pan/midgard: Clamp sysval component count
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 assert(block);
82 assert(successor);
83
84 /* Deduplicate */
85 for (unsigned i = 0; i < block->nr_successors; ++i) {
86 if (block->successors[i] == successor)
87 return;
88 }
89
90 block->successors[block->nr_successors++] = successor;
91 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
92 }
93
94 /* Helpers to generate midgard_instruction's using macro magic, since every
95 * driver seems to do it that way */
96
97 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
98
99 #define M_LOAD_STORE(name, store) \
100 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
101 midgard_instruction i = { \
102 .type = TAG_LOAD_STORE_4, \
103 .mask = 0xF, \
104 .ssa_args = { \
105 .dest = -1, \
106 .src = { -1, -1, -1 }, \
107 }, \
108 .load_store = { \
109 .op = midgard_op_##name, \
110 .swizzle = SWIZZLE_XYZW, \
111 .address = address \
112 } \
113 }; \
114 \
115 if (store) \
116 i.ssa_args.src[0] = ssa; \
117 else \
118 i.ssa_args.dest = ssa; \
119 \
120 return i; \
121 }
122
123 #define M_LOAD(name) M_LOAD_STORE(name, false)
124 #define M_STORE(name) M_LOAD_STORE(name, true)
125
126 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
127 * the corresponding Midgard source */
128
129 static midgard_vector_alu_src
130 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
131 bool half, bool sext)
132 {
133 if (!src) return blank_alu_src;
134
135 /* Figure out how many components there are so we can adjust the
136 * swizzle. Specifically we want to broadcast the last channel so
137 * things like ball2/3 work
138 */
139
140 if (broadcast_count) {
141 uint8_t last_component = src->swizzle[broadcast_count - 1];
142
143 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
144 src->swizzle[c] = last_component;
145 }
146 }
147
148 midgard_vector_alu_src alu_src = {
149 .rep_low = 0,
150 .rep_high = 0,
151 .half = half,
152 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
153 };
154
155 if (is_int) {
156 alu_src.mod = midgard_int_normal;
157
158 /* Sign/zero-extend if needed */
159
160 if (half) {
161 alu_src.mod = sext ?
162 midgard_int_sign_extend
163 : midgard_int_zero_extend;
164 }
165
166 /* These should have been lowered away */
167 assert(!(src->abs || src->negate));
168 } else {
169 alu_src.mod = (src->abs << 0) | (src->negate << 1);
170 }
171
172 return alu_src;
173 }
174
175 /* load/store instructions have both 32-bit and 16-bit variants, depending on
176 * whether we are using vectors composed of highp or mediump. At the moment, we
177 * don't support half-floats -- this requires changes in other parts of the
178 * compiler -- therefore the 16-bit versions are commented out. */
179
180 //M_LOAD(ld_attr_16);
181 M_LOAD(ld_attr_32);
182 //M_LOAD(ld_vary_16);
183 M_LOAD(ld_vary_32);
184 //M_LOAD(ld_uniform_16);
185 M_LOAD(ld_uniform_32);
186 M_LOAD(ld_color_buffer_8);
187 //M_STORE(st_vary_16);
188 M_STORE(st_vary_32);
189 M_LOAD(st_cubemap_coords);
190
191 static midgard_instruction
192 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
193 {
194 midgard_branch_cond branch = {
195 .op = op,
196 .dest_tag = tag,
197 .offset = offset,
198 .cond = cond
199 };
200
201 uint16_t compact;
202 memcpy(&compact, &branch, sizeof(branch));
203
204 midgard_instruction ins = {
205 .type = TAG_ALU_4,
206 .unit = ALU_ENAB_BR_COMPACT,
207 .prepacked_branch = true,
208 .compact_branch = true,
209 .br_compact = compact,
210 .ssa_args = {
211 .dest = -1,
212 .src = { -1, -1, -1 },
213 }
214 };
215
216 if (op == midgard_jmp_writeout_op_writeout)
217 ins.writeout = true;
218
219 return ins;
220 }
221
222 static midgard_instruction
223 v_branch(bool conditional, bool invert)
224 {
225 midgard_instruction ins = {
226 .type = TAG_ALU_4,
227 .unit = ALU_ENAB_BRANCH,
228 .compact_branch = true,
229 .branch = {
230 .conditional = conditional,
231 .invert_conditional = invert
232 },
233 .ssa_args = {
234 .dest = -1,
235 .src = { -1, -1, -1 },
236 }
237 };
238
239 return ins;
240 }
241
242 static midgard_branch_extended
243 midgard_create_branch_extended( midgard_condition cond,
244 midgard_jmp_writeout_op op,
245 unsigned dest_tag,
246 signed quadword_offset)
247 {
248 /* The condition code is actually a LUT describing a function to
249 * combine multiple condition codes. However, we only support a single
250 * condition code at the moment, so we just duplicate over a bunch of
251 * times. */
252
253 uint16_t duplicated_cond =
254 (cond << 14) |
255 (cond << 12) |
256 (cond << 10) |
257 (cond << 8) |
258 (cond << 6) |
259 (cond << 4) |
260 (cond << 2) |
261 (cond << 0);
262
263 midgard_branch_extended branch = {
264 .op = op,
265 .dest_tag = dest_tag,
266 .offset = quadword_offset,
267 .cond = duplicated_cond
268 };
269
270 return branch;
271 }
272
273 static void
274 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
275 {
276 ins->has_constants = true;
277 memcpy(&ins->constants, constants, 16);
278 }
279
280 static int
281 glsl_type_size(const struct glsl_type *type, bool bindless)
282 {
283 return glsl_count_attribute_slots(type, false);
284 }
285
286 /* Lower fdot2 to a vector multiplication followed by channel addition */
287 static void
288 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
289 {
290 if (alu->op != nir_op_fdot2)
291 return;
292
293 b->cursor = nir_before_instr(&alu->instr);
294
295 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
296 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
297
298 nir_ssa_def *product = nir_fmul(b, src0, src1);
299
300 nir_ssa_def *sum = nir_fadd(b,
301 nir_channel(b, product, 0),
302 nir_channel(b, product, 1));
303
304 /* Replace the fdot2 with this sum */
305 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
306 }
307
308 static int
309 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
310 {
311 nir_src index = instr->src[0];
312 assert(nir_src_is_const(index));
313 uint32_t uindex = nir_src_as_uint(index);
314
315 return PAN_SYSVAL(SSBO, uindex);
316 }
317
318 static int
319 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
320 {
321 switch (instr->intrinsic) {
322 case nir_intrinsic_load_viewport_scale:
323 return PAN_SYSVAL_VIEWPORT_SCALE;
324 case nir_intrinsic_load_viewport_offset:
325 return PAN_SYSVAL_VIEWPORT_OFFSET;
326 case nir_intrinsic_load_ssbo:
327 return midgard_sysval_for_ssbo(instr);
328 default:
329 return -1;
330 }
331 }
332
333 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
334 unsigned *dest)
335 {
336 nir_intrinsic_instr *intr;
337 nir_dest *dst = NULL;
338 nir_tex_instr *tex;
339 int sysval = -1;
340
341 switch (instr->type) {
342 case nir_instr_type_intrinsic:
343 intr = nir_instr_as_intrinsic(instr);
344 sysval = midgard_nir_sysval_for_intrinsic(intr);
345 dst = &intr->dest;
346 break;
347 case nir_instr_type_tex:
348 tex = nir_instr_as_tex(instr);
349 if (tex->op != nir_texop_txs)
350 break;
351
352 sysval = PAN_SYSVAL(TEXTURE_SIZE,
353 PAN_TXS_SYSVAL_ID(tex->texture_index,
354 nir_tex_instr_dest_size(tex) -
355 (tex->is_array ? 1 : 0),
356 tex->is_array));
357 dst = &tex->dest;
358 break;
359 default:
360 break;
361 }
362
363 if (dest && dst)
364 *dest = nir_dest_index(ctx, dst);
365
366 return sysval;
367 }
368
369 static void
370 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
371 {
372 int sysval;
373
374 sysval = sysval_for_instr(ctx, instr, NULL);
375 if (sysval < 0)
376 return;
377
378 /* We have a sysval load; check if it's already been assigned */
379
380 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
381 return;
382
383 /* It hasn't -- so assign it now! */
384
385 unsigned id = ctx->sysval_count++;
386 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
387 ctx->sysvals[id] = sysval;
388 }
389
390 static void
391 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
392 {
393 ctx->sysval_count = 0;
394
395 nir_foreach_function(function, shader) {
396 if (!function->impl) continue;
397
398 nir_foreach_block(block, function->impl) {
399 nir_foreach_instr_safe(instr, block) {
400 midgard_nir_assign_sysval_body(ctx, instr);
401 }
402 }
403 }
404 }
405
406 static bool
407 midgard_nir_lower_fdot2(nir_shader *shader)
408 {
409 bool progress = false;
410
411 nir_foreach_function(function, shader) {
412 if (!function->impl) continue;
413
414 nir_builder _b;
415 nir_builder *b = &_b;
416 nir_builder_init(b, function->impl);
417
418 nir_foreach_block(block, function->impl) {
419 nir_foreach_instr_safe(instr, block) {
420 if (instr->type != nir_instr_type_alu) continue;
421
422 nir_alu_instr *alu = nir_instr_as_alu(instr);
423 midgard_nir_lower_fdot2_body(b, alu);
424
425 progress |= true;
426 }
427 }
428
429 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
430
431 }
432
433 return progress;
434 }
435
436 /* Flushes undefined values to zero */
437
438 static void
439 optimise_nir(nir_shader *nir)
440 {
441 bool progress;
442 unsigned lower_flrp =
443 (nir->options->lower_flrp16 ? 16 : 0) |
444 (nir->options->lower_flrp32 ? 32 : 0) |
445 (nir->options->lower_flrp64 ? 64 : 0);
446
447 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
448 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
449 NIR_PASS(progress, nir, nir_lower_idiv);
450
451 nir_lower_tex_options lower_tex_1st_pass_options = {
452 .lower_rect = true,
453 .lower_txp = ~0
454 };
455
456 nir_lower_tex_options lower_tex_2nd_pass_options = {
457 .lower_txs_lod = true,
458 };
459
460 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
461 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
462
463 do {
464 progress = false;
465
466 NIR_PASS(progress, nir, nir_lower_var_copies);
467 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
468
469 NIR_PASS(progress, nir, nir_copy_prop);
470 NIR_PASS(progress, nir, nir_opt_dce);
471 NIR_PASS(progress, nir, nir_opt_dead_cf);
472 NIR_PASS(progress, nir, nir_opt_cse);
473 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
474 NIR_PASS(progress, nir, nir_opt_algebraic);
475 NIR_PASS(progress, nir, nir_opt_constant_folding);
476
477 if (lower_flrp != 0) {
478 bool lower_flrp_progress = false;
479 NIR_PASS(lower_flrp_progress,
480 nir,
481 nir_lower_flrp,
482 lower_flrp,
483 false /* always_precise */,
484 nir->options->lower_ffma);
485 if (lower_flrp_progress) {
486 NIR_PASS(progress, nir,
487 nir_opt_constant_folding);
488 progress = true;
489 }
490
491 /* Nothing should rematerialize any flrps, so we only
492 * need to do this lowering once.
493 */
494 lower_flrp = 0;
495 }
496
497 NIR_PASS(progress, nir, nir_opt_undef);
498 NIR_PASS(progress, nir, nir_undef_to_zero);
499
500 NIR_PASS(progress, nir, nir_opt_loop_unroll,
501 nir_var_shader_in |
502 nir_var_shader_out |
503 nir_var_function_temp);
504
505 NIR_PASS(progress, nir, nir_opt_vectorize);
506 } while (progress);
507
508 /* Must be run at the end to prevent creation of fsin/fcos ops */
509 NIR_PASS(progress, nir, midgard_nir_scale_trig);
510
511 do {
512 progress = false;
513
514 NIR_PASS(progress, nir, nir_opt_dce);
515 NIR_PASS(progress, nir, nir_opt_algebraic);
516 NIR_PASS(progress, nir, nir_opt_constant_folding);
517 NIR_PASS(progress, nir, nir_copy_prop);
518 } while (progress);
519
520 NIR_PASS(progress, nir, nir_opt_algebraic_late);
521
522 /* We implement booleans as 32-bit 0/~0 */
523 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
524
525 /* Now that booleans are lowered, we can run out late opts */
526 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
527
528 /* Lower mods for float ops only. Integer ops don't support modifiers
529 * (saturate doesn't make sense on integers, neg/abs require dedicated
530 * instructions) */
531
532 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
533 NIR_PASS(progress, nir, nir_copy_prop);
534 NIR_PASS(progress, nir, nir_opt_dce);
535
536 /* Take us out of SSA */
537 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
538 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
539
540 /* We are a vector architecture; write combine where possible */
541 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
542 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
543
544 NIR_PASS(progress, nir, nir_opt_dce);
545 }
546
547 /* Do not actually emit a load; instead, cache the constant for inlining */
548
549 static void
550 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
551 {
552 nir_ssa_def def = instr->def;
553
554 float *v = rzalloc_array(NULL, float, 4);
555 nir_const_load_to_arr(v, instr, f32);
556
557 /* Shifted for SSA, +1 for off-by-one */
558 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
559 }
560
561 /* Normally constants are embedded implicitly, but for I/O and such we have to
562 * explicitly emit a move with the constant source */
563
564 static void
565 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
566 {
567 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
568
569 if (constant_value) {
570 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
571 attach_constants(ctx, &ins, constant_value, node + 1);
572 emit_mir_instruction(ctx, ins);
573 }
574 }
575
576 static bool
577 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
578 {
579 unsigned comp = src->swizzle[0];
580
581 for (unsigned c = 1; c < nr_components; ++c) {
582 if (src->swizzle[c] != comp)
583 return true;
584 }
585
586 return false;
587 }
588
589 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
590 * output of a conditional test) into that register */
591
592 static void
593 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
594 {
595 int condition = nir_src_index(ctx, src);
596
597 /* Source to swizzle the desired component into w */
598
599 const midgard_vector_alu_src alu_src = {
600 .swizzle = SWIZZLE(component, component, component, component),
601 };
602
603 /* There is no boolean move instruction. Instead, we simulate a move by
604 * ANDing the condition with itself to get it into r31.w */
605
606 midgard_instruction ins = {
607 .type = TAG_ALU_4,
608
609 /* We need to set the conditional as close as possible */
610 .precede_break = true,
611 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
612 .mask = 1 << COMPONENT_W,
613
614 .ssa_args = {
615 .src = { condition, condition, -1 },
616 .dest = SSA_FIXED_REGISTER(31),
617 },
618
619 .alu = {
620 .op = midgard_alu_op_iand,
621 .outmod = midgard_outmod_int_wrap,
622 .reg_mode = midgard_reg_mode_32,
623 .dest_override = midgard_dest_override_none,
624 .src1 = vector_alu_srco_unsigned(alu_src),
625 .src2 = vector_alu_srco_unsigned(alu_src)
626 },
627 };
628
629 emit_mir_instruction(ctx, ins);
630 }
631
632 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
633 * r31 instead */
634
635 static void
636 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
637 {
638 int condition = nir_src_index(ctx, &src->src);
639
640 /* Source to swizzle the desired component into w */
641
642 const midgard_vector_alu_src alu_src = {
643 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
644 };
645
646 /* There is no boolean move instruction. Instead, we simulate a move by
647 * ANDing the condition with itself to get it into r31.w */
648
649 midgard_instruction ins = {
650 .type = TAG_ALU_4,
651 .precede_break = true,
652 .mask = mask_of(nr_comp),
653 .ssa_args = {
654 .src = { condition, condition, -1 },
655 .dest = SSA_FIXED_REGISTER(31),
656 },
657 .alu = {
658 .op = midgard_alu_op_iand,
659 .outmod = midgard_outmod_int_wrap,
660 .reg_mode = midgard_reg_mode_32,
661 .dest_override = midgard_dest_override_none,
662 .src1 = vector_alu_srco_unsigned(alu_src),
663 .src2 = vector_alu_srco_unsigned(alu_src)
664 },
665 };
666
667 emit_mir_instruction(ctx, ins);
668 }
669
670 #define ALU_CASE(nir, _op) \
671 case nir_op_##nir: \
672 op = midgard_alu_op_##_op; \
673 assert(src_bitsize == dst_bitsize); \
674 break;
675
676 #define ALU_CASE_BCAST(nir, _op, count) \
677 case nir_op_##nir: \
678 op = midgard_alu_op_##_op; \
679 broadcast_swizzle = count; \
680 assert(src_bitsize == dst_bitsize); \
681 break;
682 static bool
683 nir_is_fzero_constant(nir_src src)
684 {
685 if (!nir_src_is_const(src))
686 return false;
687
688 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
689 if (nir_src_comp_as_float(src, c) != 0.0)
690 return false;
691 }
692
693 return true;
694 }
695
696 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
697 * special treatment override this anyway. */
698
699 static midgard_reg_mode
700 reg_mode_for_nir(nir_alu_instr *instr)
701 {
702 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
703
704 switch (src_bitsize) {
705 case 8:
706 return midgard_reg_mode_8;
707 case 16:
708 return midgard_reg_mode_16;
709 case 32:
710 return midgard_reg_mode_32;
711 case 64:
712 return midgard_reg_mode_64;
713 default:
714 unreachable("Invalid bit size");
715 }
716 }
717
718 static void
719 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
720 {
721 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
722 * is handled elsewhere */
723
724 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
725 midgard_emit_derivatives(ctx, instr);
726 return;
727 }
728
729 bool is_ssa = instr->dest.dest.is_ssa;
730
731 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
732 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
733 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
734
735 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
736 * supported. A few do not and are commented for now. Also, there are a
737 * number of NIR ops which Midgard does not support and need to be
738 * lowered, also TODO. This switch block emits the opcode and calling
739 * convention of the Midgard instruction; actual packing is done in
740 * emit_alu below */
741
742 unsigned op;
743
744 /* Number of components valid to check for the instruction (the rest
745 * will be forced to the last), or 0 to use as-is. Relevant as
746 * ball-type instructions have a channel count in NIR but are all vec4
747 * in Midgard */
748
749 unsigned broadcast_swizzle = 0;
750
751 /* What register mode should we operate in? */
752 midgard_reg_mode reg_mode =
753 reg_mode_for_nir(instr);
754
755 /* Do we need a destination override? Used for inline
756 * type conversion */
757
758 midgard_dest_override dest_override =
759 midgard_dest_override_none;
760
761 /* Should we use a smaller respective source and sign-extend? */
762
763 bool half_1 = false, sext_1 = false;
764 bool half_2 = false, sext_2 = false;
765
766 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
767 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
768
769 switch (instr->op) {
770 ALU_CASE(fadd, fadd);
771 ALU_CASE(fmul, fmul);
772 ALU_CASE(fmin, fmin);
773 ALU_CASE(fmax, fmax);
774 ALU_CASE(imin, imin);
775 ALU_CASE(imax, imax);
776 ALU_CASE(umin, umin);
777 ALU_CASE(umax, umax);
778 ALU_CASE(ffloor, ffloor);
779 ALU_CASE(fround_even, froundeven);
780 ALU_CASE(ftrunc, ftrunc);
781 ALU_CASE(fceil, fceil);
782 ALU_CASE(fdot3, fdot3);
783 ALU_CASE(fdot4, fdot4);
784 ALU_CASE(iadd, iadd);
785 ALU_CASE(isub, isub);
786 ALU_CASE(imul, imul);
787
788 /* Zero shoved as second-arg */
789 ALU_CASE(iabs, iabsdiff);
790
791 ALU_CASE(mov, imov);
792
793 ALU_CASE(feq32, feq);
794 ALU_CASE(fne32, fne);
795 ALU_CASE(flt32, flt);
796 ALU_CASE(ieq32, ieq);
797 ALU_CASE(ine32, ine);
798 ALU_CASE(ilt32, ilt);
799 ALU_CASE(ult32, ult);
800
801 /* We don't have a native b2f32 instruction. Instead, like many
802 * GPUs, we exploit booleans as 0/~0 for false/true, and
803 * correspondingly AND
804 * by 1.0 to do the type conversion. For the moment, prime us
805 * to emit:
806 *
807 * iand [whatever], #0
808 *
809 * At the end of emit_alu (as MIR), we'll fix-up the constant
810 */
811
812 ALU_CASE(b2f32, iand);
813 ALU_CASE(b2i32, iand);
814
815 /* Likewise, we don't have a dedicated f2b32 instruction, but
816 * we can do a "not equal to 0.0" test. */
817
818 ALU_CASE(f2b32, fne);
819 ALU_CASE(i2b32, ine);
820
821 ALU_CASE(frcp, frcp);
822 ALU_CASE(frsq, frsqrt);
823 ALU_CASE(fsqrt, fsqrt);
824 ALU_CASE(fexp2, fexp2);
825 ALU_CASE(flog2, flog2);
826
827 ALU_CASE(f2i32, f2i_rtz);
828 ALU_CASE(f2u32, f2u_rtz);
829 ALU_CASE(i2f32, i2f_rtz);
830 ALU_CASE(u2f32, u2f_rtz);
831
832 ALU_CASE(f2i16, f2i_rtz);
833 ALU_CASE(f2u16, f2u_rtz);
834 ALU_CASE(i2f16, i2f_rtz);
835 ALU_CASE(u2f16, u2f_rtz);
836
837 ALU_CASE(fsin, fsin);
838 ALU_CASE(fcos, fcos);
839
840 /* We'll set invert */
841 ALU_CASE(inot, imov);
842 ALU_CASE(iand, iand);
843 ALU_CASE(ior, ior);
844 ALU_CASE(ixor, ixor);
845 ALU_CASE(ishl, ishl);
846 ALU_CASE(ishr, iasr);
847 ALU_CASE(ushr, ilsr);
848
849 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
850 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
851 ALU_CASE(b32all_fequal4, fball_eq);
852
853 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
854 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
855 ALU_CASE(b32any_fnequal4, fbany_neq);
856
857 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
858 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
859 ALU_CASE(b32all_iequal4, iball_eq);
860
861 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
862 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
863 ALU_CASE(b32any_inequal4, ibany_neq);
864
865 /* Source mods will be shoved in later */
866 ALU_CASE(fabs, fmov);
867 ALU_CASE(fneg, fmov);
868 ALU_CASE(fsat, fmov);
869
870 /* For size conversion, we use a move. Ideally though we would squash
871 * these ops together; maybe that has to happen after in NIR as part of
872 * propagation...? An earlier algebraic pass ensured we step down by
873 * only / exactly one size. If stepping down, we use a dest override to
874 * reduce the size; if stepping up, we use a larger-sized move with a
875 * half source and a sign/zero-extension modifier */
876
877 case nir_op_i2i8:
878 case nir_op_i2i16:
879 case nir_op_i2i32:
880 /* If we end up upscale, we'll need a sign-extend on the
881 * operand (the second argument) */
882
883 sext_2 = true;
884 case nir_op_u2u8:
885 case nir_op_u2u16:
886 case nir_op_u2u32: {
887 op = midgard_alu_op_imov;
888
889 if (dst_bitsize == (src_bitsize * 2)) {
890 /* Converting up */
891 half_2 = true;
892
893 /* Use a greater register mode */
894 reg_mode++;
895 } else if (src_bitsize == (dst_bitsize * 2)) {
896 /* Converting down */
897 dest_override = midgard_dest_override_lower;
898 }
899
900 break;
901 }
902
903 case nir_op_f2f16: {
904 assert(src_bitsize == 32);
905
906 op = midgard_alu_op_fmov;
907 dest_override = midgard_dest_override_lower;
908 break;
909 }
910
911 case nir_op_f2f32: {
912 assert(src_bitsize == 16);
913
914 op = midgard_alu_op_fmov;
915 half_2 = true;
916 reg_mode++;
917 break;
918 }
919
920
921 /* For greater-or-equal, we lower to less-or-equal and flip the
922 * arguments */
923
924 case nir_op_fge:
925 case nir_op_fge32:
926 case nir_op_ige32:
927 case nir_op_uge32: {
928 op =
929 instr->op == nir_op_fge ? midgard_alu_op_fle :
930 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
931 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
932 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
933 0;
934
935 /* Swap via temporary */
936 nir_alu_src temp = instr->src[1];
937 instr->src[1] = instr->src[0];
938 instr->src[0] = temp;
939
940 break;
941 }
942
943 case nir_op_b32csel: {
944 /* Midgard features both fcsel and icsel, depending on
945 * the type of the arguments/output. However, as long
946 * as we're careful we can _always_ use icsel and
947 * _never_ need fcsel, since the latter does additional
948 * floating-point-specific processing whereas the
949 * former just moves bits on the wire. It's not obvious
950 * why these are separate opcodes, save for the ability
951 * to do things like sat/pos/abs/neg for free */
952
953 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
954 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
955
956 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
957 nr_inputs = 2;
958
959 /* Emit the condition into r31 */
960
961 if (mixed)
962 emit_condition_mixed(ctx, &instr->src[0], nr_components);
963 else
964 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
965
966 /* The condition is the first argument; move the other
967 * arguments up one to be a binary instruction for
968 * Midgard */
969
970 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
971 break;
972 }
973
974 default:
975 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
976 assert(0);
977 return;
978 }
979
980 /* Midgard can perform certain modifiers on output of an ALU op */
981 unsigned outmod;
982
983 if (midgard_is_integer_out_op(op)) {
984 outmod = midgard_outmod_int_wrap;
985 } else {
986 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
987 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
988 }
989
990 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
991
992 if (instr->op == nir_op_fmax) {
993 if (nir_is_fzero_constant(instr->src[0].src)) {
994 op = midgard_alu_op_fmov;
995 nr_inputs = 1;
996 outmod = midgard_outmod_pos;
997 instr->src[0] = instr->src[1];
998 } else if (nir_is_fzero_constant(instr->src[1].src)) {
999 op = midgard_alu_op_fmov;
1000 nr_inputs = 1;
1001 outmod = midgard_outmod_pos;
1002 }
1003 }
1004
1005 /* Fetch unit, quirks, etc information */
1006 unsigned opcode_props = alu_opcode_props[op].props;
1007 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1008
1009 /* src0 will always exist afaik, but src1 will not for 1-argument
1010 * instructions. The latter can only be fetched if the instruction
1011 * needs it, or else we may segfault. */
1012
1013 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1014 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1015
1016 /* Rather than use the instruction generation helpers, we do it
1017 * ourselves here to avoid the mess */
1018
1019 midgard_instruction ins = {
1020 .type = TAG_ALU_4,
1021 .ssa_args = {
1022 .src = {
1023 quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1024 quirk_flipped_r24 ? src0 : src1,
1025 -1
1026 },
1027 .dest = dest,
1028 }
1029 };
1030
1031 nir_alu_src *nirmods[2] = { NULL };
1032
1033 if (nr_inputs == 2) {
1034 nirmods[0] = &instr->src[0];
1035 nirmods[1] = &instr->src[1];
1036 } else if (nr_inputs == 1) {
1037 nirmods[quirk_flipped_r24] = &instr->src[0];
1038 } else {
1039 assert(0);
1040 }
1041
1042 /* These were lowered to a move, so apply the corresponding mod */
1043
1044 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1045 nir_alu_src *s = nirmods[quirk_flipped_r24];
1046
1047 if (instr->op == nir_op_fneg)
1048 s->negate = !s->negate;
1049
1050 if (instr->op == nir_op_fabs)
1051 s->abs = !s->abs;
1052 }
1053
1054 bool is_int = midgard_is_integer_op(op);
1055
1056 ins.mask = mask_of(nr_components);
1057
1058 midgard_vector_alu alu = {
1059 .op = op,
1060 .reg_mode = reg_mode,
1061 .dest_override = dest_override,
1062 .outmod = outmod,
1063
1064 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1065 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1066 };
1067
1068 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1069
1070 if (!is_ssa)
1071 ins.mask &= instr->dest.write_mask;
1072
1073 ins.alu = alu;
1074
1075 /* Late fixup for emulated instructions */
1076
1077 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1078 /* Presently, our second argument is an inline #0 constant.
1079 * Switch over to an embedded 1.0 constant (that can't fit
1080 * inline, since we're 32-bit, not 16-bit like the inline
1081 * constants) */
1082
1083 ins.ssa_args.inline_constant = false;
1084 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1085 ins.has_constants = true;
1086
1087 if (instr->op == nir_op_b2f32) {
1088 ins.constants[0] = 1.0f;
1089 } else {
1090 /* Type pun it into place */
1091 uint32_t one = 0x1;
1092 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1093 }
1094
1095 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1096 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1097 /* Lots of instructions need a 0 plonked in */
1098 ins.ssa_args.inline_constant = false;
1099 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1100 ins.has_constants = true;
1101 ins.constants[0] = 0.0f;
1102 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1103 } else if (instr->op == nir_op_inot) {
1104 ins.invert = true;
1105 }
1106
1107 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1108 /* To avoid duplicating the lookup tables (probably), true LUT
1109 * instructions can only operate as if they were scalars. Lower
1110 * them here by changing the component. */
1111
1112 uint8_t original_swizzle[4];
1113 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1114 unsigned orig_mask = ins.mask;
1115
1116 for (int i = 0; i < nr_components; ++i) {
1117 /* Mask the associated component, dropping the
1118 * instruction if needed */
1119
1120 ins.mask = 1 << i;
1121 ins.mask &= orig_mask;
1122
1123 if (!ins.mask)
1124 continue;
1125
1126 for (int j = 0; j < 4; ++j)
1127 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1128
1129 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1130 emit_mir_instruction(ctx, ins);
1131 }
1132 } else {
1133 emit_mir_instruction(ctx, ins);
1134 }
1135 }
1136
1137 #undef ALU_CASE
1138
1139 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1140 * optimized) versions of UBO #0 */
1141
1142 midgard_instruction *
1143 emit_ubo_read(
1144 compiler_context *ctx,
1145 unsigned dest,
1146 unsigned offset,
1147 nir_src *indirect_offset,
1148 unsigned index)
1149 {
1150 /* TODO: half-floats */
1151
1152 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1153
1154 /* TODO: Don't split */
1155 ins.load_store.varying_parameters = (offset & 7) << 7;
1156 ins.load_store.address = offset >> 3;
1157
1158 if (indirect_offset) {
1159 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1160 ins.load_store.arg_2 = 0x80;
1161 } else {
1162 ins.load_store.arg_2 = 0x1E;
1163 }
1164
1165 ins.load_store.arg_1 = index;
1166
1167 return emit_mir_instruction(ctx, ins);
1168 }
1169
1170 static void
1171 emit_varying_read(
1172 compiler_context *ctx,
1173 unsigned dest, unsigned offset,
1174 unsigned nr_comp, unsigned component,
1175 nir_src *indirect_offset, nir_alu_type type)
1176 {
1177 /* XXX: Half-floats? */
1178 /* TODO: swizzle, mask */
1179
1180 midgard_instruction ins = m_ld_vary_32(dest, offset);
1181 ins.mask = mask_of(nr_comp);
1182 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1183
1184 midgard_varying_parameter p = {
1185 .is_varying = 1,
1186 .interpolation = midgard_interp_default,
1187 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1188 };
1189
1190 unsigned u;
1191 memcpy(&u, &p, sizeof(p));
1192 ins.load_store.varying_parameters = u;
1193
1194 if (indirect_offset)
1195 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1196 else
1197 ins.load_store.arg_2 = 0x1E;
1198
1199 ins.load_store.arg_1 = 0x9E;
1200
1201 /* Use the type appropriate load */
1202 switch (type) {
1203 case nir_type_uint:
1204 case nir_type_bool:
1205 ins.load_store.op = midgard_op_ld_vary_32u;
1206 break;
1207 case nir_type_int:
1208 ins.load_store.op = midgard_op_ld_vary_32i;
1209 break;
1210 case nir_type_float:
1211 ins.load_store.op = midgard_op_ld_vary_32;
1212 break;
1213 default:
1214 unreachable("Attempted to load unknown type");
1215 break;
1216 }
1217
1218 emit_mir_instruction(ctx, ins);
1219 }
1220
1221 void
1222 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1223 unsigned nr_components)
1224 {
1225 unsigned dest = 0;
1226
1227 /* Figure out which uniform this is */
1228 int sysval = sysval_for_instr(ctx, instr, &dest);
1229 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1230
1231 if (dest_override >= 0)
1232 dest = dest_override;
1233
1234 /* Sysvals are prefix uniforms */
1235 unsigned uniform = ((uintptr_t) val) - 1;
1236
1237 /* Emit the read itself -- this is never indirect */
1238 midgard_instruction *ins =
1239 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1240
1241 ins->mask = mask_of(nr_components);
1242 }
1243
1244 static void
1245 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1246 {
1247 unsigned offset = 0, reg;
1248
1249 switch (instr->intrinsic) {
1250 case nir_intrinsic_discard_if:
1251 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1252
1253 /* fallthrough */
1254
1255 case nir_intrinsic_discard: {
1256 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1257 struct midgard_instruction discard = v_branch(conditional, false);
1258 discard.branch.target_type = TARGET_DISCARD;
1259 emit_mir_instruction(ctx, discard);
1260 break;
1261 }
1262
1263 case nir_intrinsic_load_uniform:
1264 case nir_intrinsic_load_ubo:
1265 case nir_intrinsic_load_input: {
1266 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1267 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1268
1269 /* Get the base type of the intrinsic */
1270 /* TODO: Infer type? Does it matter? */
1271 nir_alu_type t =
1272 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1273 t = nir_alu_type_get_base_type(t);
1274
1275 if (!is_ubo) {
1276 offset = nir_intrinsic_base(instr);
1277 }
1278
1279 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1280
1281 nir_src *src_offset = nir_get_io_offset_src(instr);
1282
1283 bool direct = nir_src_is_const(*src_offset);
1284
1285 if (direct)
1286 offset += nir_src_as_uint(*src_offset);
1287
1288 /* We may need to apply a fractional offset */
1289 int component = instr->intrinsic == nir_intrinsic_load_input ?
1290 nir_intrinsic_component(instr) : 0;
1291 reg = nir_dest_index(ctx, &instr->dest);
1292
1293 if (is_uniform && !ctx->is_blend) {
1294 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1295 } else if (is_ubo) {
1296 nir_src index = instr->src[0];
1297
1298 /* We don't yet support indirect UBOs. For indirect
1299 * block numbers (if that's possible), we don't know
1300 * enough about the hardware yet. For indirect sources,
1301 * we know what we need but we need to add some NIR
1302 * support for lowering correctly with respect to
1303 * 128-bit reads */
1304
1305 assert(nir_src_is_const(index));
1306 assert(nir_src_is_const(*src_offset));
1307
1308 /* TODO: Alignment */
1309 assert((offset & 0xF) == 0);
1310
1311 uint32_t uindex = nir_src_as_uint(index) + 1;
1312 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1313 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1314 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1315 } else if (ctx->is_blend) {
1316 /* For blend shaders, load the input color, which is
1317 * preloaded to r0 */
1318
1319 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1320 emit_mir_instruction(ctx, move);
1321 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1322 midgard_instruction ins = m_ld_attr_32(reg, offset);
1323 ins.load_store.arg_1 = 0x1E;
1324 ins.load_store.arg_2 = 0x1E;
1325 ins.mask = mask_of(nr_comp);
1326
1327 /* Use the type appropriate load */
1328 switch (t) {
1329 case nir_type_uint:
1330 case nir_type_bool:
1331 ins.load_store.op = midgard_op_ld_attr_32u;
1332 break;
1333 case nir_type_int:
1334 ins.load_store.op = midgard_op_ld_attr_32i;
1335 break;
1336 case nir_type_float:
1337 ins.load_store.op = midgard_op_ld_attr_32;
1338 break;
1339 default:
1340 unreachable("Attempted to load unknown type");
1341 break;
1342 }
1343
1344 emit_mir_instruction(ctx, ins);
1345 } else {
1346 DBG("Unknown load\n");
1347 assert(0);
1348 }
1349
1350 break;
1351 }
1352
1353 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1354
1355 case nir_intrinsic_load_raw_output_pan:
1356 reg = nir_dest_index(ctx, &instr->dest);
1357 assert(ctx->is_blend);
1358
1359 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1360 emit_mir_instruction(ctx, ins);
1361 break;
1362
1363 case nir_intrinsic_load_blend_const_color_rgba: {
1364 assert(ctx->is_blend);
1365 reg = nir_dest_index(ctx, &instr->dest);
1366
1367 /* Blend constants are embedded directly in the shader and
1368 * patched in, so we use some magic routing */
1369
1370 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1371 ins.has_constants = true;
1372 ins.has_blend_constant = true;
1373 emit_mir_instruction(ctx, ins);
1374 break;
1375 }
1376
1377 case nir_intrinsic_store_output:
1378 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1379
1380 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1381
1382 reg = nir_src_index(ctx, &instr->src[0]);
1383
1384 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1385 /* gl_FragColor is not emitted with load/store
1386 * instructions. Instead, it gets plonked into
1387 * r0 at the end of the shader and we do the
1388 * framebuffer writeout dance. TODO: Defer
1389 * writes */
1390
1391 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1392 emit_mir_instruction(ctx, move);
1393
1394 /* Save the index we're writing to for later reference
1395 * in the epilogue */
1396
1397 ctx->fragment_output = reg;
1398 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1399 /* We should have been vectorized, though we don't
1400 * currently check that st_vary is emitted only once
1401 * per slot (this is relevant, since there's not a mask
1402 * parameter available on the store [set to 0 by the
1403 * blob]). We do respect the component by adjusting the
1404 * swizzle. If this is a constant source, we'll need to
1405 * emit that explicitly. */
1406
1407 emit_explicit_constant(ctx, reg, reg);
1408
1409 unsigned component = nir_intrinsic_component(instr);
1410
1411 midgard_instruction st = m_st_vary_32(reg, offset);
1412 st.load_store.arg_1 = 0x9E;
1413 st.load_store.arg_2 = 0x1E;
1414 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1415 emit_mir_instruction(ctx, st);
1416 } else {
1417 DBG("Unknown store\n");
1418 assert(0);
1419 }
1420
1421 break;
1422
1423 /* Special case of store_output for lowered blend shaders */
1424 case nir_intrinsic_store_raw_output_pan:
1425 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1426 reg = nir_src_index(ctx, &instr->src[0]);
1427
1428 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1429 emit_mir_instruction(ctx, move);
1430 ctx->fragment_output = reg;
1431
1432 break;
1433
1434 case nir_intrinsic_load_alpha_ref_float:
1435 assert(instr->dest.is_ssa);
1436
1437 float ref_value = ctx->alpha_ref;
1438
1439 /* See emit_load_const */
1440 float *v = ralloc_array(NULL, float, 4);
1441 memcpy(v, &ref_value, sizeof(float));
1442 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1443 break;
1444
1445 case nir_intrinsic_load_viewport_scale:
1446 case nir_intrinsic_load_viewport_offset:
1447 emit_sysval_read(ctx, &instr->instr, -1, 3);
1448 break;
1449
1450 default:
1451 printf ("Unhandled intrinsic\n");
1452 assert(0);
1453 break;
1454 }
1455 }
1456
1457 static unsigned
1458 midgard_tex_format(enum glsl_sampler_dim dim)
1459 {
1460 switch (dim) {
1461 case GLSL_SAMPLER_DIM_1D:
1462 case GLSL_SAMPLER_DIM_BUF:
1463 return MALI_TEX_1D;
1464
1465 case GLSL_SAMPLER_DIM_2D:
1466 case GLSL_SAMPLER_DIM_EXTERNAL:
1467 return MALI_TEX_2D;
1468
1469 case GLSL_SAMPLER_DIM_3D:
1470 return MALI_TEX_3D;
1471
1472 case GLSL_SAMPLER_DIM_CUBE:
1473 return MALI_TEX_CUBE;
1474
1475 default:
1476 DBG("Unknown sampler dim type\n");
1477 assert(0);
1478 return 0;
1479 }
1480 }
1481
1482 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1483 * was successful */
1484
1485 static bool
1486 pan_attach_constant_bias(
1487 compiler_context *ctx,
1488 nir_src lod,
1489 midgard_texture_word *word)
1490 {
1491 /* To attach as constant, it has to *be* constant */
1492
1493 if (!nir_src_is_const(lod))
1494 return false;
1495
1496 float f = nir_src_as_float(lod);
1497
1498 /* Break into fixed-point */
1499 signed lod_int = f;
1500 float lod_frac = f - lod_int;
1501
1502 /* Carry over negative fractions */
1503 if (lod_frac < 0.0) {
1504 lod_int--;
1505 lod_frac += 1.0;
1506 }
1507
1508 /* Encode */
1509 word->bias = float_to_ubyte(lod_frac);
1510 word->bias_int = lod_int;
1511
1512 return true;
1513 }
1514
1515 static enum mali_sampler_type
1516 midgard_sampler_type(nir_alu_type t) {
1517 switch (nir_alu_type_get_base_type(t))
1518 {
1519 case nir_type_float:
1520 return MALI_SAMPLER_FLOAT;
1521 case nir_type_int:
1522 return MALI_SAMPLER_SIGNED;
1523 case nir_type_uint:
1524 return MALI_SAMPLER_UNSIGNED;
1525 default:
1526 unreachable("Unknown sampler type");
1527 }
1528 }
1529
1530 static void
1531 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1532 unsigned midgard_texop)
1533 {
1534 /* TODO */
1535 //assert (!instr->sampler);
1536 //assert (!instr->texture_array_size);
1537
1538 int texture_index = instr->texture_index;
1539 int sampler_index = texture_index;
1540
1541 /* No helper to build texture words -- we do it all here */
1542 midgard_instruction ins = {
1543 .type = TAG_TEXTURE_4,
1544 .mask = 0xF,
1545 .ssa_args = {
1546 .dest = nir_dest_index(ctx, &instr->dest),
1547 .src = { -1, -1, -1 },
1548 },
1549 .texture = {
1550 .op = midgard_texop,
1551 .format = midgard_tex_format(instr->sampler_dim),
1552 .texture_handle = texture_index,
1553 .sampler_handle = sampler_index,
1554 .swizzle = SWIZZLE_XYZW,
1555 .in_reg_swizzle = SWIZZLE_XYZW,
1556
1557 /* TODO: half */
1558 .in_reg_full = 1,
1559 .out_full = 1,
1560
1561 .sampler_type = midgard_sampler_type(instr->dest_type),
1562 }
1563 };
1564
1565 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1566 int index = nir_src_index(ctx, &instr->src[i].src);
1567 midgard_vector_alu_src alu_src = blank_alu_src;
1568
1569 switch (instr->src[i].src_type) {
1570 case nir_tex_src_coord: {
1571 emit_explicit_constant(ctx, index, index);
1572
1573 /* Texelfetch coordinates uses all four elements
1574 * (xyz/index) regardless of texture dimensionality,
1575 * which means it's necessary to zero the unused
1576 * components to keep everything happy */
1577
1578 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1579 unsigned old_index = index;
1580
1581 index = make_compiler_temp(ctx);
1582
1583 /* mov index, old_index */
1584 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1585 mov.mask = 0x3;
1586 emit_mir_instruction(ctx, mov);
1587
1588 /* mov index.zw, #0 */
1589 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1590 blank_alu_src, index);
1591 mov.has_constants = true;
1592 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1593 emit_mir_instruction(ctx, mov);
1594 }
1595
1596 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1597 /* texelFetch is undefined on samplerCube */
1598 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1599
1600 /* For cubemaps, we use a special ld/st op to
1601 * select the face and copy the xy into the
1602 * texture register */
1603
1604 unsigned temp = make_compiler_temp(ctx);
1605 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1606 st.ssa_args.src[0] = index;
1607 st.mask = 0x3; /* xy */
1608 st.load_store.arg_1 = 0x20;
1609 st.load_store.swizzle = alu_src.swizzle;
1610 emit_mir_instruction(ctx, st);
1611
1612 ins.ssa_args.src[0] = temp;
1613 } else {
1614 ins.ssa_args.src[0] = index;
1615 }
1616
1617 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1618 /* Array component in w but NIR wants it in z */
1619 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1620 }
1621
1622 break;
1623 }
1624
1625 case nir_tex_src_bias:
1626 case nir_tex_src_lod: {
1627 /* Try as a constant if we can */
1628
1629 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1630 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1631 break;
1632
1633 ins.texture.lod_register = true;
1634 ins.ssa_args.src[1] = index;
1635 emit_explicit_constant(ctx, index, index);
1636
1637 break;
1638 };
1639
1640 default:
1641 unreachable("Unknown texture source type\n");
1642 }
1643 }
1644
1645 emit_mir_instruction(ctx, ins);
1646
1647 /* Used for .cont and .last hinting */
1648 ctx->texture_op_count++;
1649 }
1650
1651 static void
1652 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1653 {
1654 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1655 * generic tex in some cases (which confuses the hardware) */
1656
1657 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1658
1659 if (is_vertex && instr->op == nir_texop_tex)
1660 instr->op = nir_texop_txl;
1661
1662 switch (instr->op) {
1663 case nir_texop_tex:
1664 case nir_texop_txb:
1665 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1666 break;
1667 case nir_texop_txl:
1668 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1669 break;
1670 case nir_texop_txf:
1671 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1672 break;
1673 case nir_texop_txs:
1674 emit_sysval_read(ctx, &instr->instr, -1, 4);
1675 break;
1676 default:
1677 unreachable("Unhanlded texture op");
1678 }
1679 }
1680
1681 static void
1682 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1683 {
1684 switch (instr->type) {
1685 case nir_jump_break: {
1686 /* Emit a branch out of the loop */
1687 struct midgard_instruction br = v_branch(false, false);
1688 br.branch.target_type = TARGET_BREAK;
1689 br.branch.target_break = ctx->current_loop_depth;
1690 emit_mir_instruction(ctx, br);
1691 break;
1692 }
1693
1694 default:
1695 DBG("Unknown jump type %d\n", instr->type);
1696 break;
1697 }
1698 }
1699
1700 static void
1701 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1702 {
1703 switch (instr->type) {
1704 case nir_instr_type_load_const:
1705 emit_load_const(ctx, nir_instr_as_load_const(instr));
1706 break;
1707
1708 case nir_instr_type_intrinsic:
1709 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1710 break;
1711
1712 case nir_instr_type_alu:
1713 emit_alu(ctx, nir_instr_as_alu(instr));
1714 break;
1715
1716 case nir_instr_type_tex:
1717 emit_tex(ctx, nir_instr_as_tex(instr));
1718 break;
1719
1720 case nir_instr_type_jump:
1721 emit_jump(ctx, nir_instr_as_jump(instr));
1722 break;
1723
1724 case nir_instr_type_ssa_undef:
1725 /* Spurious */
1726 break;
1727
1728 default:
1729 DBG("Unhandled instruction type\n");
1730 break;
1731 }
1732 }
1733
1734
1735 /* ALU instructions can inline or embed constants, which decreases register
1736 * pressure and saves space. */
1737
1738 #define CONDITIONAL_ATTACH(src) { \
1739 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1740 \
1741 if (entry) { \
1742 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1743 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1744 } \
1745 }
1746
1747 static void
1748 inline_alu_constants(compiler_context *ctx)
1749 {
1750 mir_foreach_instr(ctx, alu) {
1751 /* Other instructions cannot inline constants */
1752 if (alu->type != TAG_ALU_4) continue;
1753
1754 /* If there is already a constant here, we can do nothing */
1755 if (alu->has_constants) continue;
1756
1757 CONDITIONAL_ATTACH(src[0]);
1758
1759 if (!alu->has_constants) {
1760 CONDITIONAL_ATTACH(src[1])
1761 } else if (!alu->inline_constant) {
1762 /* Corner case: _two_ vec4 constants, for instance with a
1763 * csel. For this case, we can only use a constant
1764 * register for one, we'll have to emit a move for the
1765 * other. Note, if both arguments are constants, then
1766 * necessarily neither argument depends on the value of
1767 * any particular register. As the destination register
1768 * will be wiped, that means we can spill the constant
1769 * to the destination register.
1770 */
1771
1772 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src[1] + 1);
1773 unsigned scratch = alu->ssa_args.dest;
1774
1775 if (entry) {
1776 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1777 attach_constants(ctx, &ins, entry, alu->ssa_args.src[1] + 1);
1778
1779 /* Force a break XXX Defer r31 writes */
1780 ins.unit = UNIT_VLUT;
1781
1782 /* Set the source */
1783 alu->ssa_args.src[1] = scratch;
1784
1785 /* Inject us -before- the last instruction which set r31 */
1786 mir_insert_instruction_before(mir_prev_op(alu), ins);
1787 }
1788 }
1789 }
1790 }
1791
1792 /* Being a little silly with the names, but returns the op that is the bitwise
1793 * inverse of the op with the argument switched. I.e. (f and g are
1794 * contrapositives):
1795 *
1796 * f(a, b) = ~g(b, a)
1797 *
1798 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1799 *
1800 * f(a, b) = ~g(b, a)
1801 * ~f(a, b) = g(b, a)
1802 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1803 * f(a, b) = h(a, b)
1804 *
1805 * Thus we define this function in pairs.
1806 */
1807
1808 static inline midgard_alu_op
1809 mir_contrapositive(midgard_alu_op op)
1810 {
1811 switch (op) {
1812 case midgard_alu_op_flt:
1813 return midgard_alu_op_fle;
1814 case midgard_alu_op_fle:
1815 return midgard_alu_op_flt;
1816
1817 case midgard_alu_op_ilt:
1818 return midgard_alu_op_ile;
1819 case midgard_alu_op_ile:
1820 return midgard_alu_op_ilt;
1821
1822 default:
1823 unreachable("No known contrapositive");
1824 }
1825 }
1826
1827 /* Midgard supports two types of constants, embedded constants (128-bit) and
1828 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1829 * constants can be demoted to inline constants, for space savings and
1830 * sometimes a performance boost */
1831
1832 static void
1833 embedded_to_inline_constant(compiler_context *ctx)
1834 {
1835 mir_foreach_instr(ctx, ins) {
1836 if (!ins->has_constants) continue;
1837
1838 if (ins->ssa_args.inline_constant) continue;
1839
1840 /* Blend constants must not be inlined by definition */
1841 if (ins->has_blend_constant) continue;
1842
1843 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1844 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1845 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1846
1847 if (!(is_16 || is_32))
1848 continue;
1849
1850 /* src1 cannot be an inline constant due to encoding
1851 * restrictions. So, if possible we try to flip the arguments
1852 * in that case */
1853
1854 int op = ins->alu.op;
1855
1856 if (ins->ssa_args.src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1857 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
1858
1859 switch (op) {
1860 /* Conditionals can be inverted */
1861 case midgard_alu_op_flt:
1862 case midgard_alu_op_ilt:
1863 case midgard_alu_op_fle:
1864 case midgard_alu_op_ile:
1865 ins->alu.op = mir_contrapositive(ins->alu.op);
1866 ins->invert = true;
1867 flip = true;
1868 break;
1869
1870 case midgard_alu_op_fcsel:
1871 case midgard_alu_op_icsel:
1872 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1873 default:
1874 break;
1875 }
1876
1877 if (flip) {
1878 /* Flip the SSA numbers */
1879 ins->ssa_args.src[0] = ins->ssa_args.src[1];
1880 ins->ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1881
1882 /* And flip the modifiers */
1883
1884 unsigned src_temp;
1885
1886 src_temp = ins->alu.src2;
1887 ins->alu.src2 = ins->alu.src1;
1888 ins->alu.src1 = src_temp;
1889 }
1890 }
1891
1892 if (ins->ssa_args.src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1893 /* Extract the source information */
1894
1895 midgard_vector_alu_src *src;
1896 int q = ins->alu.src2;
1897 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1898 src = m;
1899
1900 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1901 int component = src->swizzle & 3;
1902
1903 /* Scale constant appropriately, if we can legally */
1904 uint16_t scaled_constant = 0;
1905
1906 if (midgard_is_integer_op(op) || is_16) {
1907 unsigned int *iconstants = (unsigned int *) ins->constants;
1908 scaled_constant = (uint16_t) iconstants[component];
1909
1910 /* Constant overflow after resize */
1911 if (scaled_constant != iconstants[component])
1912 continue;
1913 } else {
1914 float original = (float) ins->constants[component];
1915 scaled_constant = _mesa_float_to_half(original);
1916
1917 /* Check for loss of precision. If this is
1918 * mediump, we don't care, but for a highp
1919 * shader, we need to pay attention. NIR
1920 * doesn't yet tell us which mode we're in!
1921 * Practically this prevents most constants
1922 * from being inlined, sadly. */
1923
1924 float fp32 = _mesa_half_to_float(scaled_constant);
1925
1926 if (fp32 != original)
1927 continue;
1928 }
1929
1930 /* We don't know how to handle these with a constant */
1931
1932 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
1933 DBG("Bailing inline constant...\n");
1934 continue;
1935 }
1936
1937 /* Make sure that the constant is not itself a
1938 * vector by checking if all accessed values
1939 * (by the swizzle) are the same. */
1940
1941 uint32_t *cons = (uint32_t *) ins->constants;
1942 uint32_t value = cons[component];
1943
1944 bool is_vector = false;
1945 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1946
1947 for (int c = 1; c < 4; ++c) {
1948 /* We only care if this component is actually used */
1949 if (!(mask & (1 << c)))
1950 continue;
1951
1952 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1953
1954 if (test != value) {
1955 is_vector = true;
1956 break;
1957 }
1958 }
1959
1960 if (is_vector)
1961 continue;
1962
1963 /* Get rid of the embedded constant */
1964 ins->has_constants = false;
1965 ins->ssa_args.src[1] = -1;
1966 ins->ssa_args.inline_constant = true;
1967 ins->inline_constant = scaled_constant;
1968 }
1969 }
1970 }
1971
1972 /* Dead code elimination for branches at the end of a block - only one branch
1973 * per block is legal semantically */
1974
1975 static void
1976 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1977 {
1978 bool branched = false;
1979
1980 mir_foreach_instr_in_block_safe(block, ins) {
1981 if (!midgard_is_branch_unit(ins->unit)) continue;
1982
1983 /* We ignore prepacked branches since the fragment epilogue is
1984 * just generally special */
1985 if (ins->prepacked_branch) continue;
1986
1987 /* Discards are similarly special and may not correspond to the
1988 * end of a block */
1989
1990 if (ins->branch.target_type == TARGET_DISCARD) continue;
1991
1992 if (branched) {
1993 /* We already branched, so this is dead */
1994 mir_remove_instruction(ins);
1995 }
1996
1997 branched = true;
1998 }
1999 }
2000
2001 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2002 * the move can be propagated away entirely */
2003
2004 static bool
2005 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2006 {
2007 /* Nothing to do */
2008 if (comp == midgard_outmod_none)
2009 return true;
2010
2011 if (*outmod == midgard_outmod_none) {
2012 *outmod = comp;
2013 return true;
2014 }
2015
2016 /* TODO: Compose rules */
2017 return false;
2018 }
2019
2020 static bool
2021 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2022 {
2023 bool progress = false;
2024
2025 mir_foreach_instr_in_block_safe(block, ins) {
2026 if (ins->type != TAG_ALU_4) continue;
2027 if (ins->alu.op != midgard_alu_op_fmov) continue;
2028 if (ins->alu.outmod != midgard_outmod_pos) continue;
2029
2030 /* TODO: Registers? */
2031 unsigned src = ins->ssa_args.src[1];
2032 if (src & IS_REG) continue;
2033 assert(!mir_has_multiple_writes(ctx, src));
2034
2035 /* There might be a source modifier, too */
2036 if (mir_nontrivial_source2_mod(ins)) continue;
2037
2038 /* Backpropagate the modifier */
2039 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2040 if (v->type != TAG_ALU_4) continue;
2041 if (v->ssa_args.dest != src) continue;
2042
2043 /* Can we even take a float outmod? */
2044 if (midgard_is_integer_out_op(v->alu.op)) continue;
2045
2046 midgard_outmod_float temp = v->alu.outmod;
2047 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2048
2049 /* Throw in the towel.. */
2050 if (!progress) break;
2051
2052 /* Otherwise, transfer the modifier */
2053 v->alu.outmod = temp;
2054 ins->alu.outmod = midgard_outmod_none;
2055
2056 break;
2057 }
2058 }
2059
2060 return progress;
2061 }
2062
2063 static void
2064 emit_fragment_epilogue(compiler_context *ctx)
2065 {
2066 emit_explicit_constant(ctx, ctx->fragment_output, SSA_FIXED_REGISTER(0));
2067
2068 /* Perform the actual fragment writeout. We have two writeout/branch
2069 * instructions, forming a loop until writeout is successful as per the
2070 * docs. TODO: gl_FragDepth */
2071
2072 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2073 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2074 }
2075
2076 static midgard_block *
2077 emit_block(compiler_context *ctx, nir_block *block)
2078 {
2079 midgard_block *this_block = ctx->after_block;
2080 ctx->after_block = NULL;
2081
2082 if (!this_block)
2083 this_block = calloc(sizeof(midgard_block), 1);
2084
2085 list_addtail(&this_block->link, &ctx->blocks);
2086
2087 this_block->is_scheduled = false;
2088 ++ctx->block_count;
2089
2090 ctx->texture_index[0] = -1;
2091 ctx->texture_index[1] = -1;
2092
2093 /* Set up current block */
2094 list_inithead(&this_block->instructions);
2095 ctx->current_block = this_block;
2096
2097 nir_foreach_instr(instr, block) {
2098 emit_instr(ctx, instr);
2099 ++ctx->instruction_count;
2100 }
2101
2102 inline_alu_constants(ctx);
2103 embedded_to_inline_constant(ctx);
2104
2105 /* Append fragment shader epilogue (value writeout) */
2106 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2107 if (block == nir_impl_last_block(ctx->func->impl)) {
2108 emit_fragment_epilogue(ctx);
2109 }
2110 }
2111
2112 /* Allow the next control flow to access us retroactively, for
2113 * branching etc */
2114 ctx->current_block = this_block;
2115
2116 return this_block;
2117 }
2118
2119 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2120
2121 static void
2122 emit_if(struct compiler_context *ctx, nir_if *nif)
2123 {
2124 midgard_block *before_block = ctx->current_block;
2125
2126 /* Conditional branches expect the condition in r31.w; emit a move for
2127 * that in the _previous_ block (which is the current block). */
2128 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2129
2130 /* Speculatively emit the branch, but we can't fill it in until later */
2131 EMIT(branch, true, true);
2132 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2133
2134 /* Emit the two subblocks. */
2135 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2136 midgard_block *end_then_block = ctx->current_block;
2137
2138 /* Emit a jump from the end of the then block to the end of the else */
2139 EMIT(branch, false, false);
2140 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2141
2142 /* Emit second block, and check if it's empty */
2143
2144 int else_idx = ctx->block_count;
2145 int count_in = ctx->instruction_count;
2146 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2147 midgard_block *end_else_block = ctx->current_block;
2148 int after_else_idx = ctx->block_count;
2149
2150 /* Now that we have the subblocks emitted, fix up the branches */
2151
2152 assert(then_block);
2153 assert(else_block);
2154
2155 if (ctx->instruction_count == count_in) {
2156 /* The else block is empty, so don't emit an exit jump */
2157 mir_remove_instruction(then_exit);
2158 then_branch->branch.target_block = after_else_idx;
2159 } else {
2160 then_branch->branch.target_block = else_idx;
2161 then_exit->branch.target_block = after_else_idx;
2162 }
2163
2164 /* Wire up the successors */
2165
2166 ctx->after_block = calloc(sizeof(midgard_block), 1);
2167
2168 midgard_block_add_successor(before_block, then_block);
2169 midgard_block_add_successor(before_block, else_block);
2170
2171 midgard_block_add_successor(end_then_block, ctx->after_block);
2172 midgard_block_add_successor(end_else_block, ctx->after_block);
2173 }
2174
2175 static void
2176 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2177 {
2178 /* Remember where we are */
2179 midgard_block *start_block = ctx->current_block;
2180
2181 /* Allocate a loop number, growing the current inner loop depth */
2182 int loop_idx = ++ctx->current_loop_depth;
2183
2184 /* Get index from before the body so we can loop back later */
2185 int start_idx = ctx->block_count;
2186
2187 /* Emit the body itself */
2188 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2189
2190 /* Branch back to loop back */
2191 struct midgard_instruction br_back = v_branch(false, false);
2192 br_back.branch.target_block = start_idx;
2193 emit_mir_instruction(ctx, br_back);
2194
2195 /* Mark down that branch in the graph. */
2196 midgard_block_add_successor(start_block, loop_block);
2197 midgard_block_add_successor(ctx->current_block, loop_block);
2198
2199 /* Find the index of the block about to follow us (note: we don't add
2200 * one; blocks are 0-indexed so we get a fencepost problem) */
2201 int break_block_idx = ctx->block_count;
2202
2203 /* Fix up the break statements we emitted to point to the right place,
2204 * now that we can allocate a block number for them */
2205 ctx->after_block = calloc(sizeof(midgard_block), 1);
2206
2207 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2208 mir_foreach_instr_in_block(block, ins) {
2209 if (ins->type != TAG_ALU_4) continue;
2210 if (!ins->compact_branch) continue;
2211 if (ins->prepacked_branch) continue;
2212
2213 /* We found a branch -- check the type to see if we need to do anything */
2214 if (ins->branch.target_type != TARGET_BREAK) continue;
2215
2216 /* It's a break! Check if it's our break */
2217 if (ins->branch.target_break != loop_idx) continue;
2218
2219 /* Okay, cool, we're breaking out of this loop.
2220 * Rewrite from a break to a goto */
2221
2222 ins->branch.target_type = TARGET_GOTO;
2223 ins->branch.target_block = break_block_idx;
2224
2225 midgard_block_add_successor(block, ctx->after_block);
2226 }
2227 }
2228
2229 /* Now that we've finished emitting the loop, free up the depth again
2230 * so we play nice with recursion amid nested loops */
2231 --ctx->current_loop_depth;
2232
2233 /* Dump loop stats */
2234 ++ctx->loop_count;
2235 }
2236
2237 static midgard_block *
2238 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2239 {
2240 midgard_block *start_block = NULL;
2241
2242 foreach_list_typed(nir_cf_node, node, node, list) {
2243 switch (node->type) {
2244 case nir_cf_node_block: {
2245 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2246
2247 if (!start_block)
2248 start_block = block;
2249
2250 break;
2251 }
2252
2253 case nir_cf_node_if:
2254 emit_if(ctx, nir_cf_node_as_if(node));
2255 break;
2256
2257 case nir_cf_node_loop:
2258 emit_loop(ctx, nir_cf_node_as_loop(node));
2259 break;
2260
2261 case nir_cf_node_function:
2262 assert(0);
2263 break;
2264 }
2265 }
2266
2267 return start_block;
2268 }
2269
2270 /* Due to lookahead, we need to report the first tag executed in the command
2271 * stream and in branch targets. An initial block might be empty, so iterate
2272 * until we find one that 'works' */
2273
2274 static unsigned
2275 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2276 {
2277 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2278
2279 unsigned first_tag = 0;
2280
2281 mir_foreach_block_from(ctx, initial_block, v) {
2282 midgard_bundle *initial_bundle =
2283 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2284
2285 if (initial_bundle) {
2286 first_tag = initial_bundle->tag;
2287 break;
2288 }
2289 }
2290
2291 return first_tag;
2292 }
2293
2294 int
2295 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2296 {
2297 struct util_dynarray *compiled = &program->compiled;
2298
2299 midgard_debug = debug_get_option_midgard_debug();
2300
2301 compiler_context ictx = {
2302 .nir = nir,
2303 .screen = screen,
2304 .stage = nir->info.stage,
2305 .temp_alloc = 0,
2306
2307 .is_blend = is_blend,
2308 .blend_constant_offset = 0,
2309
2310 .alpha_ref = program->alpha_ref
2311 };
2312
2313 compiler_context *ctx = &ictx;
2314
2315 /* Start off with a safe cutoff, allowing usage of all 16 work
2316 * registers. Later, we'll promote uniform reads to uniform registers
2317 * if we determine it is beneficial to do so */
2318 ctx->uniform_cutoff = 8;
2319
2320 /* Initialize at a global (not block) level hash tables */
2321
2322 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2323 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2324 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2325
2326 /* Record the varying mapping for the command stream's bookkeeping */
2327
2328 struct exec_list *varyings =
2329 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2330
2331 unsigned max_varying = 0;
2332 nir_foreach_variable(var, varyings) {
2333 unsigned loc = var->data.driver_location;
2334 unsigned sz = glsl_type_size(var->type, FALSE);
2335
2336 for (int c = 0; c < sz; ++c) {
2337 program->varyings[loc + c] = var->data.location + c;
2338 max_varying = MAX2(max_varying, loc + c);
2339 }
2340 }
2341
2342 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2343 * (so we don't accidentally duplicate the epilogue since mesa/st has
2344 * messed with our I/O quite a bit already) */
2345
2346 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2347
2348 if (ctx->stage == MESA_SHADER_VERTEX) {
2349 NIR_PASS_V(nir, nir_lower_viewport_transform);
2350 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2351 }
2352
2353 NIR_PASS_V(nir, nir_lower_var_copies);
2354 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2355 NIR_PASS_V(nir, nir_split_var_copies);
2356 NIR_PASS_V(nir, nir_lower_var_copies);
2357 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2358 NIR_PASS_V(nir, nir_lower_var_copies);
2359 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2360
2361 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2362
2363 /* Optimisation passes */
2364
2365 optimise_nir(nir);
2366
2367 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2368 nir_print_shader(nir, stdout);
2369 }
2370
2371 /* Assign sysvals and counts, now that we're sure
2372 * (post-optimisation) */
2373
2374 midgard_nir_assign_sysvals(ctx, nir);
2375
2376 program->uniform_count = nir->num_uniforms;
2377 program->sysval_count = ctx->sysval_count;
2378 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2379
2380 nir_foreach_function(func, nir) {
2381 if (!func->impl)
2382 continue;
2383
2384 list_inithead(&ctx->blocks);
2385 ctx->block_count = 0;
2386 ctx->func = func;
2387
2388 emit_cf_list(ctx, &func->impl->body);
2389 emit_block(ctx, func->impl->end_block);
2390
2391 break; /* TODO: Multi-function shaders */
2392 }
2393
2394 util_dynarray_init(compiled, NULL);
2395
2396 /* MIR-level optimizations */
2397
2398 bool progress = false;
2399
2400 do {
2401 progress = false;
2402
2403 mir_foreach_block(ctx, block) {
2404 progress |= midgard_opt_pos_propagate(ctx, block);
2405 progress |= midgard_opt_copy_prop(ctx, block);
2406 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2407 progress |= midgard_opt_combine_projection(ctx, block);
2408 progress |= midgard_opt_varying_projection(ctx, block);
2409 progress |= midgard_opt_not_propagate(ctx, block);
2410 progress |= midgard_opt_fuse_src_invert(ctx, block);
2411 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2412 }
2413 } while (progress);
2414
2415 mir_foreach_block(ctx, block) {
2416 midgard_lower_invert(ctx, block);
2417 midgard_lower_derivatives(ctx, block);
2418 }
2419
2420 /* Nested control-flow can result in dead branches at the end of the
2421 * block. This messes with our analysis and is just dead code, so cull
2422 * them */
2423 mir_foreach_block(ctx, block) {
2424 midgard_opt_cull_dead_branch(ctx, block);
2425 }
2426
2427 /* Ensure we were lowered */
2428 mir_foreach_instr_global(ctx, ins) {
2429 assert(!ins->invert);
2430 }
2431
2432 /* Schedule! */
2433 schedule_program(ctx);
2434
2435 /* Now that all the bundles are scheduled and we can calculate block
2436 * sizes, emit actual branch instructions rather than placeholders */
2437
2438 int br_block_idx = 0;
2439
2440 mir_foreach_block(ctx, block) {
2441 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2442 for (int c = 0; c < bundle->instruction_count; ++c) {
2443 midgard_instruction *ins = bundle->instructions[c];
2444
2445 if (!midgard_is_branch_unit(ins->unit)) continue;
2446
2447 if (ins->prepacked_branch) continue;
2448
2449 /* Parse some basic branch info */
2450 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2451 bool is_conditional = ins->branch.conditional;
2452 bool is_inverted = ins->branch.invert_conditional;
2453 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2454
2455 /* Determine the block we're jumping to */
2456 int target_number = ins->branch.target_block;
2457
2458 /* Report the destination tag */
2459 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2460
2461 /* Count up the number of quadwords we're
2462 * jumping over = number of quadwords until
2463 * (br_block_idx, target_number) */
2464
2465 int quadword_offset = 0;
2466
2467 if (is_discard) {
2468 /* Ignored */
2469 } else if (target_number > br_block_idx) {
2470 /* Jump forward */
2471
2472 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2473 midgard_block *blk = mir_get_block(ctx, idx);
2474 assert(blk);
2475
2476 quadword_offset += blk->quadword_count;
2477 }
2478 } else {
2479 /* Jump backwards */
2480
2481 for (int idx = br_block_idx; idx >= target_number; --idx) {
2482 midgard_block *blk = mir_get_block(ctx, idx);
2483 assert(blk);
2484
2485 quadword_offset -= blk->quadword_count;
2486 }
2487 }
2488
2489 /* Unconditional extended branches (far jumps)
2490 * have issues, so we always use a conditional
2491 * branch, setting the condition to always for
2492 * unconditional. For compact unconditional
2493 * branches, cond isn't used so it doesn't
2494 * matter what we pick. */
2495
2496 midgard_condition cond =
2497 !is_conditional ? midgard_condition_always :
2498 is_inverted ? midgard_condition_false :
2499 midgard_condition_true;
2500
2501 midgard_jmp_writeout_op op =
2502 is_discard ? midgard_jmp_writeout_op_discard :
2503 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2504 midgard_jmp_writeout_op_branch_cond;
2505
2506 if (!is_compact) {
2507 midgard_branch_extended branch =
2508 midgard_create_branch_extended(
2509 cond, op,
2510 dest_tag,
2511 quadword_offset);
2512
2513 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2514 } else if (is_conditional || is_discard) {
2515 midgard_branch_cond branch = {
2516 .op = op,
2517 .dest_tag = dest_tag,
2518 .offset = quadword_offset,
2519 .cond = cond
2520 };
2521
2522 assert(branch.offset == quadword_offset);
2523
2524 memcpy(&ins->br_compact, &branch, sizeof(branch));
2525 } else {
2526 assert(op == midgard_jmp_writeout_op_branch_uncond);
2527
2528 midgard_branch_uncond branch = {
2529 .op = op,
2530 .dest_tag = dest_tag,
2531 .offset = quadword_offset,
2532 .unknown = 1
2533 };
2534
2535 assert(branch.offset == quadword_offset);
2536
2537 memcpy(&ins->br_compact, &branch, sizeof(branch));
2538 }
2539 }
2540 }
2541
2542 ++br_block_idx;
2543 }
2544
2545 /* Emit flat binary from the instruction arrays. Iterate each block in
2546 * sequence. Save instruction boundaries such that lookahead tags can
2547 * be assigned easily */
2548
2549 /* Cache _all_ bundles in source order for lookahead across failed branches */
2550
2551 int bundle_count = 0;
2552 mir_foreach_block(ctx, block) {
2553 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2554 }
2555 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2556 int bundle_idx = 0;
2557 mir_foreach_block(ctx, block) {
2558 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2559 source_order_bundles[bundle_idx++] = bundle;
2560 }
2561 }
2562
2563 int current_bundle = 0;
2564
2565 /* Midgard prefetches instruction types, so during emission we
2566 * need to lookahead. Unless this is the last instruction, in
2567 * which we return 1. Or if this is the second to last and the
2568 * last is an ALU, then it's also 1... */
2569
2570 mir_foreach_block(ctx, block) {
2571 mir_foreach_bundle_in_block(block, bundle) {
2572 int lookahead = 1;
2573
2574 if (current_bundle + 1 < bundle_count) {
2575 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2576
2577 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2578 lookahead = 1;
2579 } else {
2580 lookahead = next;
2581 }
2582 }
2583
2584 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2585 ++current_bundle;
2586 }
2587
2588 /* TODO: Free deeper */
2589 //util_dynarray_fini(&block->instructions);
2590 }
2591
2592 free(source_order_bundles);
2593
2594 /* Report the very first tag executed */
2595 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2596
2597 /* Deal with off-by-one related to the fencepost problem */
2598 program->work_register_count = ctx->work_registers + 1;
2599 program->uniform_cutoff = ctx->uniform_cutoff;
2600
2601 program->blend_patch_offset = ctx->blend_constant_offset;
2602 program->tls_size = ctx->tls_size;
2603
2604 if (midgard_debug & MIDGARD_DBG_SHADERS)
2605 disassemble_midgard(program->compiled.data, program->compiled.size);
2606
2607 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2608 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2609
2610 /* Count instructions and bundles */
2611
2612 mir_foreach_instr_global(ctx, ins) {
2613 nr_ins++;
2614 }
2615
2616 mir_foreach_block(ctx, block) {
2617 nr_bundles += util_dynarray_num_elements(
2618 &block->bundles, midgard_bundle);
2619
2620 nr_quadwords += block->quadword_count;
2621 }
2622
2623 /* Calculate thread count. There are certain cutoffs by
2624 * register count for thread count */
2625
2626 unsigned nr_registers = program->work_register_count;
2627
2628 unsigned nr_threads =
2629 (nr_registers <= 4) ? 4 :
2630 (nr_registers <= 8) ? 2 :
2631 1;
2632
2633 /* Dump stats */
2634
2635 fprintf(stderr, "shader%d - %s shader: "
2636 "%u inst, %u bundles, %u quadwords, "
2637 "%u registers, %u threads, %u loops, "
2638 "%d:%d spills:fills\n",
2639 SHADER_DB_COUNT++,
2640 gl_shader_stage_name(ctx->stage),
2641 nr_ins, nr_bundles, nr_quadwords,
2642 nr_registers, nr_threads,
2643 ctx->loop_count,
2644 ctx->spills, ctx->fills);
2645 }
2646
2647
2648 return 0;
2649 }