu->op != nir_op_fdot2)
266 return;
267
268 b->cursor = nir_before_instr(&alu->instr);
269
270 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
271 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
272
273 nir_ssa_def *product = nir_fmul(b, src0, src1);
274
275 nir_ssa_def *sum = nir_fadd(b,
276 nir_channel(b, product, 0),
277 nir_channel(b, product, 1));
278
279 /* Replace the fdot2 with this sum */
280 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
281 }
282
283 static int
284 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
285 {
286 switch (instr->intrinsic) {
287 case nir_intrinsic_load_viewport_scale:
288 return PAN_SYSVAL_VIEWPORT_SCALE;
289 case nir_intrinsic_load_viewport_offset:
290 return PAN_SYSVAL_VIEWPORT_OFFSET;
291 default:
292 return -1;
293 }
294 }
295
296 static unsigned
297 nir_dest_index(compiler_context *ctx, nir_dest *dst)
298 {
299 if (dst->is_ssa)
300 return dst->ssa.index;
301 else {
302 assert(!dst->reg.indirect);
303 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
304 }
305 }
306
307 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
308 unsigned *dest)
309 {
310 nir_intrinsic_instr *intr;
311 nir_dest *dst = NULL;
312 nir_tex_instr *tex;
313 int sysval = -1;
314
315 switch (instr->type) {
316 case nir_instr_type_intrinsic:
317 intr = nir_instr_as_intrinsic(instr);
318 sysval = midgard_nir_sysval_for_intrinsic(intr);
319 dst = &intr->dest;
320 break;
321 case nir_instr_type_tex:
322 tex = nir_instr_as_tex(instr);
323 if (tex->op != nir_texop_txs)
324 break;
325
326 sysval = PAN_SYSVAL(TEXTURE_SIZE,
327 PAN_TXS_SYSVAL_ID(tex->texture_index,
328 nir_tex_instr_dest_size(tex) -
329 (tex->is_array ? 1 : 0),
330 tex->is_array));
331 dst = &tex->dest;
332 break;
333 default:
334 break;
335 }
336
337 if (dest && dst)
338 *dest = nir_dest_index(ctx, dst);
339
340 return sysval;
341 }
342
343 static void
344 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
345 {
346 int sysval;
347
348 sysval = sysval_for_instr(ctx, instr, NULL);
349 if (sysval < 0)
350 return;
351
352 /* We have a sysval load; check if it's already been assigned */
353
354 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
355 return;
356
357 /* It hasn't -- so assign it now! */
358
359 unsigned id = ctx->sysval_count++;
360 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
361 ctx->sysvals[id] = sysval;
362 }
363
364 static void
365 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
366 {
367 ctx->sysval_count = 0;
368
369 nir_foreach_function(function, shader) {
370 if (!function->impl) continue;
371
372 nir_foreach_block(block, function->impl) {
373 nir_foreach_instr_safe(instr, block) {
374 midgard_nir_assign_sysval_body(ctx, instr);
375 }
376 }
377 }
378 }
379
380 static bool
381 midgard_nir_lower_fdot2(nir_shader *shader)
382 {
383 bool progress = false;
384
385 nir_foreach_function(function, shader) {
386 if (!function->impl) continue;
387
388 nir_builder _b;
389 nir_builder *b = &_b;
390 nir_builder_init(b, function->impl);
391
392 nir_foreach_block(block, function->impl) {
393 nir_foreach_instr_safe(instr, block) {
394 if (instr->type != nir_instr_type_alu) continue;
395
396 nir_alu_instr *alu = nir_instr_as_alu(instr);
397 midgard_nir_lower_fdot2_body(b, alu);
398
399 progress |= true;
400 }
401 }
402
403 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
404
405 }
406
407 return progress;
408 }
409
410 /* Flushes undefined values to zero */
411
412 static void
413 optimise_nir(nir_shader *nir)
414 {
415 bool progress;
416 unsigned lower_flrp =
417 (nir->options->lower_flrp16 ? 16 : 0) |
418 (nir->options->lower_flrp32 ? 32 : 0) |
419 (nir->options->lower_flrp64 ? 64 : 0);
420
421 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
422 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
423 NIR_PASS(progress, nir, nir_lower_idiv);
424
425 nir_lower_tex_options lower_tex_1st_pass_options = {
426 .lower_rect = true,
427 .lower_txp = ~0
428 };
429
430 nir_lower_tex_options lower_tex_2nd_pass_options = {
431 .lower_txs_lod = true,
432 };
433
434 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
435 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
436
437 do {
438 progress = false;
439
440 NIR_PASS(progress, nir, nir_lower_var_copies);
441 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
442
443 NIR_PASS(progress, nir, nir_copy_prop);
444 NIR_PASS(progress, nir, nir_opt_dce);
445 NIR_PASS(progress, nir, nir_opt_dead_cf);
446 NIR_PASS(progress, nir, nir_opt_cse);
447 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
448 NIR_PASS(progress, nir, nir_opt_algebraic);
449 NIR_PASS(progress, nir, nir_opt_constant_folding);
450
451 if (lower_flrp != 0) {
452 bool lower_flrp_progress = false;
453 NIR_PASS(lower_flrp_progress,
454 nir,
455 nir_lower_flrp,
456 lower_flrp,
457 false /* always_precise */,
458 nir->options->lower_ffma);
459 if (lower_flrp_progress) {
460 NIR_PASS(progress, nir,
461 nir_opt_constant_folding);
462 progress = true;
463 }
464
465 /* Nothing should rematerialize any flrps, so we only
466 * need to do this lowering once.
467 */
468 lower_flrp = 0;
469 }
470
471 NIR_PASS(progress, nir, nir_opt_undef);
472 NIR_PASS(progress, nir, nir_undef_to_zero);
473
474 NIR_PASS(progress, nir, nir_opt_loop_unroll,
475 nir_var_shader_in |
476 nir_var_shader_out |
477 nir_var_function_temp);
478
479 NIR_PASS(progress, nir, nir_opt_vectorize);
480 } while (progress);
481
482 /* Must be run at the end to prevent creation of fsin/fcos ops */
483 NIR_PASS(progress, nir, midgard_nir_scale_trig);
484
485 do {
486 progress = false;
487
488 NIR_PASS(progress, nir, nir_opt_dce);
489 NIR_PASS(progress, nir, nir_opt_algebraic);
490 NIR_PASS(progress, nir, nir_opt_constant_folding);
491 NIR_PASS(progress, nir, nir_copy_prop);
492 } while (progress);
493
494 NIR_PASS(progress, nir, nir_opt_algebraic_late);
495
496 /* We implement booleans as 32-bit 0/~0 */
497 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
498
499 /* Now that booleans are lowered, we can run out late opts */
500 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
501
502 /* Lower mods for float ops only. Integer ops don't support modifiers
503 * (saturate doesn't make sense on integers, neg/abs require dedicated
504 * instructions) */
505
506 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
507 NIR_PASS(progress, nir, nir_copy_prop);
508 NIR_PASS(progress, nir, nir_opt_dce);
509
510 /* Take us out of SSA */
511 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
512 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
513
514 /* We are a vector architecture; write combine where possible */
515 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
516 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 }
520
521 /* Do not actually emit a load; instead, cache the constant for inlining */
522
523 static void
524 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
525 {
526 nir_ssa_def def = instr->def;
527
528 float *v = rzalloc_array(NULL, float, 4);
529 nir_const_load_to_arr(v, instr, f32);
530 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
531 }
532
533 static unsigned
534 nir_src_index(compiler_context *ctx, nir_src *src)
535 {
536 if (src->is_ssa)
537 return src->ssa->index;
538 else {
539 assert(!src->reg.indirect);
540 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
541 }
542 }
543
544 static unsigned
545 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
546 {
547 return nir_src_index(ctx, &src->src);
548 }
549
550 static bool
551 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
552 {
553 unsigned comp = src->swizzle[0];
554
555 for (unsigned c = 1; c < nr_components; ++c) {
556 if (src->swizzle[c] != comp)
557 return true;
558 }
559
560 return false;
561 }
562
563 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
564 * output of a conditional test) into that register */
565
566 static void
567 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
568 {
569 int condition = nir_src_index(ctx, src);
570
571 /* Source to swizzle the desired component into w */
572
573 const midgard_vector_alu_src alu_src = {
574 .swizzle = SWIZZLE(component, component, component, component),
575 };
576
577 /* There is no boolean move instruction. Instead, we simulate a move by
578 * ANDing the condition with itself to get it into r31.w */
579
580 midgard_instruction ins = {
581 .type = TAG_ALU_4,
582
583 /* We need to set the conditional as close as possible */
584 .precede_break = true,
585 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
586 .mask = 1 << COMPONENT_W,
587
588 .ssa_args = {
589 .src0 = condition,
590 .src1 = condition,
591 .dest = SSA_FIXED_REGISTER(31),
592 },
593
594 .alu = {
595 .op = midgard_alu_op_iand,
596 .outmod = midgard_outmod_int_wrap,
597 .reg_mode = midgard_reg_mode_32,
598 .dest_override = midgard_dest_override_none,
599 .src1 = vector_alu_srco_unsigned(alu_src),
600 .src2 = vector_alu_srco_unsigned(alu_src)
601 },
602 };
603
604 emit_mir_instruction(ctx, ins);
605 }
606
607 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
608 * r31 instead */
609
610 static void
611 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
612 {
613 int condition = nir_src_index(ctx, &src->src);
614
615 /* Source to swizzle the desired component into w */
616
617 const midgard_vector_alu_src alu_src = {
618 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
619 };
620
621 /* There is no boolean move instruction. Instead, we simulate a move by
622 * ANDing the condition with itself to get it into r31.w */
623
624 midgard_instruction ins = {
625 .type = TAG_ALU_4,
626 .precede_break = true,
627 .mask = mask_of(nr_comp),
628 .ssa_args = {
629 .src0 = condition,
630 .src1 = condition,
631 .dest = SSA_FIXED_REGISTER(31),
632 },
633 .alu = {
634 .op = midgard_alu_op_iand,
635 .outmod = midgard_outmod_int_wrap,
636 .reg_mode = midgard_reg_mode_32,
637 .dest_override = midgard_dest_override_none,
638 .src1 = vector_alu_srco_unsigned(alu_src),
639 .src2 = vector_alu_srco_unsigned(alu_src)
640 },
641 };
642
643 emit_mir_instruction(ctx, ins);
644 }
645
646
647
648 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
649 * pinning to eliminate this move in all known cases */
650
651 static void
652 emit_indirect_offset(compiler_context *ctx, nir_src *src)
653 {
654 int offset = nir_src_index(ctx, src);
655
656 midgard_instruction ins = {
657 .type = TAG_ALU_4,
658 .mask = 1 << COMPONENT_W,
659 .ssa_args = {
660 .src0 = SSA_UNUSED_1,
661 .src1 = offset,
662 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
663 },
664 .alu = {
665 .op = midgard_alu_op_imov,
666 .outmod = midgard_outmod_int_wrap,
667 .reg_mode = midgard_reg_mode_32,
668 .dest_override = midgard_dest_override_none,
669 .src1 = vector_alu_srco_unsigned(zero_alu_src),
670 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
671 },
672 };
673
674 emit_mir_instruction(ctx, ins);
675 }
676
677 #define ALU_CASE(nir, _op) \
678 case nir_op_##nir: \
679 op = midgard_alu_op_##_op; \
680 assert(src_bitsize == dst_bitsize); \
681 break;
682
683 #define ALU_CASE_BCAST(nir, _op, count) \
684 case nir_op_##nir: \
685 op = midgard_alu_op_##_op; \
686 broadcast_swizzle = count; \
687 assert(src_bitsize == dst_bitsize); \
688 break;
689 static bool
690 nir_is_fzero_constant(nir_src src)
691 {
692 if (!nir_src_is_const(src))
693 return false;
694
695 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
696 if (nir_src_comp_as_float(src, c) != 0.0)
697 return false;
698 }
699
700 return true;
701 }
702
703 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
704 * special treatment override this anyway. */
705
706 static midgard_reg_mode
707 reg_mode_for_nir(nir_alu_instr *instr)
708 {
709 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
710
711 switch (src_bitsize) {
712 case 8:
713 return midgard_reg_mode_8;
714 case 16:
715 return midgard_reg_mode_16;
716 case 32:
717 return midgard_reg_mode_32;
718 case 64:
719 return midgard_reg_mode_64;
720 default:
721 unreachable("Invalid bit size");
722 }
723 }
724
725 static void
726 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
727 {
728 bool is_ssa = instr->dest.dest.is_ssa;
729
730 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
731 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
732 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
733
734 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
735 * supported. A few do not and are commented for now. Also, there are a
736 * number of NIR ops which Midgard does not support and need to be
737 * lowered, also TODO. This switch block emits the opcode and calling
738 * convention of the Midgard instruction; actual packing is done in
739 * emit_alu below */
740
741 unsigned op;
742
743 /* Number of components valid to check for the instruction (the rest
744 * will be forced to the last), or 0 to use as-is. Relevant as
745 * ball-type instructions have a channel count in NIR but are all vec4
746 * in Midgard */
747
748 unsigned broadcast_swizzle = 0;
749
750 /* What register mode should we operate in? */
751 midgard_reg_mode reg_mode =
752 reg_mode_for_nir(instr);
753
754 /* Do we need a destination override? Used for inline
755 * type conversion */
756
757 midgard_dest_override dest_override =
758 midgard_dest_override_none;
759
760 /* Should we use a smaller respective source and sign-extend? */
761
762 bool half_1 = false, sext_1 = false;
763 bool half_2 = false, sext_2 = false;
764
765 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
766 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
767
768 switch (instr->op) {
769 ALU_CASE(fadd, fadd);
770 ALU_CASE(fmul, fmul);
771 ALU_CASE(fmin, fmin);
772 ALU_CASE(fmax, fmax);
773 ALU_CASE(imin, imin);
774 ALU_CASE(imax, imax);
775 ALU_CASE(umin, umin);
776 ALU_CASE(umax, umax);
777 ALU_CASE(ffloor, ffloor);
778 ALU_CASE(fround_even, froundeven);
779 ALU_CASE(ftrunc, ftrunc);
780 ALU_CASE(fceil, fceil);
781 ALU_CASE(fdot3, fdot3);
782 ALU_CASE(fdot4, fdot4);
783 ALU_CASE(iadd, iadd);
784 ALU_CASE(isub, isub);
785 ALU_CASE(imul, imul);
786
787 /* Zero shoved as second-arg */
788 ALU_CASE(iabs, iabsdiff);
789
790 ALU_CASE(mov, imov);
791
792 ALU_CASE(feq32, feq);
793 ALU_CASE(fne32, fne);
794 ALU_CASE(flt32, flt);
795 ALU_CASE(ieq32, ieq);
796 ALU_CASE(ine32, ine);
797 ALU_CASE(ilt32, ilt);
798 ALU_CASE(ult32, ult);
799
800 /* We don't have a native b2f32 instruction. Instead, like many
801 * GPUs, we exploit booleans as 0/~0 for false/true, and
802 * correspondingly AND
803 * by 1.0 to do the type conversion. For the moment, prime us
804 * to emit:
805 *
806 * iand [whatever], #0
807 *
808 * At the end of emit_alu (as MIR), we'll fix-up the constant
809 */
810
811 ALU_CASE(b2f32, iand);
812 ALU_CASE(b2i32, iand);
813
814 /* Likewise, we don't have a dedicated f2b32 instruction, but
815 * we can do a "not equal to 0.0" test. */
816
817 ALU_CASE(f2b32, fne);
818 ALU_CASE(i2b32, ine);
819
820 ALU_CASE(frcp, frcp);
821 ALU_CASE(frsq, frsqrt);
822 ALU_CASE(fsqrt, fsqrt);
823 ALU_CASE(fexp2, fexp2);
824 ALU_CASE(flog2, flog2);
825
826 ALU_CASE(f2i32, f2i_rtz);
827 ALU_CASE(f2u32, f2u_rtz);
828 ALU_CASE(i2f32, i2f_rtz);
829 ALU_CASE(u2f32, u2f_rtz);
830
831 ALU_CASE(f2i16, f2i_rtz);
832 ALU_CASE(f2u16, f2u_rtz);
833 ALU_CASE(i2f16, i2f_rtz);
834 ALU_CASE(u2f16, u2f_rtz);
835
836 ALU_CASE(fsin, fsin);
837 ALU_CASE(fcos, fcos);
838
839 /* Second op implicit #0 */
840 ALU_CASE(inot, inor);
841 ALU_CASE(iand, iand);
842 ALU_CASE(ior, ior);
843 ALU_CASE(ixor, ixor);
844 ALU_CASE(ishl, ishl);
845 ALU_CASE(ishr, iasr);
846 ALU_CASE(ushr, ilsr);
847
848 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
849 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
850 ALU_CASE(b32all_fequal4, fball_eq);
851
852 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
853 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
854 ALU_CASE(b32any_fnequal4, fbany_neq);
855
856 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
857 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
858 ALU_CASE(b32all_iequal4, iball_eq);
859
860 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
861 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
862 ALU_CASE(b32any_inequal4, ibany_neq);
863
864 /* Source mods will be shoved in later */
865 ALU_CASE(fabs, fmov);
866 ALU_CASE(fneg, fmov);
867 ALU_CASE(fsat, fmov);
868
869 /* For size conversion, we use a move. Ideally though we would squash
870 * these ops together; maybe that has to happen after in NIR as part of
871 * propagation...? An earlier algebraic pass ensured we step down by
872 * only / exactly one size. If stepping down, we use a dest override to
873 * reduce the size; if stepping up, we use a larger-sized move with a
874 * half source and a sign/zero-extension modifier */
875
876 case nir_op_i2i8:
877 case nir_op_i2i16:
878 case nir_op_i2i32:
879 /* If we end up upscale, we'll need a sign-extend on the
880 * operand (the second argument) */
881
882 sext_2 = true;
883 case nir_op_u2u8:
884 case nir_op_u2u16:
885 case nir_op_u2u32: {
886 op = midgard_alu_op_imov;
887
888 if (dst_bitsize == (src_bitsize * 2)) {
889 /* Converting up */
890 half_2 = true;
891
892 /* Use a greater register mode */
893 reg_mode++;
894 } else if (src_bitsize == (dst_bitsize * 2)) {
895 /* Converting down */
896 dest_override = midgard_dest_override_lower;
897 }
898
899 break;
900 }
901
902 case nir_op_f2f16: {
903 assert(src_bitsize == 32);
904
905 op = midgard_alu_op_fmov;
906 dest_override = midgard_dest_override_lower;
907 break;
908 }
909
910 case nir_op_f2f32: {
911 assert(src_bitsize == 16);
912
913 op = midgard_alu_op_fmov;
914 half_2 = true;
915 reg_mode++;
916 break;
917 }
918
919
920 /* For greater-or-equal, we lower to less-or-equal and flip the
921 * arguments */
922
923 case nir_op_fge:
924 case nir_op_fge32:
925 case nir_op_ige32:
926 case nir_op_uge32: {
927 op =
928 instr->op == nir_op_fge ? midgard_alu_op_fle :
929 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
930 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
931 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
932 0;
933
934 /* Swap via temporary */
935 nir_alu_src temp = instr->src[1];
936 instr->src[1] = instr->src[0];
937 instr->src[0] = temp;
938
939 break;
940 }
941
942 case nir_op_b32csel: {
943 /* Midgard features both fcsel and icsel, depending on
944 * the type of the arguments/output. However, as long
945 * as we're careful we can _always_ use icsel and
946 * _never_ need fcsel, since the latter does additional
947 * floating-point-specific processing whereas the
948 * former just moves bits on the wire. It's not obvious
949 * why these are separate opcodes, save for the ability
950 * to do things like sat/pos/abs/neg for free */
951
952 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
953 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
954
955 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
956 nr_inputs = 2;
957
958 /* Emit the condition into r31 */
959
960 if (mixed)
961 emit_condition_mixed(ctx, &instr->src[0], nr_components);
962 else
963 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
964
965 /* The condition is the first argument; move the other
966 * arguments up one to be a binary instruction for
967 * Midgard */
968
969 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
970 break;
971 }
972
973 default:
974 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
975 assert(0);
976 return;
977 }
978
979 /* Midgard can perform certain modifiers on output of an ALU op */
980 unsigned outmod;
981
982 if (midgard_is_integer_out_op(op)) {
983 outmod = midgard_outmod_int_wrap;
984 } else {
985 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
986 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
987 }
988
989 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
990
991 if (instr->op == nir_op_fmax) {
992 if (nir_is_fzero_constant(instr->src[0].src)) {
993 op = midgard_alu_op_fmov;
994 nr_inputs = 1;
995 outmod = midgard_outmod_pos;
996 instr->src[0] = instr->src[1];
997 } else if (nir_is_fzero_constant(instr->src[1].src)) {
998 op = midgard_alu_op_fmov;
999 nr_inputs = 1;
1000 outmod = midgard_outmod_pos;
1001 }
1002 }
1003
1004 /* Fetch unit, quirks, etc information */
1005 unsigned opcode_props = alu_opcode_props[op].props;
1006 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1007
1008 /* src0 will always exist afaik, but src1 will not for 1-argument
1009 * instructions. The latter can only be fetched if the instruction
1010 * needs it, or else we may segfault. */
1011
1012 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1013 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1014
1015 /* Rather than use the instruction generation helpers, we do it
1016 * ourselves here to avoid the mess */
1017
1018 midgard_instruction ins = {
1019 .type = TAG_ALU_4,
1020 .ssa_args = {
1021 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1022 .src1 = quirk_flipped_r24 ? src0 : src1,
1023 .dest = dest,
1024 }
1025 };
1026
1027 nir_alu_src *nirmods[2] = { NULL };
1028
1029 if (nr_inputs == 2) {
1030 nirmods[0] = &instr->src[0];
1031 nirmods[1] = &instr->src[1];
1032 } else if (nr_inputs == 1) {
1033 nirmods[quirk_flipped_r24] = &instr->src[0];
1034 } else {
1035 assert(0);
1036 }
1037
1038 /* These were lowered to a move, so apply the corresponding mod */
1039
1040 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1041 nir_alu_src *s = nirmods[quirk_flipped_r24];
1042
1043 if (instr->op == nir_op_fneg)
1044 s->negate = !s->negate;
1045
1046 if (instr->op == nir_op_fabs)
1047 s->abs = !s->abs;
1048 }
1049
1050 bool is_int = midgard_is_integer_op(op);
1051
1052 ins.mask = mask_of(nr_components);
1053
1054 midgard_vector_alu alu = {
1055 .op = op,
1056 .reg_mode = reg_mode,
1057 .dest_override = dest_override,
1058 .outmod = outmod,
1059
1060 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1061 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1062 };
1063
1064 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1065
1066 if (!is_ssa)
1067 ins.mask &= instr->dest.write_mask;
1068
1069 ins.alu = alu;
1070
1071 /* Late fixup for emulated instructions */
1072
1073 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1074 /* Presently, our second argument is an inline #0 constant.
1075 * Switch over to an embedded 1.0 constant (that can't fit
1076 * inline, since we're 32-bit, not 16-bit like the inline
1077 * constants) */
1078
1079 ins.ssa_args.inline_constant = false;
1080 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1081 ins.has_constants = true;
1082
1083 if (instr->op == nir_op_b2f32) {
1084 ins.constants[0] = 1.0f;
1085 } else {
1086 /* Type pun it into place */
1087 uint32_t one = 0x1;
1088 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1089 }
1090
1091 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1092 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1093 /* Lots of instructions need a 0 plonked in */
1094 ins.ssa_args.inline_constant = false;
1095 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1096 ins.has_constants = true;
1097 ins.constants[0] = 0.0f;
1098 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1099 } else if (instr->op == nir_op_inot) {
1100 /* ~b = ~(b & b), so duplicate the source */
1101 ins.ssa_args.src1 = ins.ssa_args.src0;
1102 ins.alu.src2 = ins.alu.src1;
1103 }
1104
1105 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1106 /* To avoid duplicating the lookup tables (probably), true LUT
1107 * instructions can only operate as if they were scalars. Lower
1108 * them here by changing the component. */
1109
1110 uint8_t original_swizzle[4];
1111 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1112 unsigned orig_mask = ins.mask;
1113
1114 for (int i = 0; i < nr_components; ++i) {
1115 /* Mask the associated component, dropping the
1116 * instruction if needed */
1117
1118 ins.mask = 1 << i;
1119 ins.mask &= orig_mask;
1120
1121 if (!ins.mask)
1122 continue;
1123
1124 for (int j = 0; j < 4; ++j)
1125 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1126
1127 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1128 emit_mir_instruction(ctx, ins);
1129 }
1130 } else {
1131 emit_mir_instruction(ctx, ins);
1132 }
1133 }
1134
1135 #undef ALU_CASE
1136
1137 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1138 * optimized) versions of UBO #0 */
1139
1140 void
1141 emit_ubo_read(
1142 compiler_context *ctx,
1143 unsigned dest,
1144 unsigned offset,
1145 nir_src *indirect_offset,
1146 unsigned index)
1147 {
1148 /* TODO: half-floats */
1149
1150 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1151
1152 /* TODO: Don't split */
1153 ins.load_store.varying_parameters = (offset & 7) << 7;
1154 ins.load_store.address = offset >> 3;
1155
1156 if (indirect_offset) {
1157 emit_indirect_offset(ctx, indirect_offset);
1158 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1159 } else {
1160 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1161 }
1162
1163 emit_mir_instruction(ctx, ins);
1164 }
1165
1166 static void
1167 emit_varying_read(
1168 compiler_context *ctx,
1169 unsigned dest, unsigned offset,
1170 unsigned nr_comp, unsigned component,
1171 nir_src *indirect_offset, nir_alu_type type)
1172 {
1173 /* XXX: Half-floats? */
1174 /* TODO: swizzle, mask */
1175
1176 midgard_instruction ins = m_ld_vary_32(dest, offset);
1177 ins.mask = mask_of(nr_comp);
1178 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1179
1180 midgard_varying_parameter p = {
1181 .is_varying = 1,
1182 .interpolation = midgard_interp_default,
1183 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1184 };
1185
1186 unsigned u;
1187 memcpy(&u, &p, sizeof(p));
1188 ins.load_store.varying_parameters = u;
1189
1190 if (indirect_offset) {
1191 /* We need to add in the dynamic index, moved to r27.w */
1192 emit_indirect_offset(ctx, indirect_offset);
1193 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1194 } else {
1195 /* Just a direct load */
1196 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1197 }
1198
1199 /* Use the type appropriate load */
1200 switch (type) {
1201 case nir_type_uint:
1202 case nir_type_bool:
1203 ins.load_store.op = midgard_op_ld_vary_32u;
1204 break;
1205 case nir_type_int:
1206 ins.load_store.op = midgard_op_ld_vary_32i;
1207 break;
1208 case nir_type_float:
1209 ins.load_store.op = midgard_op_ld_vary_32;
1210 break;
1211 default:
1212 unreachable("Attempted to load unknown type");
1213 break;
1214 }
1215
1216 emit_mir_instruction(ctx, ins);
1217 }
1218
1219 static void
1220 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1221 {
1222 unsigned dest = 0;
1223
1224 /* Figure out which uniform this is */
1225 int sysval = sysval_for_instr(ctx, instr, &dest);
1226 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1227
1228 /* Sysvals are prefix uniforms */
1229 unsigned uniform = ((uintptr_t) val) - 1;
1230
1231 /* Emit the read itself -- this is never indirect */
1232 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1233 }
1234
1235 static void
1236 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1237 {
1238 unsigned offset = 0, reg;
1239
1240 switch (instr->intrinsic) {
1241 case nir_intrinsic_discard_if:
1242 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1243
1244 /* fallthrough */
1245
1246 case nir_intrinsic_discard: {
1247 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1248 struct midgard_instruction discard = v_branch(conditional, false);
1249 discard.branch.target_type = TARGET_DISCARD;
1250 emit_mir_instruction(ctx, discard);
1251 break;
1252 }
1253
1254 case nir_intrinsic_load_uniform:
1255 case nir_intrinsic_load_ubo:
1256 case nir_intrinsic_load_input: {
1257 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1258 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1259
1260 /* Get the base type of the intrinsic */
1261 /* TODO: Infer type? Does it matter? */
1262 nir_alu_type t =
1263 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1264 t = nir_alu_type_get_base_type(t);
1265
1266 if (!is_ubo) {
1267 offset = nir_intrinsic_base(instr);
1268 }
1269
1270 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1271
1272 nir_src *src_offset = nir_get_io_offset_src(instr);
1273
1274 bool direct = nir_src_is_const(*src_offset);
1275
1276 if (direct)
1277 offset += nir_src_as_uint(*src_offset);
1278
1279 /* We may need to apply a fractional offset */
1280 int component = instr->intrinsic == nir_intrinsic_load_input ?
1281 nir_intrinsic_component(instr) : 0;
1282 reg = nir_dest_index(ctx, &instr->dest);
1283
1284 if (is_uniform && !ctx->is_blend) {
1285 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1286 } else if (is_ubo) {
1287 nir_src index = instr->src[0];
1288
1289 /* We don't yet support indirect UBOs. For indirect
1290 * block numbers (if that's possible), we don't know
1291 * enough about the hardware yet. For indirect sources,
1292 * we know what we need but we need to add some NIR
1293 * support for lowering correctly with respect to
1294 * 128-bit reads */
1295
1296 assert(nir_src_is_const(index));
1297 assert(nir_src_is_const(*src_offset));
1298
1299 /* TODO: Alignment */
1300 assert((offset & 0xF) == 0);
1301
1302 uint32_t uindex = nir_src_as_uint(index) + 1;
1303 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1304 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1305 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1306 } else if (ctx->is_blend) {
1307 /* For blend shaders, load the input color, which is
1308 * preloaded to r0 */
1309
1310 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1311 emit_mir_instruction(ctx, move);
1312 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1313 midgard_instruction ins = m_ld_attr_32(reg, offset);
1314 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1315 ins.mask = mask_of(nr_comp);
1316
1317 /* Use the type appropriate load */
1318 switch (t) {
1319 case nir_type_uint:
1320 case nir_type_bool:
1321 ins.load_store.op = midgard_op_ld_attr_32u;
1322 break;
1323 case nir_type_int:
1324 ins.load_store.op = midgard_op_ld_attr_32i;
1325 break;
1326 case nir_type_float:
1327 ins.load_store.op = midgard_op_ld_attr_32;
1328 break;
1329 default:
1330 unreachable("Attempted to load unknown type");
1331 break;
1332 }
1333
1334 emit_mir_instruction(ctx, ins);
1335 } else {
1336 DBG("Unknown load\n");
1337 assert(0);
1338 }
1339
1340 break;
1341 }
1342
1343 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1344
1345 case nir_intrinsic_load_raw_output_pan:
1346 reg = nir_dest_index(ctx, &instr->dest);
1347 assert(ctx->is_blend);
1348
1349 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1350 emit_mir_instruction(ctx, ins);
1351 break;
1352
1353 case nir_intrinsic_load_blend_const_color_rgba: {
1354 assert(ctx->is_blend);
1355 reg = nir_dest_index(ctx, &instr->dest);
1356
1357 /* Blend constants are embedded directly in the shader and
1358 * patched in, so we use some magic routing */
1359
1360 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1361 ins.has_constants = true;
1362 ins.has_blend_constant = true;
1363 emit_mir_instruction(ctx, ins);
1364 break;
1365 }
1366
1367 case nir_intrinsic_store_output:
1368 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1369
1370 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1371
1372 reg = nir_src_index(ctx, &instr->src[0]);
1373
1374 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1375 /* gl_FragColor is not emitted with load/store
1376 * instructions. Instead, it gets plonked into
1377 * r0 at the end of the shader and we do the
1378 * framebuffer writeout dance. TODO: Defer
1379 * writes */
1380
1381 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1382 emit_mir_instruction(ctx, move);
1383
1384 /* Save the index we're writing to for later reference
1385 * in the epilogue */
1386
1387 ctx->fragment_output = reg;
1388 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1389 /* Varyings are written into one of two special
1390 * varying register, r26 or r27. The register itself is
1391 * selected as the register in the st_vary instruction,
1392 * minus the base of 26. E.g. write into r27 and then
1393 * call st_vary(1) */
1394
1395 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1396 emit_mir_instruction(ctx, ins);
1397
1398 /* We should have been vectorized, though we don't
1399 * currently check that st_vary is emitted only once
1400 * per slot (this is relevant, since there's not a mask
1401 * parameter available on the store [set to 0 by the
1402 * blob]). We do respect the component by adjusting the
1403 * swizzle. */
1404
1405 unsigned component = nir_intrinsic_component(instr);
1406
1407 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1408 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1409 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1410 emit_mir_instruction(ctx, st);
1411 } else {
1412 DBG("Unknown store\n");
1413 assert(0);
1414 }
1415
1416 break;
1417
1418 /* Special case of store_output for lowered blend shaders */
1419 case nir_intrinsic_store_raw_output_pan:
1420 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1421 reg = nir_src_index(ctx, &instr->src[0]);
1422
1423 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1424 emit_mir_instruction(ctx, move);
1425 ctx->fragment_output = reg;
1426
1427 break;
1428
1429 case nir_intrinsic_load_alpha_ref_float:
1430 assert(instr->dest.is_ssa);
1431
1432 float ref_value = ctx->alpha_ref;
1433
1434 float *v = ralloc_array(NULL, float, 4);
1435 memcpy(v, &ref_value, sizeof(float));
1436 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1437 break;
1438
1439 case nir_intrinsic_load_viewport_scale:
1440 case nir_intrinsic_load_viewport_offset:
1441 emit_sysval_read(ctx, &instr->instr);
1442 break;
1443
1444 default:
1445 printf ("Unhandled intrinsic\n");
1446 assert(0);
1447 break;
1448 }
1449 }
1450
1451 static unsigned
1452 midgard_tex_format(enum glsl_sampler_dim dim)
1453 {
1454 switch (dim) {
1455 case GLSL_SAMPLER_DIM_1D:
1456 case GLSL_SAMPLER_DIM_BUF:
1457 return MALI_TEX_1D;
1458
1459 case GLSL_SAMPLER_DIM_2D:
1460 case GLSL_SAMPLER_DIM_EXTERNAL:
1461 return MALI_TEX_2D;
1462
1463 case GLSL_SAMPLER_DIM_3D:
1464 return MALI_TEX_3D;
1465
1466 case GLSL_SAMPLER_DIM_CUBE:
1467 return MALI_TEX_CUBE;
1468
1469 default:
1470 DBG("Unknown sampler dim type\n");
1471 assert(0);
1472 return 0;
1473 }
1474 }
1475
1476 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1477 * was successful */
1478
1479 static bool
1480 pan_attach_constant_bias(
1481 compiler_context *ctx,
1482 nir_src lod,
1483 midgard_texture_word *word)
1484 {
1485 /* To attach as constant, it has to *be* constant */
1486
1487 if (!nir_src_is_const(lod))
1488 return false;
1489
1490 float f = nir_src_as_float(lod);
1491
1492 /* Break into fixed-point */
1493 signed lod_int = f;
1494 float lod_frac = f - lod_int;
1495
1496 /* Carry over negative fractions */
1497 if (lod_frac < 0.0) {
1498 lod_int--;
1499 lod_frac += 1.0;
1500 }
1501
1502 /* Encode */
1503 word->bias = float_to_ubyte(lod_frac);
1504 word->bias_int = lod_int;
1505
1506 return true;
1507 }
1508
1509 static enum mali_sampler_type
1510 midgard_sampler_type(nir_alu_type t) {
1511 switch (nir_alu_type_get_base_type(t))
1512 {
1513 case nir_type_float:
1514 return MALI_SAMPLER_FLOAT;
1515 case nir_type_int:
1516 return MALI_SAMPLER_SIGNED;
1517 case nir_type_uint:
1518 return MALI_SAMPLER_UNSIGNED;
1519 default:
1520 unreachable("Unknown sampler type");
1521 }
1522 }
1523
1524 static void
1525 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1526 unsigned midgard_texop)
1527 {
1528 /* TODO */
1529 //assert (!instr->sampler);
1530 //assert (!instr->texture_array_size);
1531
1532 /* Allocate registers via a round robin scheme to alternate between the two registers */
1533 int reg = ctx->texture_op_count & 1;
1534 int in_reg = reg, out_reg = reg;
1535
1536 int texture_index = instr->texture_index;
1537 int sampler_index = texture_index;
1538
1539 /* No helper to build texture words -- we do it all here */
1540 midgard_instruction ins = {
1541 .type = TAG_TEXTURE_4,
1542 .mask = 0xF,
1543 .texture = {
1544 .op = midgard_texop,
1545 .format = midgard_tex_format(instr->sampler_dim),
1546 .texture_handle = texture_index,
1547 .sampler_handle = sampler_index,
1548
1549 /* TODO: Regalloc it in */
1550 .swizzle = SWIZZLE_XYZW,
1551
1552 /* TODO: half */
1553 .in_reg_full = 1,
1554 .out_full = 1,
1555
1556 .sampler_type = midgard_sampler_type(instr->dest_type),
1557 }
1558 };
1559
1560 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1561 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1562 int index = nir_src_index(ctx, &instr->src[i].src);
1563 int nr_comp = nir_src_num_components(instr->src[i].src);
1564 midgard_vector_alu_src alu_src = blank_alu_src;
1565
1566 switch (instr->src[i].src_type) {
1567 case nir_tex_src_coord: {
1568 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1569 /* texelFetch is undefined on samplerCube */
1570 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1571
1572 /* For cubemaps, we need to load coords into
1573 * special r27, and then use a special ld/st op
1574 * to select the face and copy the xy into the
1575 * texture register */
1576
1577 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1578
1579 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1580 emit_mir_instruction(ctx, move);
1581
1582 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1583 st.load_store.unknown = 0x24; /* XXX: What is this? */
1584 st.mask = 0x3; /* xy */
1585 st.load_store.swizzle = alu_src.swizzle;
1586 emit_mir_instruction(ctx, st);
1587
1588 ins.texture.in_reg_swizzle = swizzle_of(2);
1589 } else {
1590 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1591
1592 midgard_instruction mov = v_mov(index, alu_src, reg);
1593 mov.mask = mask_of(nr_comp);
1594 emit_mir_instruction(ctx, mov);
1595
1596 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1597 /* Texel fetch opcodes care about the
1598 * values of z and w, so we actually
1599 * need to spill into a second register
1600 * for a texel fetch with register bias
1601 * (for non-2D). TODO: Implement that
1602 */
1603
1604 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1605
1606 midgard_instruction zero = v_mov(index, alu_src, reg);
1607 zero.ssa_args.inline_constant = true;
1608 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1609 zero.has_constants = true;
1610 zero.mask = ~mov.mask;
1611 emit_mir_instruction(ctx, zero);
1612
1613 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1614 } else {
1615 /* Non-texel fetch doesn't need that
1616 * nonsense. However we do use the Z
1617 * for array indexing */
1618 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1619 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1620 }
1621 }
1622
1623 break;
1624 }
1625
1626 case nir_tex_src_bias:
1627 case nir_tex_src_lod: {
1628 /* Try as a constant if we can */
1629
1630 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1631 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1632 break;
1633
1634 /* Otherwise we use a register. To keep RA simple, we
1635 * put the bias/LOD into the w component of the input
1636 * source, which is otherwise in xy */
1637
1638 alu_src.swizzle = SWIZZLE_XXXX;
1639
1640 midgard_instruction mov = v_mov(index, alu_src, reg);
1641 mov.mask = 1 << COMPONENT_W;
1642 emit_mir_instruction(ctx, mov);
1643
1644 ins.texture.lod_register = true;
1645
1646 midgard_tex_register_select sel = {
1647 .select = in_reg,
1648 .full = 1,
1649
1650 /* w */
1651 .component_lo = 1,
1652 .component_hi = 1
1653 };
1654
1655 uint8_t packed;
1656 memcpy(&packed, &sel, sizeof(packed));
1657 ins.texture.bias = packed;
1658
1659 break;
1660 };
1661
1662 default:
1663 unreachable("Unknown texture source type\n");
1664 }
1665 }
1666
1667 /* Set registers to read and write from the same place */
1668 ins.texture.in_reg_select = in_reg;
1669 ins.texture.out_reg_select = out_reg;
1670
1671 emit_mir_instruction(ctx, ins);
1672
1673 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1674 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1675 emit_mir_instruction(ctx, ins2);
1676
1677 /* Used for .cont and .last hinting */
1678 ctx->texture_op_count++;
1679 }
1680
1681 static void
1682 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1683 {
1684 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1685 * generic tex in some cases (which confuses the hardware) */
1686
1687 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1688
1689 if (is_vertex && instr->op == nir_texop_tex)
1690 instr->op = nir_texop_txl;
1691
1692 switch (instr->op) {
1693 case nir_texop_tex:
1694 case nir_texop_txb:
1695 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1696 break;
1697 case nir_texop_txl:
1698 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1699 break;
1700 case nir_texop_txf:
1701 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1702 break;
1703 case nir_texop_txs:
1704 emit_sysval_read(ctx, &instr->instr);
1705 break;
1706 default:
1707 unreachable("Unhanlded texture op");
1708 }
1709 }
1710
1711 static void
1712 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1713 {
1714 switch (instr->type) {
1715 case nir_jump_break: {
1716 /* Emit a branch out of the loop */
1717 struct midgard_instruction br = v_branch(false, false);
1718 br.branch.target_type = TARGET_BREAK;
1719 br.branch.target_break = ctx->current_loop_depth;
1720 emit_mir_instruction(ctx, br);
1721 break;
1722 }
1723
1724 default:
1725 DBG("Unknown jump type %d\n", instr->type);
1726 break;
1727 }
1728 }
1729
1730 static void
1731 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1732 {
1733 switch (instr->type) {
1734 case nir_instr_type_load_const:
1735 emit_load_const(ctx, nir_instr_as_load_const(instr));
1736 break;
1737
1738 case nir_instr_type_intrinsic:
1739 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1740 break;
1741
1742 case nir_instr_type_alu:
1743 emit_alu(ctx, nir_instr_as_alu(instr));
1744 break;
1745
1746 case nir_instr_type_tex:
1747 emit_tex(ctx, nir_instr_as_tex(instr));
1748 break;
1749
1750 case nir_instr_type_jump:
1751 emit_jump(ctx, nir_instr_as_jump(instr));
1752 break;
1753
1754 case nir_instr_type_ssa_undef:
1755 /* Spurious */
1756 break;
1757
1758 default:
1759 DBG("Unhandled instruction type\n");
1760 break;
1761 }
1762 }
1763
1764
1765 /* ALU instructions can inline or embed constants, which decreases register
1766 * pressure and saves space. */
1767
1768 #define CONDITIONAL_ATTACH(src) { \
1769 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1770 \
1771 if (entry) { \
1772 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1773 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1774 } \
1775 }
1776
1777 static void
1778 inline_alu_constants(compiler_context *ctx)
1779 {
1780 mir_foreach_instr(ctx, alu) {
1781 /* Other instructions cannot inline constants */
1782 if (alu->type != TAG_ALU_4) continue;
1783
1784 /* If there is already a constant here, we can do nothing */
1785 if (alu->has_constants) continue;
1786
1787 /* It makes no sense to inline constants on a branch */
1788 if (alu->compact_branch || alu->prepacked_branch) continue;
1789
1790 CONDITIONAL_ATTACH(src0);
1791
1792 if (!alu->has_constants) {
1793 CONDITIONAL_ATTACH(src1)
1794 } else if (!alu->inline_constant) {
1795 /* Corner case: _two_ vec4 constants, for instance with a
1796 * csel. For this case, we can only use a constant
1797 * register for one, we'll have to emit a move for the
1798 * other. Note, if both arguments are constants, then
1799 * necessarily neither argument depends on the value of
1800 * any particular register. As the destination register
1801 * will be wiped, that means we can spill the constant
1802 * to the destination register.
1803 */
1804
1805 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1806 unsigned scratch = alu->ssa_args.dest;
1807
1808 if (entry) {
1809 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1810 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1811
1812 /* Force a break XXX Defer r31 writes */
1813 ins.unit = UNIT_VLUT;
1814
1815 /* Set the source */
1816 alu->ssa_args.src1 = scratch;
1817
1818 /* Inject us -before- the last instruction which set r31 */
1819 mir_insert_instruction_before(mir_prev_op(alu), ins);
1820 }
1821 }
1822 }
1823 }
1824
1825 /* Midgard supports two types of constants, embedded constants (128-bit) and
1826 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1827 * constants can be demoted to inline constants, for space savings and
1828 * sometimes a performance boost */
1829
1830 static void
1831 embedded_to_inline_constant(compiler_context *ctx)
1832 {
1833 mir_foreach_instr(ctx, ins) {
1834 if (!ins->has_constants) continue;
1835
1836 if (ins->ssa_args.inline_constant) continue;
1837
1838 /* Blend constants must not be inlined by definition */
1839 if (ins->has_blend_constant) continue;
1840
1841 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1842 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1843 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1844
1845 if (!(is_16 || is_32))
1846 continue;
1847
1848 /* src1 cannot be an inline constant due to encoding
1849 * restrictions. So, if possible we try to flip the arguments
1850 * in that case */
1851
1852 int op = ins->alu.op;
1853
1854 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1855 switch (op) {
1856 /* These ops require an operational change to flip
1857 * their arguments TODO */
1858 case midgard_alu_op_flt:
1859 case midgard_alu_op_fle:
1860 case midgard_alu_op_ilt:
1861 case midgard_alu_op_ile:
1862 case midgard_alu_op_fcsel:
1863 case midgard_alu_op_icsel:
1864 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1865 default:
1866 break;
1867 }
1868
1869 if (alu_opcode_props[op].props & OP_COMMUTES) {
1870 /* Flip the SSA numbers */
1871 ins->ssa_args.src0 = ins->ssa_args.src1;
1872 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1873
1874 /* And flip the modifiers */
1875
1876 unsigned src_temp;
1877
1878 src_temp = ins->alu.src2;
1879 ins->alu.src2 = ins->alu.src1;
1880 ins->alu.src1 = src_temp;
1881 }
1882 }
1883
1884 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1885 /* Extract the source information */
1886
1887 midgard_vector_alu_src *src;
1888 int q = ins->alu.src2;
1889 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1890 src = m;
1891
1892 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1893 int component = src->swizzle & 3;
1894
1895 /* Scale constant appropriately, if we can legally */
1896 uint16_t scaled_constant = 0;
1897
1898 if (midgard_is_integer_op(op) || is_16) {
1899 unsigned int *iconstants = (unsigned int *) ins->constants;
1900 scaled_constant = (uint16_t) iconstants[component];
1901
1902 /* Constant overflow after resize */
1903 if (scaled_constant != iconstants[component])
1904 continue;
1905 } else {
1906 float original = (float) ins->constants[component];
1907 scaled_constant = _mesa_float_to_half(original);
1908
1909 /* Check for loss of precision. If this is
1910 * mediump, we don't care, but for a highp
1911 * shader, we need to pay attention. NIR
1912 * doesn't yet tell us which mode we're in!
1913 * Practically this prevents most constants
1914 * from being inlined, sadly. */
1915
1916 float fp32 = _mesa_half_to_float(scaled_constant);
1917
1918 if (fp32 != original)
1919 continue;
1920 }
1921
1922 /* We don't know how to handle these with a constant */
1923
1924 if (src->mod || src->half || src->rep_low || src->rep_high) {
1925 DBG("Bailing inline constant...\n");
1926 continue;
1927 }
1928
1929 /* Make sure that the constant is not itself a
1930 * vector by checking if all accessed values
1931 * (by the swizzle) are the same. */
1932
1933 uint32_t *cons = (uint32_t *) ins->constants;
1934 uint32_t value = cons[component];
1935
1936 bool is_vector = false;
1937 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1938
1939 for (int c = 1; c < 4; ++c) {
1940 /* We only care if this component is actually used */
1941 if (!(mask & (1 << c)))
1942 continue;
1943
1944 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1945
1946 if (test != value) {
1947 is_vector = true;
1948 break;
1949 }
1950 }
1951
1952 if (is_vector)
1953 continue;
1954
1955 /* Get rid of the embedded constant */
1956 ins->has_constants = false;
1957 ins->ssa_args.src1 = SSA_UNUSED_0;
1958 ins->ssa_args.inline_constant = true;
1959 ins->inline_constant = scaled_constant;
1960 }
1961 }
1962 }
1963
1964 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
1965 * texture pipeline */
1966
1967 static bool
1968 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
1969 {
1970 bool progress = false;
1971
1972 mir_foreach_instr_in_block_safe(block, ins) {
1973 if (ins->type != TAG_ALU_4) continue;
1974 if (ins->compact_branch) continue;
1975
1976 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1977 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
1978
1979 mir_remove_instruction(ins);
1980 progress = true;
1981 }
1982
1983 return progress;
1984 }
1985
1986 /* Dead code elimination for branches at the end of a block - only one branch
1987 * per block is legal semantically */
1988
1989 static void
1990 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1991 {
1992 bool branched = false;
1993
1994 mir_foreach_instr_in_block_safe(block, ins) {
1995 if (!midgard_is_branch_unit(ins->unit)) continue;
1996
1997 /* We ignore prepacked branches since the fragment epilogue is
1998 * just generally special */
1999 if (ins->prepacked_branch) continue;
2000
2001 /* Discards are similarly special and may not correspond to the
2002 * end of a block */
2003
2004 if (ins->branch.target_type == TARGET_DISCARD) continue;
2005
2006 if (branched) {
2007 /* We already branched, so this is dead */
2008 mir_remove_instruction(ins);
2009 }
2010
2011 branched = true;
2012 }
2013 }
2014
2015 static bool
2016 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2017 {
2018 /* abs or neg */
2019 if (!is_int && src.mod) return true;
2020
2021 /* Other int mods don't matter in isolation */
2022 if (is_int && src.mod == midgard_int_shift) return true;
2023
2024 /* size-conversion */
2025 if (src.half) return true;
2026
2027 /* swizzle */
2028 for (unsigned c = 0; c < 4; ++c) {
2029 if (!(mask & (1 << c))) continue;
2030 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2031 }
2032
2033 return false;
2034 }
2035
2036 static bool
2037 mir_nontrivial_source2_mod(midgard_instruction *ins)
2038 {
2039 bool is_int = midgard_is_integer_op(ins->alu.op);
2040
2041 midgard_vector_alu_src src2 =
2042 vector_alu_from_unsigned(ins->alu.src2);
2043
2044 return mir_nontrivial_mod(src2, is_int, ins->mask);
2045 }
2046
2047 static bool
2048 mir_nontrivial_outmod(midgard_instruction *ins)
2049 {
2050 bool is_int = midgard_is_integer_op(ins->alu.op);
2051 unsigned mod = ins->alu.outmod;
2052
2053 /* Type conversion is a sort of outmod */
2054 if (ins->alu.dest_override != midgard_dest_override_none)
2055 return true;
2056
2057 if (is_int)
2058 return mod != midgard_outmod_int_wrap;
2059 else
2060 return mod != midgard_outmod_none;
2061 }
2062
2063 static bool
2064 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2065 {
2066 bool progress = false;
2067
2068 mir_foreach_instr_in_block_safe(block, ins) {
2069 if (ins->type != TAG_ALU_4) continue;
2070 if (!OP_IS_MOVE(ins->alu.op)) continue;
2071
2072 unsigned from = ins->ssa_args.src1;
2073 unsigned to = ins->ssa_args.dest;
2074
2075 /* We only work on pure SSA */
2076
2077 if (to >= SSA_FIXED_MINIMUM) continue;
2078 if (from >= SSA_FIXED_MINIMUM) continue;
2079 if (to >= ctx->func->impl->ssa_alloc) continue;
2080 if (from >= ctx->func->impl->ssa_alloc) continue;
2081
2082 /* Constant propagation is not handled here, either */
2083 if (ins->ssa_args.inline_constant) continue;
2084 if (ins->has_constants) continue;
2085
2086 if (mir_nontrivial_source2_mod(ins)) continue;
2087 if (mir_nontrivial_outmod(ins)) continue;
2088
2089 /* We're clear -- rewrite */
2090 mir_rewrite_index_src(ctx, to, from);
2091 mir_remove_instruction(ins);
2092 progress |= true;
2093 }
2094
2095 return progress;
2096 }
2097
2098 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2099 * the move can be propagated away entirely */
2100
2101 static bool
2102 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2103 {
2104 /* Nothing to do */
2105 if (comp == midgard_outmod_none)
2106 return true;
2107
2108 if (*outmod == midgard_outmod_none) {
2109 *outmod = comp;
2110 return true;
2111 }
2112
2113 /* TODO: Compose rules */
2114 return false;
2115 }
2116
2117 static bool
2118 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2119 {
2120 bool progress = false;
2121
2122 mir_foreach_instr_in_block_safe(block, ins) {
2123 if (ins->type != TAG_ALU_4) continue;
2124 if (ins->alu.op != midgard_alu_op_fmov) continue;
2125 if (ins->alu.outmod != midgard_outmod_pos) continue;
2126
2127 /* TODO: Registers? */
2128 unsigned src = ins->ssa_args.src1;
2129 if (src >= ctx->func->impl->ssa_alloc) continue;
2130 assert(!mir_has_multiple_writes(ctx, src));
2131
2132 /* There might be a source modifier, too */
2133 if (mir_nontrivial_source2_mod(ins)) continue;
2134
2135 /* Backpropagate the modifier */
2136 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2137 if (v->type != TAG_ALU_4) continue;
2138 if (v->ssa_args.dest != src) continue;
2139
2140 /* Can we even take a float outmod? */
2141 if (midgard_is_integer_out_op(v->alu.op)) continue;
2142
2143 midgard_outmod_float temp = v->alu.outmod;
2144 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2145
2146 /* Throw in the towel.. */
2147 if (!progress) break;
2148
2149 /* Otherwise, transfer the modifier */
2150 v->alu.outmod = temp;
2151 ins->alu.outmod = midgard_outmod_none;
2152
2153 break;
2154 }
2155 }
2156
2157 return progress;
2158 }
2159
2160 static void
2161 emit_fragment_epilogue(compiler_context *ctx)
2162 {
2163 /* Special case: writing out constants requires us to include the move
2164 * explicitly now, so shove it into r0 */
2165
2166 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2167
2168 if (constant_value) {
2169 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2170 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2171 emit_mir_instruction(ctx, ins);
2172 }
2173
2174 /* Perform the actual fragment writeout. We have two writeout/branch
2175 * instructions, forming a loop until writeout is successful as per the
2176 * docs. TODO: gl_FragDepth */
2177
2178 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2179 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2180 }
2181
2182 static midgard_block *
2183 emit_block(compiler_context *ctx, nir_block *block)
2184 {
2185 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2186 list_addtail(&this_block->link, &ctx->blocks);
2187
2188 this_block->is_scheduled = false;
2189 ++ctx->block_count;
2190
2191 ctx->texture_index[0] = -1;
2192 ctx->texture_index[1] = -1;
2193
2194 /* Add us as a successor to the block we are following */
2195 if (ctx->current_block)
2196 midgard_block_add_successor(ctx->current_block, this_block);
2197
2198 /* Set up current block */
2199 list_inithead(&this_block->instructions);
2200 ctx->current_block = this_block;
2201
2202 nir_foreach_instr(instr, block) {
2203 emit_instr(ctx, instr);
2204 ++ctx->instruction_count;
2205 }
2206
2207 inline_alu_constants(ctx);
2208 embedded_to_inline_constant(ctx);
2209
2210 /* Append fragment shader epilogue (value writeout) */
2211 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2212 if (block == nir_impl_last_block(ctx->func->impl)) {
2213 emit_fragment_epilogue(ctx);
2214 }
2215 }
2216
2217 if (block == nir_start_block(ctx->func->impl))
2218 ctx->initial_block = this_block;
2219
2220 if (block == nir_impl_last_block(ctx->func->impl))
2221 ctx->final_block = this_block;
2222
2223 /* Allow the next control flow to access us retroactively, for
2224 * branching etc */
2225 ctx->current_block = this_block;
2226
2227 /* Document the fallthrough chain */
2228 ctx->previous_source_block = this_block;
2229
2230 return this_block;
2231 }
2232
2233 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2234
2235 static void
2236 emit_if(struct compiler_context *ctx, nir_if *nif)
2237 {
2238 /* Conditional branches expect the condition in r31.w; emit a move for
2239 * that in the _previous_ block (which is the current block). */
2240 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2241
2242 /* Speculatively emit the branch, but we can't fill it in until later */
2243 EMIT(branch, true, true);
2244 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2245
2246 /* Emit the two subblocks */
2247 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2248
2249 /* Emit a jump from the end of the then block to the end of the else */
2250 EMIT(branch, false, false);
2251 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2252
2253 /* Emit second block, and check if it's empty */
2254
2255 int else_idx = ctx->block_count;
2256 int count_in = ctx->instruction_count;
2257 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2258 int after_else_idx = ctx->block_count;
2259
2260 /* Now that we have the subblocks emitted, fix up the branches */
2261
2262 assert(then_block);
2263 assert(else_block);
2264
2265 if (ctx->instruction_count == count_in) {
2266 /* The else block is empty, so don't emit an exit jump */
2267 mir_remove_instruction(then_exit);
2268 then_branch->branch.target_block = after_else_idx;
2269 } else {
2270 then_branch->branch.target_block = else_idx;
2271 then_exit->branch.target_block = after_else_idx;
2272 }
2273 }
2274
2275 static void
2276 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2277 {
2278 /* Remember where we are */
2279 midgard_block *start_block = ctx->current_block;
2280
2281 /* Allocate a loop number, growing the current inner loop depth */
2282 int loop_idx = ++ctx->current_loop_depth;
2283
2284 /* Get index from before the body so we can loop back later */
2285 int start_idx = ctx->block_count;
2286
2287 /* Emit the body itself */
2288 emit_cf_list(ctx, &nloop->body);
2289
2290 /* Branch back to loop back */
2291 struct midgard_instruction br_back = v_branch(false, false);
2292 br_back.branch.target_block = start_idx;
2293 emit_mir_instruction(ctx, br_back);
2294
2295 /* Mark down that branch in the graph. Note that we're really branching
2296 * to the block *after* we started in. TODO: Why doesn't the branch
2297 * itself have an off-by-one then...? */
2298 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2299
2300 /* Find the index of the block about to follow us (note: we don't add
2301 * one; blocks are 0-indexed so we get a fencepost problem) */
2302 int break_block_idx = ctx->block_count;
2303
2304 /* Fix up the break statements we emitted to point to the right place,
2305 * now that we can allocate a block number for them */
2306
2307 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2308 mir_foreach_instr_in_block(block, ins) {
2309 if (ins->type != TAG_ALU_4) continue;
2310 if (!ins->compact_branch) continue;
2311 if (ins->prepacked_branch) continue;
2312
2313 /* We found a branch -- check the type to see if we need to do anything */
2314 if (ins->branch.target_type != TARGET_BREAK) continue;
2315
2316 /* It's a break! Check if it's our break */
2317 if (ins->branch.target_break != loop_idx) continue;
2318
2319 /* Okay, cool, we're breaking out of this loop.
2320 * Rewrite from a break to a goto */
2321
2322 ins->branch.target_type = TARGET_GOTO;
2323 ins->branch.target_block = break_block_idx;
2324 }
2325 }
2326
2327 /* Now that we've finished emitting the loop, free up the depth again
2328 * so we play nice with recursion amid nested loops */
2329 --ctx->current_loop_depth;
2330
2331 /* Dump loop stats */
2332 ++ctx->loop_count;
2333 }
2334
2335 static midgard_block *
2336 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2337 {
2338 midgard_block *start_block = NULL;
2339
2340 foreach_list_typed(nir_cf_node, node, node, list) {
2341 switch (node->type) {
2342 case nir_cf_node_block: {
2343 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2344
2345 if (!start_block)
2346 start_block = block;
2347
2348 break;
2349 }
2350
2351 case nir_cf_node_if:
2352 emit_if(ctx, nir_cf_node_as_if(node));
2353 break;
2354
2355 case nir_cf_node_loop:
2356 emit_loop(ctx, nir_cf_node_as_loop(node));
2357 break;
2358
2359 case nir_cf_node_function:
2360 assert(0);
2361 break;
2362 }
2363 }
2364
2365 return start_block;
2366 }
2367
2368 /* Due to lookahead, we need to report the first tag executed in the command
2369 * stream and in branch targets. An initial block might be empty, so iterate
2370 * until we find one that 'works' */
2371
2372 static unsigned
2373 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2374 {
2375 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2376
2377 unsigned first_tag = 0;
2378
2379 do {
2380 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2381
2382 if (initial_bundle) {
2383 first_tag = initial_bundle->tag;
2384 break;
2385 }
2386
2387 /* Initial block is empty, try the next block */
2388 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2389 } while(initial_block != NULL);
2390
2391 assert(first_tag);
2392 return first_tag;
2393 }
2394
2395 int
2396 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2397 {
2398 struct util_dynarray *compiled = &program->compiled;
2399
2400 midgard_debug = debug_get_option_midgard_debug();
2401
2402 compiler_context ictx = {
2403 .nir = nir,
2404 .screen = screen,
2405 .stage = nir->info.stage,
2406
2407 .is_blend = is_blend,
2408 .blend_constant_offset = 0,
2409
2410 .alpha_ref = program->alpha_ref
2411 };
2412
2413 compiler_context *ctx = &ictx;
2414
2415 /* Start off with a safe cutoff, allowing usage of all 16 work
2416 * registers. Later, we'll promote uniform reads to uniform registers
2417 * if we determine it is beneficial to do so */
2418 ctx->uniform_cutoff = 8;
2419
2420 /* Initialize at a global (not block) level hash tables */
2421
2422 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2423 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2424 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2425
2426 /* Record the varying mapping for the command stream's bookkeeping */
2427
2428 struct exec_list *varyings =
2429 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2430
2431 unsigned max_varying = 0;
2432 nir_foreach_variable(var, varyings) {
2433 unsigned loc = var->data.driver_location;
2434 unsigned sz = glsl_type_size(var->type, FALSE);
2435
2436 for (int c = 0; c < sz; ++c) {
2437 program->varyings[loc + c] = var->data.location + c;
2438 max_varying = MAX2(max_varying, loc + c);
2439 }
2440 }
2441
2442 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2443 * (so we don't accidentally duplicate the epilogue since mesa/st has
2444 * messed with our I/O quite a bit already) */
2445
2446 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2447
2448 if (ctx->stage == MESA_SHADER_VERTEX) {
2449 NIR_PASS_V(nir, nir_lower_viewport_transform);
2450 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2451 }
2452
2453 NIR_PASS_V(nir, nir_lower_var_copies);
2454 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2455 NIR_PASS_V(nir, nir_split_var_copies);
2456 NIR_PASS_V(nir, nir_lower_var_copies);
2457 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2458 NIR_PASS_V(nir, nir_lower_var_copies);
2459 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2460
2461 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2462
2463 /* Optimisation passes */
2464
2465 optimise_nir(nir);
2466
2467 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2468 nir_print_shader(nir, stdout);
2469 }
2470
2471 /* Assign sysvals and counts, now that we're sure
2472 * (post-optimisation) */
2473
2474 midgard_nir_assign_sysvals(ctx, nir);
2475
2476 program->uniform_count = nir->num_uniforms;
2477 program->sysval_count = ctx->sysval_count;
2478 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2479
2480 nir_foreach_function(func, nir) {
2481 if (!func->impl)
2482 continue;
2483
2484 list_inithead(&ctx->blocks);
2485 ctx->block_count = 0;
2486 ctx->func = func;
2487
2488 emit_cf_list(ctx, &func->impl->body);
2489 emit_block(ctx, func->impl->end_block);
2490
2491 break; /* TODO: Multi-function shaders */
2492 }
2493
2494 util_dynarray_init(compiled, NULL);
2495
2496 /* MIR-level optimizations */
2497
2498 bool progress = false;
2499
2500 do {
2501 progress = false;
2502
2503 mir_foreach_block(ctx, block) {
2504 progress |= midgard_opt_pos_propagate(ctx, block);
2505 progress |= midgard_opt_copy_prop(ctx, block);
2506 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2507 }
2508 } while (progress);
2509
2510 /* Nested control-flow can result in dead branches at the end of the
2511 * block. This messes with our analysis and is just dead code, so cull
2512 * them */
2513 mir_foreach_block(ctx, block) {
2514 midgard_opt_cull_dead_branch(ctx, block);
2515 }
2516
2517 /* Schedule! */
2518 schedule_program(ctx);
2519
2520 /* Now that all the bundles are scheduled and we can calculate block
2521 * sizes, emit actual branch instructions rather than placeholders */
2522
2523 int br_block_idx = 0;
2524
2525 mir_foreach_block(ctx, block) {
2526 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2527 for (int c = 0; c < bundle->instruction_count; ++c) {
2528 midgard_instruction *ins = bundle->instructions[c];
2529
2530 if (!midgard_is_branch_unit(ins->unit)) continue;
2531
2532 if (ins->prepacked_branch) continue;
2533
2534 /* Parse some basic branch info */
2535 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2536 bool is_conditional = ins->branch.conditional;
2537 bool is_inverted = ins->branch.invert_conditional;
2538 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2539
2540 /* Determine the block we're jumping to */
2541 int target_number = ins->branch.target_block;
2542
2543 /* Report the destination tag */
2544 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2545
2546 /* Count up the number of quadwords we're
2547 * jumping over = number of quadwords until
2548 * (br_block_idx, target_number) */
2549
2550 int quadword_offset = 0;
2551
2552 if (is_discard) {
2553 /* Jump to the end of the shader. We
2554 * need to include not only the
2555 * following blocks, but also the
2556 * contents of our current block (since
2557 * discard can come in the middle of
2558 * the block) */
2559
2560 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2561
2562 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2563 quadword_offset += quadword_size(bun->tag);
2564 }
2565
2566 mir_foreach_block_from(ctx, blk, b) {
2567 quadword_offset += b->quadword_count;
2568 }
2569
2570 } else if (target_number > br_block_idx) {
2571 /* Jump forward */
2572
2573 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2574 midgard_block *blk = mir_get_block(ctx, idx);
2575 assert(blk);
2576
2577 quadword_offset += blk->quadword_count;
2578 }
2579 } else {
2580 /* Jump backwards */
2581
2582 for (int idx = br_block_idx; idx >= target_number; --idx) {
2583 midgard_block *blk = mir_get_block(ctx, idx);
2584 assert(blk);
2585
2586 quadword_offset -= blk->quadword_count;
2587 }
2588 }
2589
2590 /* Unconditional extended branches (far jumps)
2591 * have issues, so we always use a conditional
2592 * branch, setting the condition to always for
2593 * unconditional. For compact unconditional
2594 * branches, cond isn't used so it doesn't
2595 * matter what we pick. */
2596
2597 midgard_condition cond =
2598 !is_conditional ? midgard_condition_always :
2599 is_inverted ? midgard_condition_false :
2600 midgard_condition_true;
2601
2602 midgard_jmp_writeout_op op =
2603 is_discard ? midgard_jmp_writeout_op_discard :
2604 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2605 midgard_jmp_writeout_op_branch_cond;
2606
2607 if (!is_compact) {
2608 midgard_branch_extended branch =
2609 midgard_create_branch_extended(
2610 cond, op,
2611 dest_tag,
2612 quadword_offset);
2613
2614 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2615 } else if (is_conditional || is_discard) {
2616 midgard_branch_cond branch = {
2617 .op = op,
2618 .dest_tag = dest_tag,
2619 .offset = quadword_offset,
2620 .cond = cond
2621 };
2622
2623 assert(branch.offset == quadword_offset);
2624
2625 memcpy(&ins->br_compact, &branch, sizeof(branch));
2626 } else {
2627 assert(op == midgard_jmp_writeout_op_branch_uncond);
2628
2629 midgard_branch_uncond branch = {
2630 .op = op,
2631 .dest_tag = dest_tag,
2632 .offset = quadword_offset,
2633 .unknown = 1
2634 };
2635
2636 assert(branch.offset == quadword_offset);
2637
2638 memcpy(&ins->br_compact, &branch, sizeof(branch));
2639 }
2640 }
2641 }
2642
2643 ++br_block_idx;
2644 }
2645
2646 /* Emit flat binary from the instruction arrays. Iterate each block in
2647 * sequence. Save instruction boundaries such that lookahead tags can
2648 * be assigned easily */
2649
2650 /* Cache _all_ bundles in source order for lookahead across failed branches */
2651
2652 int bundle_count = 0;
2653 mir_foreach_block(ctx, block) {
2654 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2655 }
2656 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2657 int bundle_idx = 0;
2658 mir_foreach_block(ctx, block) {
2659 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2660 source_order_bundles[bundle_idx++] = bundle;
2661 }
2662 }
2663
2664 int current_bundle = 0;
2665
2666 /* Midgard prefetches instruction types, so during emission we
2667 * need to lookahead. Unless this is the last instruction, in
2668 * which we return 1. Or if this is the second to last and the
2669 * last is an ALU, then it's also 1... */
2670
2671 mir_foreach_block(ctx, block) {
2672 mir_foreach_bundle_in_block(block, bundle) {
2673 int lookahead = 1;
2674
2675 if (current_bundle + 1 < bundle_count) {
2676 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2677
2678 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2679 lookahead = 1;
2680 } else {
2681 lookahead = next;
2682 }
2683 }
2684
2685 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2686 ++current_bundle;
2687 }
2688
2689 /* TODO: Free deeper */
2690 //util_dynarray_fini(&block->instructions);
2691 }
2692
2693 free(source_order_bundles);
2694
2695 /* Report the very first tag executed */
2696 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2697
2698 /* Deal with off-by-one related to the fencepost problem */
2699 program->work_register_count = ctx->work_registers + 1;
2700 program->uniform_cutoff = ctx->uniform_cutoff;
2701
2702 program->blend_patch_offset = ctx->blend_constant_offset;
2703 program->tls_size = ctx->tls_size;
2704
2705 if (midgard_debug & MIDGARD_DBG_SHADERS)
2706 disassemble_midgard(program->compiled.data, program->compiled.size);
2707
2708 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2709 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2710
2711 /* Count instructions and bundles */
2712
2713 mir_foreach_instr_global(ctx, ins) {
2714 nr_ins++;
2715 }
2716
2717 mir_foreach_block(ctx, block) {
2718 nr_bundles += util_dynarray_num_elements(
2719 &block->bundles, midgard_bundle);
2720
2721 nr_quadwords += block->quadword_count;
2722 }
2723
2724 /* Calculate thread count. There are certain cutoffs by
2725 * register count for thread count */
2726
2727 unsigned nr_registers = program->work_register_count;
2728
2729 unsigned nr_threads =
2730 (nr_registers <= 4) ? 4 :
2731 (nr_registers <= 8) ? 2 :
2732 1;
2733
2734 /* Dump stats */
2735
2736 fprintf(stderr, "shader%d - %s shader: "
2737 "%u inst, %u bundles, %u quadwords, "
2738 "%u registers, %u threads, %u loops, "
2739 "%d:%d spills:fills\n",
2740 SHADER_DB_COUNT++,
2741 gl_shader_stage_name(ctx->stage),
2742 nr_ins, nr_bundles, nr_quadwords,
2743 nr_registers, nr_threads,
2744 ctx->loop_count,
2745 ctx->spills, ctx->fills);
2746 }
2747
2748
2749 return 0;
2750 }