pan/mdg: Remove old zs store lowering
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71 static midgard_block *
72 create_empty_block(compiler_context *ctx)
73 {
74 midgard_block *blk = rzalloc(ctx, midgard_block);
75
76 blk->base.predecessors = _mesa_set_create(blk,
77 _mesa_hash_pointer,
78 _mesa_key_pointer_equal);
79
80 blk->base.name = ctx->block_source_count++;
81
82 return blk;
83 }
84
85 static void
86 schedule_barrier(compiler_context *ctx)
87 {
88 midgard_block *temp = ctx->after_block;
89 ctx->after_block = create_empty_block(ctx);
90 ctx->block_count++;
91 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
92 list_inithead(&ctx->after_block->base.instructions);
93 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
94 ctx->current_block = ctx->after_block;
95 ctx->after_block = temp;
96 }
97
98 /* Helpers to generate midgard_instruction's using macro magic, since every
99 * driver seems to do it that way */
100
101 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
102
103 #define M_LOAD_STORE(name, store, T) \
104 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
105 midgard_instruction i = { \
106 .type = TAG_LOAD_STORE_4, \
107 .mask = 0xF, \
108 .dest = ~0, \
109 .src = { ~0, ~0, ~0, ~0 }, \
110 .swizzle = SWIZZLE_IDENTITY_4, \
111 .load_store = { \
112 .op = midgard_op_##name, \
113 .address = address \
114 } \
115 }; \
116 \
117 if (store) { \
118 i.src[0] = ssa; \
119 i.src_types[0] = T; \
120 i.dest_type = T; \
121 } else { \
122 i.dest = ssa; \
123 i.dest_type = T; \
124 } \
125 return i; \
126 }
127
128 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
129 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
130
131 M_LOAD(ld_attr_32, nir_type_uint32);
132 M_LOAD(ld_vary_32, nir_type_uint32);
133 M_LOAD(ld_ubo_int4, nir_type_uint32);
134 M_LOAD(ld_int4, nir_type_uint32);
135 M_STORE(st_int4, nir_type_uint32);
136 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
137 M_LOAD(ld_color_buffer_as_fp16, nir_type_float16);
138 M_STORE(st_vary_32, nir_type_uint32);
139 M_LOAD(ld_cubemap_coords, nir_type_uint32);
140 M_LOAD(ld_compute_id, nir_type_uint32);
141
142 static midgard_instruction
143 v_branch(bool conditional, bool invert)
144 {
145 midgard_instruction ins = {
146 .type = TAG_ALU_4,
147 .unit = ALU_ENAB_BRANCH,
148 .compact_branch = true,
149 .branch = {
150 .conditional = conditional,
151 .invert_conditional = invert
152 },
153 .dest = ~0,
154 .src = { ~0, ~0, ~0, ~0 },
155 };
156
157 return ins;
158 }
159
160 static midgard_branch_extended
161 midgard_create_branch_extended( midgard_condition cond,
162 midgard_jmp_writeout_op op,
163 unsigned dest_tag,
164 signed quadword_offset)
165 {
166 /* The condition code is actually a LUT describing a function to
167 * combine multiple condition codes. However, we only support a single
168 * condition code at the moment, so we just duplicate over a bunch of
169 * times. */
170
171 uint16_t duplicated_cond =
172 (cond << 14) |
173 (cond << 12) |
174 (cond << 10) |
175 (cond << 8) |
176 (cond << 6) |
177 (cond << 4) |
178 (cond << 2) |
179 (cond << 0);
180
181 midgard_branch_extended branch = {
182 .op = op,
183 .dest_tag = dest_tag,
184 .offset = quadword_offset,
185 .cond = duplicated_cond
186 };
187
188 return branch;
189 }
190
191 static void
192 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
193 {
194 ins->has_constants = true;
195 memcpy(&ins->constants, constants, 16);
196 }
197
198 static int
199 glsl_type_size(const struct glsl_type *type, bool bindless)
200 {
201 return glsl_count_attribute_slots(type, false);
202 }
203
204 /* Lower fdot2 to a vector multiplication followed by channel addition */
205 static void
206 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
207 {
208 if (alu->op != nir_op_fdot2)
209 return;
210
211 b->cursor = nir_before_instr(&alu->instr);
212
213 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
214 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
215
216 nir_ssa_def *product = nir_fmul(b, src0, src1);
217
218 nir_ssa_def *sum = nir_fadd(b,
219 nir_channel(b, product, 0),
220 nir_channel(b, product, 1));
221
222 /* Replace the fdot2 with this sum */
223 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
224 }
225
226 static bool
227 midgard_nir_lower_fdot2(nir_shader *shader)
228 {
229 bool progress = false;
230
231 nir_foreach_function(function, shader) {
232 if (!function->impl) continue;
233
234 nir_builder _b;
235 nir_builder *b = &_b;
236 nir_builder_init(b, function->impl);
237
238 nir_foreach_block(block, function->impl) {
239 nir_foreach_instr_safe(instr, block) {
240 if (instr->type != nir_instr_type_alu) continue;
241
242 nir_alu_instr *alu = nir_instr_as_alu(instr);
243 midgard_nir_lower_fdot2_body(b, alu);
244
245 progress |= true;
246 }
247 }
248
249 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
250
251 }
252
253 return progress;
254 }
255
256 /* Flushes undefined values to zero */
257
258 static void
259 optimise_nir(nir_shader *nir, unsigned quirks, bool is_blend)
260 {
261 bool progress;
262 unsigned lower_flrp =
263 (nir->options->lower_flrp16 ? 16 : 0) |
264 (nir->options->lower_flrp32 ? 32 : 0) |
265 (nir->options->lower_flrp64 ? 64 : 0);
266
267 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
268 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
269
270 nir_lower_tex_options lower_tex_options = {
271 .lower_txs_lod = true,
272 .lower_txp = ~0,
273 .lower_tex_without_implicit_lod =
274 (quirks & MIDGARD_EXPLICIT_LOD),
275
276 /* TODO: we have native gradient.. */
277 .lower_txd = true,
278 };
279
280 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
281
282 /* Must lower fdot2 after tex is lowered */
283 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
284
285 /* T720 is broken. */
286
287 if (quirks & MIDGARD_BROKEN_LOD)
288 NIR_PASS_V(nir, midgard_nir_lod_errata);
289
290 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_early);
291
292 if (!is_blend)
293 NIR_PASS(progress, nir, nir_fuse_io_16);
294
295 do {
296 progress = false;
297
298 NIR_PASS(progress, nir, nir_lower_var_copies);
299 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
300
301 NIR_PASS(progress, nir, nir_copy_prop);
302 NIR_PASS(progress, nir, nir_opt_remove_phis);
303 NIR_PASS(progress, nir, nir_opt_dce);
304 NIR_PASS(progress, nir, nir_opt_dead_cf);
305 NIR_PASS(progress, nir, nir_opt_cse);
306 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
307 NIR_PASS(progress, nir, nir_opt_algebraic);
308 NIR_PASS(progress, nir, nir_opt_constant_folding);
309
310 if (lower_flrp != 0) {
311 bool lower_flrp_progress = false;
312 NIR_PASS(lower_flrp_progress,
313 nir,
314 nir_lower_flrp,
315 lower_flrp,
316 false /* always_precise */,
317 nir->options->lower_ffma);
318 if (lower_flrp_progress) {
319 NIR_PASS(progress, nir,
320 nir_opt_constant_folding);
321 progress = true;
322 }
323
324 /* Nothing should rematerialize any flrps, so we only
325 * need to do this lowering once.
326 */
327 lower_flrp = 0;
328 }
329
330 NIR_PASS(progress, nir, nir_opt_undef);
331 NIR_PASS(progress, nir, nir_undef_to_zero);
332
333 NIR_PASS(progress, nir, nir_opt_loop_unroll,
334 nir_var_shader_in |
335 nir_var_shader_out |
336 nir_var_function_temp);
337
338 NIR_PASS(progress, nir, nir_opt_vectorize);
339 } while (progress);
340
341 /* Must be run at the end to prevent creation of fsin/fcos ops */
342 NIR_PASS(progress, nir, midgard_nir_scale_trig);
343
344 do {
345 progress = false;
346
347 NIR_PASS(progress, nir, nir_opt_dce);
348 NIR_PASS(progress, nir, nir_opt_algebraic);
349 NIR_PASS(progress, nir, nir_opt_constant_folding);
350 NIR_PASS(progress, nir, nir_copy_prop);
351 } while (progress);
352
353 NIR_PASS(progress, nir, nir_opt_algebraic_late);
354 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
355
356 /* We implement booleans as 32-bit 0/~0 */
357 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
358
359 /* Now that booleans are lowered, we can run out late opts */
360 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
361 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
362
363 NIR_PASS(progress, nir, nir_copy_prop);
364 NIR_PASS(progress, nir, nir_opt_dce);
365
366 /* Take us out of SSA */
367 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
368 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
369
370 /* We are a vector architecture; write combine where possible */
371 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
372 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
373
374 NIR_PASS(progress, nir, nir_opt_dce);
375 }
376
377 /* Do not actually emit a load; instead, cache the constant for inlining */
378
379 static void
380 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
381 {
382 nir_ssa_def def = instr->def;
383
384 midgard_constants *consts = rzalloc(NULL, midgard_constants);
385
386 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
387
388 #define RAW_CONST_COPY(bits) \
389 nir_const_value_to_array(consts->u##bits, instr->value, \
390 instr->def.num_components, u##bits)
391
392 switch (instr->def.bit_size) {
393 case 64:
394 RAW_CONST_COPY(64);
395 break;
396 case 32:
397 RAW_CONST_COPY(32);
398 break;
399 case 16:
400 RAW_CONST_COPY(16);
401 break;
402 case 8:
403 RAW_CONST_COPY(8);
404 break;
405 default:
406 unreachable("Invalid bit_size for load_const instruction\n");
407 }
408
409 /* Shifted for SSA, +1 for off-by-one */
410 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
411 }
412
413 /* Normally constants are embedded implicitly, but for I/O and such we have to
414 * explicitly emit a move with the constant source */
415
416 static void
417 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
418 {
419 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
420
421 if (constant_value) {
422 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
423 attach_constants(ctx, &ins, constant_value, node + 1);
424 emit_mir_instruction(ctx, ins);
425 }
426 }
427
428 static bool
429 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
430 {
431 unsigned comp = src->swizzle[0];
432
433 for (unsigned c = 1; c < nr_components; ++c) {
434 if (src->swizzle[c] != comp)
435 return true;
436 }
437
438 return false;
439 }
440
441 #define ALU_CASE(nir, _op) \
442 case nir_op_##nir: \
443 op = midgard_alu_op_##_op; \
444 assert(src_bitsize == dst_bitsize); \
445 break;
446
447 #define ALU_CASE_RTZ(nir, _op) \
448 case nir_op_##nir: \
449 op = midgard_alu_op_##_op; \
450 roundmode = MIDGARD_RTZ; \
451 break;
452
453 #define ALU_CHECK_CMP(sext) \
454 assert(src_bitsize == 16 || src_bitsize == 32); \
455 assert(dst_bitsize == 16 || dst_bitsize == 32); \
456
457 #define ALU_CASE_BCAST(nir, _op, count) \
458 case nir_op_##nir: \
459 op = midgard_alu_op_##_op; \
460 broadcast_swizzle = count; \
461 ALU_CHECK_CMP(true); \
462 break;
463
464 #define ALU_CASE_CMP(nir, _op, sext) \
465 case nir_op_##nir: \
466 op = midgard_alu_op_##_op; \
467 ALU_CHECK_CMP(sext); \
468 break;
469
470 /* Analyze the sizes of the dest and inputs to determine reg mode. */
471
472 static midgard_reg_mode
473 reg_mode_for_nir(nir_alu_instr *instr)
474 {
475 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
476 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
477 unsigned max_bitsize = MAX2(src_bitsize, dst_bitsize);
478
479 /* We don't have fp16 LUTs, so we'll want to emit code like:
480 *
481 * vlut.fsinr hr0, hr0
482 *
483 * where both input and output are 16-bit but the operation is carried
484 * out in 32-bit
485 */
486
487 switch (instr->op) {
488 case nir_op_fsqrt:
489 case nir_op_frcp:
490 case nir_op_frsq:
491 case nir_op_fsin:
492 case nir_op_fcos:
493 case nir_op_fexp2:
494 case nir_op_flog2:
495 max_bitsize = MAX2(max_bitsize, 32);
496 break;
497
498 /* These get lowered to moves */
499 case nir_op_pack_32_4x8:
500 max_bitsize = 8;
501 break;
502 case nir_op_pack_32_2x16:
503 max_bitsize = 16;
504 break;
505 default:
506 break;
507 }
508
509
510 switch (max_bitsize) {
511 /* Use 16 pipe for 8 since we don't support vec16 yet */
512 case 8:
513 case 16:
514 return midgard_reg_mode_16;
515 case 32:
516 return midgard_reg_mode_32;
517 case 64:
518 return midgard_reg_mode_64;
519 default:
520 unreachable("Invalid bit size");
521 }
522 }
523
524 /* Compare mir_lower_invert */
525 static bool
526 nir_accepts_inot(nir_op op, unsigned src)
527 {
528 switch (op) {
529 case nir_op_ior:
530 case nir_op_iand: /* TODO: b2f16 */
531 case nir_op_ixor:
532 return true;
533 case nir_op_b32csel:
534 /* Only the condition */
535 return (src == 0);
536 default:
537 return false;
538 }
539 }
540
541 static bool
542 mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
543 {
544 if (pan_has_dest_mod(dest, op)) {
545 assert((*dest)->is_ssa);
546 BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
547 return true;
548 }
549
550 return false;
551 }
552
553 static void
554 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, enum midgard_roundmode *roundmode, bool is_int, unsigned bcast_count)
555 {
556 nir_alu_src src = instr->src[i];
557
558 if (!is_int) {
559 if (pan_has_source_mod(&src, nir_op_fneg))
560 *neg = !(*neg);
561
562 if (pan_has_source_mod(&src, nir_op_fabs))
563 *abs = true;
564 }
565
566 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
567 *not = true;
568
569 if (roundmode) {
570 if (pan_has_source_mod(&src, nir_op_fround_even))
571 *roundmode = MIDGARD_RTE;
572
573 if (pan_has_source_mod(&src, nir_op_ftrunc))
574 *roundmode = MIDGARD_RTZ;
575
576 if (pan_has_source_mod(&src, nir_op_ffloor))
577 *roundmode = MIDGARD_RTN;
578
579 if (pan_has_source_mod(&src, nir_op_fceil))
580 *roundmode = MIDGARD_RTP;
581 }
582
583 unsigned bits = nir_src_bit_size(src.src);
584
585 ins->src[to] = nir_src_index(NULL, &src.src);
586 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
587
588 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
589 ins->swizzle[to][c] = src.swizzle[
590 (!bcast_count || c < bcast_count) ? c :
591 (bcast_count - 1)];
592 }
593 }
594
595 /* Midgard features both fcsel and icsel, depending on whether you want int or
596 * float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
597 * we should emit an int or float csel depending on what modifiers could be
598 * placed. In the absense of modifiers, this is probably arbitrary. */
599
600 static bool
601 mir_is_bcsel_float(nir_alu_instr *instr)
602 {
603 nir_op intmods[] = {
604 nir_op_i2i8, nir_op_i2i16,
605 nir_op_i2i32, nir_op_i2i64
606 };
607
608 nir_op floatmods[] = {
609 nir_op_fabs, nir_op_fneg,
610 nir_op_f2f16, nir_op_f2f32,
611 nir_op_f2f64
612 };
613
614 nir_op floatdestmods[] = {
615 nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
616 nir_op_f2f16, nir_op_f2f32
617 };
618
619 signed score = 0;
620
621 for (unsigned i = 1; i < 3; ++i) {
622 nir_alu_src s = instr->src[i];
623 for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
624 if (pan_has_source_mod(&s, intmods[q]))
625 score--;
626 }
627 }
628
629 for (unsigned i = 1; i < 3; ++i) {
630 nir_alu_src s = instr->src[i];
631 for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
632 if (pan_has_source_mod(&s, floatmods[q]))
633 score++;
634 }
635 }
636
637 for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
638 nir_dest *dest = &instr->dest.dest;
639 if (pan_has_dest_mod(&dest, floatdestmods[q]))
640 score++;
641 }
642
643 return (score > 0);
644 }
645
646 static void
647 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
648 {
649 nir_dest *dest = &instr->dest.dest;
650
651 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
652 return;
653
654 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
655 * is handled elsewhere */
656
657 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
658 midgard_emit_derivatives(ctx, instr);
659 return;
660 }
661
662 bool is_ssa = dest->is_ssa;
663
664 unsigned nr_components = nir_dest_num_components(*dest);
665 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
666 unsigned op = 0;
667
668 /* Number of components valid to check for the instruction (the rest
669 * will be forced to the last), or 0 to use as-is. Relevant as
670 * ball-type instructions have a channel count in NIR but are all vec4
671 * in Midgard */
672
673 unsigned broadcast_swizzle = 0;
674
675 /* What register mode should we operate in? */
676 midgard_reg_mode reg_mode =
677 reg_mode_for_nir(instr);
678
679 /* Should we swap arguments? */
680 bool flip_src12 = false;
681
682 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
683 unsigned dst_bitsize = nir_dest_bit_size(*dest);
684
685 enum midgard_roundmode roundmode = MIDGARD_RTE;
686
687 switch (instr->op) {
688 ALU_CASE(fadd, fadd);
689 ALU_CASE(fmul, fmul);
690 ALU_CASE(fmin, fmin);
691 ALU_CASE(fmax, fmax);
692 ALU_CASE(imin, imin);
693 ALU_CASE(imax, imax);
694 ALU_CASE(umin, umin);
695 ALU_CASE(umax, umax);
696 ALU_CASE(ffloor, ffloor);
697 ALU_CASE(fround_even, froundeven);
698 ALU_CASE(ftrunc, ftrunc);
699 ALU_CASE(fceil, fceil);
700 ALU_CASE(fdot3, fdot3);
701 ALU_CASE(fdot4, fdot4);
702 ALU_CASE(iadd, iadd);
703 ALU_CASE(isub, isub);
704 ALU_CASE(imul, imul);
705
706 /* Zero shoved as second-arg */
707 ALU_CASE(iabs, iabsdiff);
708
709 ALU_CASE(mov, imov);
710
711 ALU_CASE_CMP(feq32, feq, false);
712 ALU_CASE_CMP(fne32, fne, false);
713 ALU_CASE_CMP(flt32, flt, false);
714 ALU_CASE_CMP(ieq32, ieq, true);
715 ALU_CASE_CMP(ine32, ine, true);
716 ALU_CASE_CMP(ilt32, ilt, true);
717 ALU_CASE_CMP(ult32, ult, false);
718
719 /* We don't have a native b2f32 instruction. Instead, like many
720 * GPUs, we exploit booleans as 0/~0 for false/true, and
721 * correspondingly AND
722 * by 1.0 to do the type conversion. For the moment, prime us
723 * to emit:
724 *
725 * iand [whatever], #0
726 *
727 * At the end of emit_alu (as MIR), we'll fix-up the constant
728 */
729
730 ALU_CASE_CMP(b2f32, iand, true);
731 ALU_CASE_CMP(b2f16, iand, true);
732 ALU_CASE_CMP(b2i32, iand, true);
733
734 /* Likewise, we don't have a dedicated f2b32 instruction, but
735 * we can do a "not equal to 0.0" test. */
736
737 ALU_CASE_CMP(f2b32, fne, false);
738 ALU_CASE_CMP(i2b32, ine, true);
739
740 ALU_CASE(frcp, frcp);
741 ALU_CASE(frsq, frsqrt);
742 ALU_CASE(fsqrt, fsqrt);
743 ALU_CASE(fexp2, fexp2);
744 ALU_CASE(flog2, flog2);
745
746 ALU_CASE_RTZ(f2i64, f2i_rte);
747 ALU_CASE_RTZ(f2u64, f2u_rte);
748 ALU_CASE_RTZ(i2f64, i2f_rte);
749 ALU_CASE_RTZ(u2f64, u2f_rte);
750
751 ALU_CASE_RTZ(f2i32, f2i_rte);
752 ALU_CASE_RTZ(f2u32, f2u_rte);
753 ALU_CASE_RTZ(i2f32, i2f_rte);
754 ALU_CASE_RTZ(u2f32, u2f_rte);
755
756 ALU_CASE_RTZ(f2i8, f2i_rte);
757 ALU_CASE_RTZ(f2u8, f2u_rte);
758
759 ALU_CASE_RTZ(f2i16, f2i_rte);
760 ALU_CASE_RTZ(f2u16, f2u_rte);
761 ALU_CASE_RTZ(i2f16, i2f_rte);
762 ALU_CASE_RTZ(u2f16, u2f_rte);
763
764 ALU_CASE(fsin, fsin);
765 ALU_CASE(fcos, fcos);
766
767 /* We'll get 0 in the second arg, so:
768 * ~a = ~(a | 0) = nor(a, 0) */
769 ALU_CASE(inot, inor);
770 ALU_CASE(iand, iand);
771 ALU_CASE(ior, ior);
772 ALU_CASE(ixor, ixor);
773 ALU_CASE(ishl, ishl);
774 ALU_CASE(ishr, iasr);
775 ALU_CASE(ushr, ilsr);
776
777 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
778 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
779 ALU_CASE_CMP(b32all_fequal4, fball_eq, true);
780
781 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
782 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
783 ALU_CASE_CMP(b32any_fnequal4, fbany_neq, true);
784
785 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
786 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
787 ALU_CASE_CMP(b32all_iequal4, iball_eq, true);
788
789 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
790 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
791 ALU_CASE_CMP(b32any_inequal4, ibany_neq, true);
792
793 /* Source mods will be shoved in later */
794 ALU_CASE(fabs, fmov);
795 ALU_CASE(fneg, fmov);
796 ALU_CASE(fsat, fmov);
797 ALU_CASE(fsat_signed, fmov);
798 ALU_CASE(fclamp_pos, fmov);
799
800 /* For size conversion, we use a move. Ideally though we would squash
801 * these ops together; maybe that has to happen after in NIR as part of
802 * propagation...? An earlier algebraic pass ensured we step down by
803 * only / exactly one size. If stepping down, we use a dest override to
804 * reduce the size; if stepping up, we use a larger-sized move with a
805 * half source and a sign/zero-extension modifier */
806
807 case nir_op_i2i8:
808 case nir_op_i2i16:
809 case nir_op_i2i32:
810 case nir_op_i2i64:
811 case nir_op_u2u8:
812 case nir_op_u2u16:
813 case nir_op_u2u32:
814 case nir_op_u2u64:
815 case nir_op_f2f16:
816 case nir_op_f2f32:
817 case nir_op_f2f64: {
818 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
819 instr->op == nir_op_f2f64)
820 op = midgard_alu_op_fmov;
821 else
822 op = midgard_alu_op_imov;
823
824 break;
825 }
826
827 /* For greater-or-equal, we lower to less-or-equal and flip the
828 * arguments */
829
830 case nir_op_fge:
831 case nir_op_fge32:
832 case nir_op_ige32:
833 case nir_op_uge32: {
834 op =
835 instr->op == nir_op_fge ? midgard_alu_op_fle :
836 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
837 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
838 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
839 0;
840
841 flip_src12 = true;
842 ALU_CHECK_CMP(false);
843 break;
844 }
845
846 case nir_op_b32csel: {
847 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
848 bool is_float = mir_is_bcsel_float(instr);
849 op = is_float ?
850 (mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
851 (mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
852
853 break;
854 }
855
856 case nir_op_unpack_32_2x16:
857 case nir_op_unpack_32_4x8:
858 case nir_op_pack_32_2x16:
859 case nir_op_pack_32_4x8: {
860 op = midgard_alu_op_imov;
861 break;
862 }
863
864 default:
865 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
866 assert(0);
867 return;
868 }
869
870 /* Promote imov to fmov if it might help inline a constant */
871 if (op == midgard_alu_op_imov && nir_src_is_const(instr->src[0].src)
872 && nir_src_bit_size(instr->src[0].src) == 32
873 && nir_is_same_comp_swizzle(instr->src[0].swizzle,
874 nir_src_num_components(instr->src[0].src))) {
875 op = midgard_alu_op_fmov;
876 }
877
878 /* Midgard can perform certain modifiers on output of an ALU op */
879
880 unsigned outmod = 0;
881 bool is_int = midgard_is_integer_op(op);
882
883 if (midgard_is_integer_out_op(op)) {
884 outmod = midgard_outmod_int_wrap;
885 } else if (instr->op == nir_op_fsat) {
886 outmod = midgard_outmod_sat;
887 } else if (instr->op == nir_op_fsat_signed) {
888 outmod = midgard_outmod_sat_signed;
889 } else if (instr->op == nir_op_fclamp_pos) {
890 outmod = midgard_outmod_pos;
891 }
892
893 /* Fetch unit, quirks, etc information */
894 unsigned opcode_props = alu_opcode_props[op].props;
895 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
896
897 /* Look for floating point mods. We have the mods fsat, fsat_signed,
898 * and fpos. We also have the relations (note 3 * 2 = 6 cases):
899 *
900 * fsat_signed(fpos(x)) = fsat(x)
901 * fsat_signed(fsat(x)) = fsat(x)
902 * fpos(fsat_signed(x)) = fsat(x)
903 * fpos(fsat(x)) = fsat(x)
904 * fsat(fsat_signed(x)) = fsat(x)
905 * fsat(fpos(x)) = fsat(x)
906 *
907 * So by cases any composition of output modifiers is equivalent to
908 * fsat alone.
909 */
910
911 if (!is_int && !(opcode_props & OP_TYPE_CONVERT)) {
912 bool fpos = mir_accept_dest_mod(ctx, &dest, nir_op_fclamp_pos);
913 bool fsat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat);
914 bool ssat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat_signed);
915 bool prior = (outmod != midgard_outmod_none);
916 int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
917
918 outmod = ((count > 1) || fsat) ? midgard_outmod_sat :
919 fpos ? midgard_outmod_pos :
920 ssat ? midgard_outmod_sat_signed :
921 outmod;
922 }
923
924 midgard_instruction ins = {
925 .type = TAG_ALU_4,
926 .dest = nir_dest_index(dest),
927 .dest_type = nir_op_infos[instr->op].output_type
928 | nir_dest_bit_size(*dest),
929 .roundmode = roundmode,
930 };
931
932 enum midgard_roundmode *roundptr = (opcode_props & MIDGARD_ROUNDS) ?
933 &ins.roundmode : NULL;
934
935 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
936 ins.src[i] = ~0;
937
938 if (quirk_flipped_r24) {
939 ins.src[0] = ~0;
940 mir_copy_src(&ins, instr, 0, 1, &ins.src_abs[1], &ins.src_neg[1], &ins.src_invert[1], roundptr, is_int, broadcast_swizzle);
941 } else {
942 for (unsigned i = 0; i < nr_inputs; ++i) {
943 unsigned to = i;
944
945 if (instr->op == nir_op_b32csel) {
946 /* The condition is the first argument; move
947 * the other arguments up one to be a binary
948 * instruction for Midgard with the condition
949 * last */
950
951 if (i == 0)
952 to = 2;
953 else if (flip_src12)
954 to = 2 - i;
955 else
956 to = i - 1;
957 } else if (flip_src12) {
958 to = 1 - to;
959 }
960
961 mir_copy_src(&ins, instr, i, to, &ins.src_abs[to], &ins.src_neg[to], &ins.src_invert[to], roundptr, is_int, broadcast_swizzle);
962
963 /* (!c) ? a : b = c ? b : a */
964 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
965 ins.src_invert[2] = false;
966 flip_src12 ^= true;
967 }
968 }
969 }
970
971 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
972 /* Lowered to move */
973 if (instr->op == nir_op_fneg)
974 ins.src_neg[1] ^= true;
975
976 if (instr->op == nir_op_fabs)
977 ins.src_abs[1] = true;
978 }
979
980 ins.mask = mask_of(nr_components);
981
982 midgard_vector_alu alu = {
983 .op = op,
984 .reg_mode = reg_mode,
985 .outmod = outmod,
986 };
987
988 /* Apply writemask if non-SSA, keeping in mind that we can't write to
989 * components that don't exist. Note modifier => SSA => !reg => no
990 * writemask, so we don't have to worry about writemasks here.*/
991
992 if (!is_ssa)
993 ins.mask &= instr->dest.write_mask;
994
995 ins.alu = alu;
996
997 /* Late fixup for emulated instructions */
998
999 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1000 /* Presently, our second argument is an inline #0 constant.
1001 * Switch over to an embedded 1.0 constant (that can't fit
1002 * inline, since we're 32-bit, not 16-bit like the inline
1003 * constants) */
1004
1005 ins.has_inline_constant = false;
1006 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1007 ins.src_types[1] = nir_type_float32;
1008 ins.has_constants = true;
1009
1010 if (instr->op == nir_op_b2f32)
1011 ins.constants.f32[0] = 1.0f;
1012 else
1013 ins.constants.i32[0] = 1;
1014
1015 for (unsigned c = 0; c < 16; ++c)
1016 ins.swizzle[1][c] = 0;
1017 } else if (instr->op == nir_op_b2f16) {
1018 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1019 ins.src_types[1] = nir_type_float16;
1020 ins.has_constants = true;
1021 ins.constants.i16[0] = _mesa_float_to_half(1.0);
1022
1023 for (unsigned c = 0; c < 16; ++c)
1024 ins.swizzle[1][c] = 0;
1025 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1026 /* Lots of instructions need a 0 plonked in */
1027 ins.has_inline_constant = false;
1028 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1029 ins.src_types[1] = nir_type_uint32;
1030 ins.has_constants = true;
1031 ins.constants.u32[0] = 0;
1032
1033 for (unsigned c = 0; c < 16; ++c)
1034 ins.swizzle[1][c] = 0;
1035 } else if (instr->op == nir_op_pack_32_2x16) {
1036 ins.dest_type = nir_type_uint16;
1037 ins.mask = mask_of(nr_components * 2);
1038 ins.is_pack = true;
1039 } else if (instr->op == nir_op_pack_32_4x8) {
1040 ins.dest_type = nir_type_uint8;
1041 ins.mask = mask_of(nr_components * 4);
1042 ins.is_pack = true;
1043 } else if (instr->op == nir_op_unpack_32_2x16) {
1044 ins.dest_type = nir_type_uint32;
1045 ins.mask = mask_of(nr_components >> 1);
1046 ins.is_pack = true;
1047 } else if (instr->op == nir_op_unpack_32_4x8) {
1048 ins.dest_type = nir_type_uint32;
1049 ins.mask = mask_of(nr_components >> 2);
1050 ins.is_pack = true;
1051 }
1052
1053 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1054 /* To avoid duplicating the lookup tables (probably), true LUT
1055 * instructions can only operate as if they were scalars. Lower
1056 * them here by changing the component. */
1057
1058 unsigned orig_mask = ins.mask;
1059
1060 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1061 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1062
1063 for (int i = 0; i < nr_components; ++i) {
1064 /* Mask the associated component, dropping the
1065 * instruction if needed */
1066
1067 ins.mask = 1 << i;
1068 ins.mask &= orig_mask;
1069
1070 if (!ins.mask)
1071 continue;
1072
1073 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1074 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1075
1076 emit_mir_instruction(ctx, ins);
1077 }
1078 } else {
1079 emit_mir_instruction(ctx, ins);
1080 }
1081 }
1082
1083 #undef ALU_CASE
1084
1085 static void
1086 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1087 {
1088 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1089 unsigned nir_mask = 0;
1090 unsigned dsize = 0;
1091
1092 if (is_read) {
1093 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1094 dsize = nir_dest_bit_size(intr->dest);
1095 } else {
1096 nir_mask = nir_intrinsic_write_mask(intr);
1097 dsize = 32;
1098 }
1099
1100 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1101 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1102 mir_set_bytemask(ins, bytemask);
1103 ins->dest_type = nir_type_uint | dsize;
1104 }
1105
1106 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1107 * optimized) versions of UBO #0 */
1108
1109 static midgard_instruction *
1110 emit_ubo_read(
1111 compiler_context *ctx,
1112 nir_instr *instr,
1113 unsigned dest,
1114 unsigned offset,
1115 nir_src *indirect_offset,
1116 unsigned indirect_shift,
1117 unsigned index)
1118 {
1119 /* TODO: half-floats */
1120
1121 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1122 ins.constants.u32[0] = offset;
1123
1124 if (instr->type == nir_instr_type_intrinsic)
1125 mir_set_intr_mask(instr, &ins, true);
1126
1127 if (indirect_offset) {
1128 ins.src[2] = nir_src_index(ctx, indirect_offset);
1129 ins.src_types[2] = nir_type_uint32;
1130 ins.load_store.arg_2 = (indirect_shift << 5);
1131 } else {
1132 ins.load_store.arg_2 = 0x1E;
1133 }
1134
1135 ins.load_store.arg_1 = index;
1136
1137 return emit_mir_instruction(ctx, ins);
1138 }
1139
1140 /* Globals are like UBOs if you squint. And shared memory is like globals if
1141 * you squint even harder */
1142
1143 static void
1144 emit_global(
1145 compiler_context *ctx,
1146 nir_instr *instr,
1147 bool is_read,
1148 unsigned srcdest,
1149 nir_src *offset,
1150 bool is_shared)
1151 {
1152 /* TODO: types */
1153
1154 midgard_instruction ins;
1155
1156 if (is_read)
1157 ins = m_ld_int4(srcdest, 0);
1158 else
1159 ins = m_st_int4(srcdest, 0);
1160
1161 mir_set_offset(ctx, &ins, offset, is_shared);
1162 mir_set_intr_mask(instr, &ins, is_read);
1163
1164 emit_mir_instruction(ctx, ins);
1165 }
1166
1167 static void
1168 emit_varying_read(
1169 compiler_context *ctx,
1170 unsigned dest, unsigned offset,
1171 unsigned nr_comp, unsigned component,
1172 nir_src *indirect_offset, nir_alu_type type, bool flat)
1173 {
1174 /* XXX: Half-floats? */
1175 /* TODO: swizzle, mask */
1176
1177 midgard_instruction ins = m_ld_vary_32(dest, offset);
1178 ins.mask = mask_of(nr_comp);
1179 ins.dest_type = type;
1180
1181 if (type == nir_type_float16) {
1182 /* Ensure we are aligned so we can pack it later */
1183 ins.mask = mask_of(ALIGN_POT(nr_comp, 2));
1184 }
1185
1186 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1187 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1188
1189 midgard_varying_parameter p = {
1190 .is_varying = 1,
1191 .interpolation = midgard_interp_default,
1192 .flat = flat,
1193 };
1194
1195 unsigned u;
1196 memcpy(&u, &p, sizeof(p));
1197 ins.load_store.varying_parameters = u;
1198
1199 if (indirect_offset) {
1200 ins.src[2] = nir_src_index(ctx, indirect_offset);
1201 ins.src_types[2] = nir_type_uint32;
1202 } else
1203 ins.load_store.arg_2 = 0x1E;
1204
1205 ins.load_store.arg_1 = 0x9E;
1206
1207 /* Use the type appropriate load */
1208 switch (type) {
1209 case nir_type_uint32:
1210 case nir_type_bool32:
1211 ins.load_store.op = midgard_op_ld_vary_32u;
1212 break;
1213 case nir_type_int32:
1214 ins.load_store.op = midgard_op_ld_vary_32i;
1215 break;
1216 case nir_type_float32:
1217 ins.load_store.op = midgard_op_ld_vary_32;
1218 break;
1219 case nir_type_float16:
1220 ins.load_store.op = midgard_op_ld_vary_16;
1221 break;
1222 default:
1223 unreachable("Attempted to load unknown type");
1224 break;
1225 }
1226
1227 emit_mir_instruction(ctx, ins);
1228 }
1229
1230 static void
1231 emit_attr_read(
1232 compiler_context *ctx,
1233 unsigned dest, unsigned offset,
1234 unsigned nr_comp, nir_alu_type t)
1235 {
1236 midgard_instruction ins = m_ld_attr_32(dest, offset);
1237 ins.load_store.arg_1 = 0x1E;
1238 ins.load_store.arg_2 = 0x1E;
1239 ins.mask = mask_of(nr_comp);
1240
1241 /* Use the type appropriate load */
1242 switch (t) {
1243 case nir_type_uint:
1244 case nir_type_bool:
1245 ins.load_store.op = midgard_op_ld_attr_32u;
1246 break;
1247 case nir_type_int:
1248 ins.load_store.op = midgard_op_ld_attr_32i;
1249 break;
1250 case nir_type_float:
1251 ins.load_store.op = midgard_op_ld_attr_32;
1252 break;
1253 default:
1254 unreachable("Attempted to load unknown type");
1255 break;
1256 }
1257
1258 emit_mir_instruction(ctx, ins);
1259 }
1260
1261 static void
1262 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1263 unsigned nr_components, unsigned offset)
1264 {
1265 nir_dest nir_dest;
1266
1267 /* Figure out which uniform this is */
1268 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1269 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1270
1271 unsigned dest = nir_dest_index(&nir_dest);
1272
1273 /* Sysvals are prefix uniforms */
1274 unsigned uniform = ((uintptr_t) val) - 1;
1275
1276 /* Emit the read itself -- this is never indirect */
1277 midgard_instruction *ins =
1278 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1279
1280 ins->mask = mask_of(nr_components);
1281 }
1282
1283 static unsigned
1284 compute_builtin_arg(nir_op op)
1285 {
1286 switch (op) {
1287 case nir_intrinsic_load_work_group_id:
1288 return 0x14;
1289 case nir_intrinsic_load_local_invocation_id:
1290 return 0x10;
1291 default:
1292 unreachable("Invalid compute paramater loaded");
1293 }
1294 }
1295
1296 static void
1297 emit_fragment_store(compiler_context *ctx, unsigned src, enum midgard_rt_id rt)
1298 {
1299 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1300
1301 midgard_instruction *br = ctx->writeout_branch[rt];
1302
1303 assert(!br);
1304
1305 emit_explicit_constant(ctx, src, src);
1306
1307 struct midgard_instruction ins =
1308 v_branch(false, false);
1309
1310 ins.writeout = true;
1311
1312 /* Add dependencies */
1313 ins.src[0] = src;
1314 ins.src_types[0] = nir_type_uint32;
1315 ins.constants.u32[0] = rt == MIDGARD_ZS_RT ?
1316 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1317
1318 /* Emit the branch */
1319 br = emit_mir_instruction(ctx, ins);
1320 schedule_barrier(ctx);
1321 ctx->writeout_branch[rt] = br;
1322
1323 /* Push our current location = current block count - 1 = where we'll
1324 * jump to. Maybe a bit too clever for my own good */
1325
1326 br->branch.target_block = ctx->block_count - 1;
1327 }
1328
1329 static void
1330 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1331 {
1332 unsigned reg = nir_dest_index(&instr->dest);
1333 midgard_instruction ins = m_ld_compute_id(reg, 0);
1334 ins.mask = mask_of(3);
1335 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1336 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1337 emit_mir_instruction(ctx, ins);
1338 }
1339
1340 static unsigned
1341 vertex_builtin_arg(nir_op op)
1342 {
1343 switch (op) {
1344 case nir_intrinsic_load_vertex_id:
1345 return PAN_VERTEX_ID;
1346 case nir_intrinsic_load_instance_id:
1347 return PAN_INSTANCE_ID;
1348 default:
1349 unreachable("Invalid vertex builtin");
1350 }
1351 }
1352
1353 static void
1354 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1355 {
1356 unsigned reg = nir_dest_index(&instr->dest);
1357 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1358 }
1359
1360 static void
1361 emit_control_barrier(compiler_context *ctx)
1362 {
1363 midgard_instruction ins = {
1364 .type = TAG_TEXTURE_4,
1365 .dest = ~0,
1366 .src = { ~0, ~0, ~0, ~0 },
1367 .texture = {
1368 .op = TEXTURE_OP_BARRIER,
1369
1370 /* TODO: optimize */
1371 .out_of_order = MIDGARD_BARRIER_BUFFER |
1372 MIDGARD_BARRIER_SHARED ,
1373 }
1374 };
1375
1376 emit_mir_instruction(ctx, ins);
1377 }
1378
1379 static const nir_variable *
1380 search_var(struct exec_list *vars, unsigned driver_loc)
1381 {
1382 nir_foreach_variable(var, vars) {
1383 if (var->data.driver_location == driver_loc)
1384 return var;
1385 }
1386
1387 return NULL;
1388 }
1389
1390 static unsigned
1391 mir_get_branch_cond(nir_src *src, bool *invert)
1392 {
1393 /* Wrap it. No swizzle since it's a scalar */
1394
1395 nir_alu_src alu = {
1396 .src = *src
1397 };
1398
1399 *invert = pan_has_source_mod(&alu, nir_op_inot);
1400 return nir_src_index(NULL, &alu.src);
1401 }
1402
1403 static void
1404 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1405 {
1406 unsigned offset = 0, reg;
1407
1408 switch (instr->intrinsic) {
1409 case nir_intrinsic_discard_if:
1410 case nir_intrinsic_discard: {
1411 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1412 struct midgard_instruction discard = v_branch(conditional, false);
1413 discard.branch.target_type = TARGET_DISCARD;
1414
1415 if (conditional) {
1416 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1417 &discard.branch.invert_conditional);
1418 discard.src_types[0] = nir_type_uint32;
1419 }
1420
1421 emit_mir_instruction(ctx, discard);
1422 schedule_barrier(ctx);
1423
1424 break;
1425 }
1426
1427 case nir_intrinsic_load_uniform:
1428 case nir_intrinsic_load_ubo:
1429 case nir_intrinsic_load_global:
1430 case nir_intrinsic_load_shared:
1431 case nir_intrinsic_load_input:
1432 case nir_intrinsic_load_interpolated_input: {
1433 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1434 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1435 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1436 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1437 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1438 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1439
1440 /* Get the base type of the intrinsic */
1441 /* TODO: Infer type? Does it matter? */
1442 nir_alu_type t =
1443 (is_ubo || is_global || is_shared) ? nir_type_uint :
1444 (is_interp) ? nir_type_float :
1445 nir_intrinsic_type(instr);
1446
1447 t = nir_alu_type_get_base_type(t);
1448
1449 if (!(is_ubo || is_global)) {
1450 offset = nir_intrinsic_base(instr);
1451 }
1452
1453 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1454
1455 nir_src *src_offset = nir_get_io_offset_src(instr);
1456
1457 bool direct = nir_src_is_const(*src_offset);
1458 nir_src *indirect_offset = direct ? NULL : src_offset;
1459
1460 if (direct)
1461 offset += nir_src_as_uint(*src_offset);
1462
1463 /* We may need to apply a fractional offset */
1464 int component = (is_flat || is_interp) ?
1465 nir_intrinsic_component(instr) : 0;
1466 reg = nir_dest_index(&instr->dest);
1467
1468 if (is_uniform && !ctx->is_blend) {
1469 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1470 } else if (is_ubo) {
1471 nir_src index = instr->src[0];
1472
1473 /* TODO: Is indirect block number possible? */
1474 assert(nir_src_is_const(index));
1475
1476 uint32_t uindex = nir_src_as_uint(index) + 1;
1477 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1478 } else if (is_global || is_shared) {
1479 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1480 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1481 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t | nir_dest_bit_size(instr->dest), is_flat);
1482 } else if (ctx->is_blend) {
1483 /* For blend shaders, load the input color, which is
1484 * preloaded to r0 */
1485
1486 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1487 emit_mir_instruction(ctx, move);
1488 schedule_barrier(ctx);
1489 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1490 emit_attr_read(ctx, reg, offset, nr_comp, t);
1491 } else {
1492 DBG("Unknown load\n");
1493 assert(0);
1494 }
1495
1496 break;
1497 }
1498
1499 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1500 case nir_intrinsic_load_barycentric_pixel:
1501 case nir_intrinsic_load_barycentric_centroid:
1502 break;
1503
1504 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1505
1506 case nir_intrinsic_load_raw_output_pan: {
1507 reg = nir_dest_index(&instr->dest);
1508 assert(ctx->is_blend);
1509
1510 /* T720 and below use different blend opcodes with slightly
1511 * different semantics than T760 and up */
1512
1513 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1514
1515 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1516 ld.load_store.op = midgard_op_ld_color_buffer_32u_old;
1517 ld.load_store.address = 16;
1518 ld.load_store.arg_2 = 0x1E;
1519 }
1520
1521 emit_mir_instruction(ctx, ld);
1522 break;
1523 }
1524
1525 case nir_intrinsic_load_output: {
1526 reg = nir_dest_index(&instr->dest);
1527 assert(ctx->is_blend);
1528
1529 midgard_instruction ld = m_ld_color_buffer_as_fp16(reg, 0);
1530
1531 for (unsigned c = 4; c < 16; ++c)
1532 ld.swizzle[0][c] = 0;
1533
1534 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1535 ld.load_store.op = midgard_op_ld_color_buffer_as_fp16_old;
1536 ld.load_store.address = 1;
1537 ld.load_store.arg_2 = 0x1E;
1538 }
1539
1540 emit_mir_instruction(ctx, ld);
1541 break;
1542 }
1543
1544 case nir_intrinsic_load_blend_const_color_rgba: {
1545 assert(ctx->is_blend);
1546 reg = nir_dest_index(&instr->dest);
1547
1548 /* Blend constants are embedded directly in the shader and
1549 * patched in, so we use some magic routing */
1550
1551 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1552 ins.has_constants = true;
1553 ins.has_blend_constant = true;
1554 emit_mir_instruction(ctx, ins);
1555 break;
1556 }
1557
1558 case nir_intrinsic_store_output:
1559 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1560
1561 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1562
1563 reg = nir_src_index(ctx, &instr->src[0]);
1564
1565 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1566 const nir_variable *var;
1567 enum midgard_rt_id rt;
1568
1569 var = search_var(&ctx->nir->outputs,
1570 nir_intrinsic_base(instr));
1571 assert(var);
1572 if (var->data.location == FRAG_RESULT_COLOR)
1573 rt = MIDGARD_COLOR_RT0;
1574 else if (var->data.location >= FRAG_RESULT_DATA0)
1575 rt = MIDGARD_COLOR_RT0 + var->data.location -
1576 FRAG_RESULT_DATA0;
1577 else
1578 assert(0);
1579
1580 emit_fragment_store(ctx, reg, rt);
1581 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1582 /* We should have been vectorized, though we don't
1583 * currently check that st_vary is emitted only once
1584 * per slot (this is relevant, since there's not a mask
1585 * parameter available on the store [set to 0 by the
1586 * blob]). We do respect the component by adjusting the
1587 * swizzle. If this is a constant source, we'll need to
1588 * emit that explicitly. */
1589
1590 emit_explicit_constant(ctx, reg, reg);
1591
1592 unsigned dst_component = nir_intrinsic_component(instr);
1593 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1594
1595 midgard_instruction st = m_st_vary_32(reg, offset);
1596 st.load_store.arg_1 = 0x9E;
1597 st.load_store.arg_2 = 0x1E;
1598
1599 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1600 case nir_type_uint:
1601 case nir_type_bool:
1602 st.load_store.op = midgard_op_st_vary_32u;
1603 break;
1604 case nir_type_int:
1605 st.load_store.op = midgard_op_st_vary_32i;
1606 break;
1607 case nir_type_float:
1608 st.load_store.op = midgard_op_st_vary_32;
1609 break;
1610 default:
1611 unreachable("Attempted to store unknown type");
1612 break;
1613 }
1614
1615 /* nir_intrinsic_component(store_intr) encodes the
1616 * destination component start. Source component offset
1617 * adjustment is taken care of in
1618 * install_registers_instr(), when offset_swizzle() is
1619 * called.
1620 */
1621 unsigned src_component = COMPONENT_X;
1622
1623 assert(nr_comp > 0);
1624 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1625 st.swizzle[0][i] = src_component;
1626 if (i >= dst_component && i < dst_component + nr_comp - 1)
1627 src_component++;
1628 }
1629
1630 emit_mir_instruction(ctx, st);
1631 } else {
1632 DBG("Unknown store\n");
1633 assert(0);
1634 }
1635
1636 break;
1637
1638 /* Special case of store_output for lowered blend shaders */
1639 case nir_intrinsic_store_raw_output_pan:
1640 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1641 reg = nir_src_index(ctx, &instr->src[0]);
1642 emit_fragment_store(ctx, reg, ctx->blend_rt);
1643 break;
1644
1645 case nir_intrinsic_store_global:
1646 case nir_intrinsic_store_shared:
1647 reg = nir_src_index(ctx, &instr->src[0]);
1648 emit_explicit_constant(ctx, reg, reg);
1649
1650 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1651 break;
1652
1653 case nir_intrinsic_load_ssbo_address:
1654 emit_sysval_read(ctx, &instr->instr, 1, 0);
1655 break;
1656
1657 case nir_intrinsic_get_buffer_size:
1658 emit_sysval_read(ctx, &instr->instr, 1, 8);
1659 break;
1660
1661 case nir_intrinsic_load_viewport_scale:
1662 case nir_intrinsic_load_viewport_offset:
1663 case nir_intrinsic_load_num_work_groups:
1664 case nir_intrinsic_load_sampler_lod_parameters_pan:
1665 emit_sysval_read(ctx, &instr->instr, 3, 0);
1666 break;
1667
1668 case nir_intrinsic_load_work_group_id:
1669 case nir_intrinsic_load_local_invocation_id:
1670 emit_compute_builtin(ctx, instr);
1671 break;
1672
1673 case nir_intrinsic_load_vertex_id:
1674 case nir_intrinsic_load_instance_id:
1675 emit_vertex_builtin(ctx, instr);
1676 break;
1677
1678 case nir_intrinsic_memory_barrier_buffer:
1679 case nir_intrinsic_memory_barrier_shared:
1680 break;
1681
1682 case nir_intrinsic_control_barrier:
1683 schedule_barrier(ctx);
1684 emit_control_barrier(ctx);
1685 schedule_barrier(ctx);
1686 break;
1687
1688 default:
1689 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1690 assert(0);
1691 break;
1692 }
1693 }
1694
1695 static unsigned
1696 midgard_tex_format(enum glsl_sampler_dim dim)
1697 {
1698 switch (dim) {
1699 case GLSL_SAMPLER_DIM_1D:
1700 case GLSL_SAMPLER_DIM_BUF:
1701 return MALI_TEX_1D;
1702
1703 case GLSL_SAMPLER_DIM_2D:
1704 case GLSL_SAMPLER_DIM_EXTERNAL:
1705 case GLSL_SAMPLER_DIM_RECT:
1706 return MALI_TEX_2D;
1707
1708 case GLSL_SAMPLER_DIM_3D:
1709 return MALI_TEX_3D;
1710
1711 case GLSL_SAMPLER_DIM_CUBE:
1712 return MALI_TEX_CUBE;
1713
1714 default:
1715 DBG("Unknown sampler dim type\n");
1716 assert(0);
1717 return 0;
1718 }
1719 }
1720
1721 /* Tries to attach an explicit LOD or bias as a constant. Returns whether this
1722 * was successful */
1723
1724 static bool
1725 pan_attach_constant_bias(
1726 compiler_context *ctx,
1727 nir_src lod,
1728 midgard_texture_word *word)
1729 {
1730 /* To attach as constant, it has to *be* constant */
1731
1732 if (!nir_src_is_const(lod))
1733 return false;
1734
1735 float f = nir_src_as_float(lod);
1736
1737 /* Break into fixed-point */
1738 signed lod_int = f;
1739 float lod_frac = f - lod_int;
1740
1741 /* Carry over negative fractions */
1742 if (lod_frac < 0.0) {
1743 lod_int--;
1744 lod_frac += 1.0;
1745 }
1746
1747 /* Encode */
1748 word->bias = float_to_ubyte(lod_frac);
1749 word->bias_int = lod_int;
1750
1751 return true;
1752 }
1753
1754 static void
1755 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1756 unsigned midgard_texop)
1757 {
1758 /* TODO */
1759 //assert (!instr->sampler);
1760
1761 int texture_index = instr->texture_index;
1762 int sampler_index = texture_index;
1763
1764 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
1765 nir_alu_type dest_type = dest_base | nir_dest_bit_size(instr->dest);
1766
1767 midgard_instruction ins = {
1768 .type = TAG_TEXTURE_4,
1769 .mask = 0xF,
1770 .dest = nir_dest_index(&instr->dest),
1771 .src = { ~0, ~0, ~0, ~0 },
1772 .dest_type = dest_type,
1773 .swizzle = SWIZZLE_IDENTITY_4,
1774 .texture = {
1775 .op = midgard_texop,
1776 .format = midgard_tex_format(instr->sampler_dim),
1777 .texture_handle = texture_index,
1778 .sampler_handle = sampler_index,
1779 .shadow = instr->is_shadow,
1780 }
1781 };
1782
1783 if (instr->is_shadow && !instr->is_new_style_shadow)
1784 for (int i = 0; i < 4; ++i)
1785 ins.swizzle[0][i] = COMPONENT_X;
1786
1787 /* We may need a temporary for the coordinate */
1788
1789 bool needs_temp_coord =
1790 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1791 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1792 (instr->is_shadow);
1793
1794 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1795
1796 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1797 int index = nir_src_index(ctx, &instr->src[i].src);
1798 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1799 unsigned sz = nir_src_bit_size(instr->src[i].src);
1800 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
1801
1802 switch (instr->src[i].src_type) {
1803 case nir_tex_src_coord: {
1804 emit_explicit_constant(ctx, index, index);
1805
1806 unsigned coord_mask = mask_of(instr->coord_components);
1807
1808 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1809
1810 if (flip_zw)
1811 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1812
1813 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1814 /* texelFetch is undefined on samplerCube */
1815 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1816
1817 /* For cubemaps, we use a special ld/st op to
1818 * select the face and copy the xy into the
1819 * texture register */
1820
1821 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1822 ld.src[1] = index;
1823 ld.src_types[1] = T;
1824 ld.mask = 0x3; /* xy */
1825 ld.load_store.arg_1 = 0x20;
1826 ld.swizzle[1][3] = COMPONENT_X;
1827 emit_mir_instruction(ctx, ld);
1828
1829 /* xyzw -> xyxx */
1830 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1831 ins.swizzle[1][3] = COMPONENT_X;
1832 } else if (needs_temp_coord) {
1833 /* mov coord_temp, coords */
1834 midgard_instruction mov = v_mov(index, coords);
1835 mov.mask = coord_mask;
1836
1837 if (flip_zw)
1838 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1839
1840 emit_mir_instruction(ctx, mov);
1841 } else {
1842 coords = index;
1843 }
1844
1845 ins.src[1] = coords;
1846 ins.src_types[1] = T;
1847
1848 /* Texelfetch coordinates uses all four elements
1849 * (xyz/index) regardless of texture dimensionality,
1850 * which means it's necessary to zero the unused
1851 * components to keep everything happy */
1852
1853 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1854 /* mov index.zw, #0, or generalized */
1855 midgard_instruction mov =
1856 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1857 mov.has_constants = true;
1858 mov.mask = coord_mask ^ 0xF;
1859 emit_mir_instruction(ctx, mov);
1860 }
1861
1862 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1863 /* Array component in w but NIR wants it in z,
1864 * but if we have a temp coord we already fixed
1865 * that up */
1866
1867 if (nr_components == 3) {
1868 ins.swizzle[1][2] = COMPONENT_Z;
1869 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1870 } else if (nr_components == 2) {
1871 ins.swizzle[1][2] =
1872 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1873 ins.swizzle[1][3] = COMPONENT_X;
1874 } else
1875 unreachable("Invalid texture 2D components");
1876 }
1877
1878 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1879 /* We zeroed */
1880 ins.swizzle[1][2] = COMPONENT_Z;
1881 ins.swizzle[1][3] = COMPONENT_W;
1882 }
1883
1884 break;
1885 }
1886
1887 case nir_tex_src_bias:
1888 case nir_tex_src_lod: {
1889 /* Try as a constant if we can */
1890
1891 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1892 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1893 break;
1894
1895 ins.texture.lod_register = true;
1896 ins.src[2] = index;
1897 ins.src_types[2] = T;
1898
1899 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1900 ins.swizzle[2][c] = COMPONENT_X;
1901
1902 emit_explicit_constant(ctx, index, index);
1903
1904 break;
1905 };
1906
1907 case nir_tex_src_offset: {
1908 ins.texture.offset_register = true;
1909 ins.src[3] = index;
1910 ins.src_types[3] = T;
1911
1912 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1913 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1914
1915 emit_explicit_constant(ctx, index, index);
1916 break;
1917 };
1918
1919 case nir_tex_src_comparator: {
1920 unsigned comp = COMPONENT_Z;
1921
1922 /* mov coord_temp.foo, coords */
1923 midgard_instruction mov = v_mov(index, coords);
1924 mov.mask = 1 << comp;
1925
1926 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1927 mov.swizzle[1][i] = COMPONENT_X;
1928
1929 emit_mir_instruction(ctx, mov);
1930 break;
1931 }
1932
1933 default: {
1934 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
1935 assert(0);
1936 }
1937 }
1938 }
1939
1940 emit_mir_instruction(ctx, ins);
1941 }
1942
1943 static void
1944 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1945 {
1946 switch (instr->op) {
1947 case nir_texop_tex:
1948 case nir_texop_txb:
1949 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1950 break;
1951 case nir_texop_txl:
1952 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1953 break;
1954 case nir_texop_txf:
1955 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1956 break;
1957 case nir_texop_txs:
1958 emit_sysval_read(ctx, &instr->instr, 4, 0);
1959 break;
1960 default: {
1961 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
1962 assert(0);
1963 }
1964 }
1965 }
1966
1967 static void
1968 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1969 {
1970 switch (instr->type) {
1971 case nir_jump_break: {
1972 /* Emit a branch out of the loop */
1973 struct midgard_instruction br = v_branch(false, false);
1974 br.branch.target_type = TARGET_BREAK;
1975 br.branch.target_break = ctx->current_loop_depth;
1976 emit_mir_instruction(ctx, br);
1977 break;
1978 }
1979
1980 default:
1981 DBG("Unknown jump type %d\n", instr->type);
1982 break;
1983 }
1984 }
1985
1986 static void
1987 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1988 {
1989 switch (instr->type) {
1990 case nir_instr_type_load_const:
1991 emit_load_const(ctx, nir_instr_as_load_const(instr));
1992 break;
1993
1994 case nir_instr_type_intrinsic:
1995 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1996 break;
1997
1998 case nir_instr_type_alu:
1999 emit_alu(ctx, nir_instr_as_alu(instr));
2000 break;
2001
2002 case nir_instr_type_tex:
2003 emit_tex(ctx, nir_instr_as_tex(instr));
2004 break;
2005
2006 case nir_instr_type_jump:
2007 emit_jump(ctx, nir_instr_as_jump(instr));
2008 break;
2009
2010 case nir_instr_type_ssa_undef:
2011 /* Spurious */
2012 break;
2013
2014 default:
2015 DBG("Unhandled instruction type\n");
2016 break;
2017 }
2018 }
2019
2020
2021 /* ALU instructions can inline or embed constants, which decreases register
2022 * pressure and saves space. */
2023
2024 #define CONDITIONAL_ATTACH(idx) { \
2025 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2026 \
2027 if (entry) { \
2028 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2029 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2030 } \
2031 }
2032
2033 static void
2034 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2035 {
2036 mir_foreach_instr_in_block(block, alu) {
2037 /* Other instructions cannot inline constants */
2038 if (alu->type != TAG_ALU_4) continue;
2039 if (alu->compact_branch) continue;
2040
2041 /* If there is already a constant here, we can do nothing */
2042 if (alu->has_constants) continue;
2043
2044 CONDITIONAL_ATTACH(0);
2045
2046 if (!alu->has_constants) {
2047 CONDITIONAL_ATTACH(1)
2048 } else if (!alu->inline_constant) {
2049 /* Corner case: _two_ vec4 constants, for instance with a
2050 * csel. For this case, we can only use a constant
2051 * register for one, we'll have to emit a move for the
2052 * other. */
2053
2054 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2055 unsigned scratch = make_compiler_temp(ctx);
2056
2057 if (entry) {
2058 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2059 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2060
2061 /* Set the source */
2062 alu->src[1] = scratch;
2063
2064 /* Inject us -before- the last instruction which set r31 */
2065 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2066 }
2067 }
2068 }
2069 }
2070
2071 /* Midgard supports two types of constants, embedded constants (128-bit) and
2072 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2073 * constants can be demoted to inline constants, for space savings and
2074 * sometimes a performance boost */
2075
2076 static void
2077 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2078 {
2079 mir_foreach_instr_in_block(block, ins) {
2080 if (!ins->has_constants) continue;
2081 if (ins->has_inline_constant) continue;
2082
2083 /* Blend constants must not be inlined by definition */
2084 if (ins->has_blend_constant) continue;
2085
2086 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2087 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2088 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2089
2090 if (!(is_16 || is_32))
2091 continue;
2092
2093 /* src1 cannot be an inline constant due to encoding
2094 * restrictions. So, if possible we try to flip the arguments
2095 * in that case */
2096
2097 int op = ins->alu.op;
2098
2099 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2100 alu_opcode_props[op].props & OP_COMMUTES) {
2101 mir_flip(ins);
2102 }
2103
2104 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2105 /* Component is from the swizzle. Take a nonzero component */
2106 assert(ins->mask);
2107 unsigned first_comp = ffs(ins->mask) - 1;
2108 unsigned component = ins->swizzle[1][first_comp];
2109
2110 /* Scale constant appropriately, if we can legally */
2111 int16_t scaled_constant = 0;
2112
2113 if (is_16) {
2114 scaled_constant = ins->constants.u16[component];
2115 } else if (midgard_is_integer_op(op)) {
2116 scaled_constant = ins->constants.u32[component];
2117
2118 /* Constant overflow after resize */
2119 if (scaled_constant != ins->constants.u32[component])
2120 continue;
2121 } else {
2122 float original = ins->constants.f32[component];
2123 scaled_constant = _mesa_float_to_half(original);
2124
2125 /* Check for loss of precision. If this is
2126 * mediump, we don't care, but for a highp
2127 * shader, we need to pay attention. NIR
2128 * doesn't yet tell us which mode we're in!
2129 * Practically this prevents most constants
2130 * from being inlined, sadly. */
2131
2132 float fp32 = _mesa_half_to_float(scaled_constant);
2133
2134 if (fp32 != original)
2135 continue;
2136 }
2137
2138 /* Should've been const folded */
2139 if (ins->src_abs[1] || ins->src_neg[1])
2140 continue;
2141
2142 /* Make sure that the constant is not itself a vector
2143 * by checking if all accessed values are the same. */
2144
2145 const midgard_constants *cons = &ins->constants;
2146 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2147
2148 bool is_vector = false;
2149 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2150
2151 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2152 /* We only care if this component is actually used */
2153 if (!(mask & (1 << c)))
2154 continue;
2155
2156 uint32_t test = is_16 ?
2157 cons->u16[ins->swizzle[1][c]] :
2158 cons->u32[ins->swizzle[1][c]];
2159
2160 if (test != value) {
2161 is_vector = true;
2162 break;
2163 }
2164 }
2165
2166 if (is_vector)
2167 continue;
2168
2169 /* Get rid of the embedded constant */
2170 ins->has_constants = false;
2171 ins->src[1] = ~0;
2172 ins->has_inline_constant = true;
2173 ins->inline_constant = scaled_constant;
2174 }
2175 }
2176 }
2177
2178 /* Dead code elimination for branches at the end of a block - only one branch
2179 * per block is legal semantically */
2180
2181 static void
2182 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2183 {
2184 bool branched = false;
2185
2186 mir_foreach_instr_in_block_safe(block, ins) {
2187 if (!midgard_is_branch_unit(ins->unit)) continue;
2188
2189 if (branched)
2190 mir_remove_instruction(ins);
2191
2192 branched = true;
2193 }
2194 }
2195
2196 /* We want to force the invert on AND/OR to the second slot to legalize into
2197 * iandnot/iornot. The relevant patterns are for AND (and OR respectively)
2198 *
2199 * ~a & #b = ~a & ~(#~b)
2200 * ~a & b = b & ~a
2201 */
2202
2203 static void
2204 midgard_legalize_invert(compiler_context *ctx, midgard_block *block)
2205 {
2206 mir_foreach_instr_in_block(block, ins) {
2207 if (ins->type != TAG_ALU_4) continue;
2208
2209 if (ins->alu.op != midgard_alu_op_iand &&
2210 ins->alu.op != midgard_alu_op_ior) continue;
2211
2212 if (ins->src_invert[1] || !ins->src_invert[0]) continue;
2213
2214 if (ins->has_inline_constant) {
2215 /* ~(#~a) = ~(~#a) = a, so valid, and forces both
2216 * inverts on */
2217 ins->inline_constant = ~ins->inline_constant;
2218 ins->src_invert[1] = true;
2219 } else {
2220 /* Flip to the right invert order. Note
2221 * has_inline_constant false by assumption on the
2222 * branch, so flipping makes sense. */
2223 mir_flip(ins);
2224 }
2225 }
2226 }
2227
2228 static unsigned
2229 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2230 {
2231 /* Loop to ourselves */
2232 midgard_instruction *br = ctx->writeout_branch[rt];
2233 struct midgard_instruction ins = v_branch(false, false);
2234 ins.writeout = true;
2235 ins.writeout_depth = br->writeout_depth;
2236 ins.writeout_stencil = br->writeout_stencil;
2237 ins.branch.target_block = ctx->block_count - 1;
2238 ins.constants.u32[0] = br->constants.u32[0];
2239 emit_mir_instruction(ctx, ins);
2240
2241 ctx->current_block->epilogue = true;
2242 schedule_barrier(ctx);
2243 return ins.branch.target_block;
2244 }
2245
2246 static midgard_block *
2247 emit_block(compiler_context *ctx, nir_block *block)
2248 {
2249 midgard_block *this_block = ctx->after_block;
2250 ctx->after_block = NULL;
2251
2252 if (!this_block)
2253 this_block = create_empty_block(ctx);
2254
2255 list_addtail(&this_block->base.link, &ctx->blocks);
2256
2257 this_block->scheduled = false;
2258 ++ctx->block_count;
2259
2260 /* Set up current block */
2261 list_inithead(&this_block->base.instructions);
2262 ctx->current_block = this_block;
2263
2264 nir_foreach_instr(instr, block) {
2265 emit_instr(ctx, instr);
2266 ++ctx->instruction_count;
2267 }
2268
2269 return this_block;
2270 }
2271
2272 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2273
2274 static void
2275 emit_if(struct compiler_context *ctx, nir_if *nif)
2276 {
2277 midgard_block *before_block = ctx->current_block;
2278
2279 /* Speculatively emit the branch, but we can't fill it in until later */
2280 bool inv = false;
2281 EMIT(branch, true, true);
2282 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2283 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2284 then_branch->src_types[0] = nir_type_uint32;
2285 then_branch->branch.invert_conditional = !inv;
2286
2287 /* Emit the two subblocks. */
2288 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2289 midgard_block *end_then_block = ctx->current_block;
2290
2291 /* Emit a jump from the end of the then block to the end of the else */
2292 EMIT(branch, false, false);
2293 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2294
2295 /* Emit second block, and check if it's empty */
2296
2297 int else_idx = ctx->block_count;
2298 int count_in = ctx->instruction_count;
2299 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2300 midgard_block *end_else_block = ctx->current_block;
2301 int after_else_idx = ctx->block_count;
2302
2303 /* Now that we have the subblocks emitted, fix up the branches */
2304
2305 assert(then_block);
2306 assert(else_block);
2307
2308 if (ctx->instruction_count == count_in) {
2309 /* The else block is empty, so don't emit an exit jump */
2310 mir_remove_instruction(then_exit);
2311 then_branch->branch.target_block = after_else_idx;
2312 } else {
2313 then_branch->branch.target_block = else_idx;
2314 then_exit->branch.target_block = after_else_idx;
2315 }
2316
2317 /* Wire up the successors */
2318
2319 ctx->after_block = create_empty_block(ctx);
2320
2321 pan_block_add_successor(&before_block->base, &then_block->base);
2322 pan_block_add_successor(&before_block->base, &else_block->base);
2323
2324 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2325 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2326 }
2327
2328 static void
2329 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2330 {
2331 /* Remember where we are */
2332 midgard_block *start_block = ctx->current_block;
2333
2334 /* Allocate a loop number, growing the current inner loop depth */
2335 int loop_idx = ++ctx->current_loop_depth;
2336
2337 /* Get index from before the body so we can loop back later */
2338 int start_idx = ctx->block_count;
2339
2340 /* Emit the body itself */
2341 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2342
2343 /* Branch back to loop back */
2344 struct midgard_instruction br_back = v_branch(false, false);
2345 br_back.branch.target_block = start_idx;
2346 emit_mir_instruction(ctx, br_back);
2347
2348 /* Mark down that branch in the graph. */
2349 pan_block_add_successor(&start_block->base, &loop_block->base);
2350 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2351
2352 /* Find the index of the block about to follow us (note: we don't add
2353 * one; blocks are 0-indexed so we get a fencepost problem) */
2354 int break_block_idx = ctx->block_count;
2355
2356 /* Fix up the break statements we emitted to point to the right place,
2357 * now that we can allocate a block number for them */
2358 ctx->after_block = create_empty_block(ctx);
2359
2360 mir_foreach_block_from(ctx, start_block, _block) {
2361 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2362 if (ins->type != TAG_ALU_4) continue;
2363 if (!ins->compact_branch) continue;
2364
2365 /* We found a branch -- check the type to see if we need to do anything */
2366 if (ins->branch.target_type != TARGET_BREAK) continue;
2367
2368 /* It's a break! Check if it's our break */
2369 if (ins->branch.target_break != loop_idx) continue;
2370
2371 /* Okay, cool, we're breaking out of this loop.
2372 * Rewrite from a break to a goto */
2373
2374 ins->branch.target_type = TARGET_GOTO;
2375 ins->branch.target_block = break_block_idx;
2376
2377 pan_block_add_successor(_block, &ctx->after_block->base);
2378 }
2379 }
2380
2381 /* Now that we've finished emitting the loop, free up the depth again
2382 * so we play nice with recursion amid nested loops */
2383 --ctx->current_loop_depth;
2384
2385 /* Dump loop stats */
2386 ++ctx->loop_count;
2387 }
2388
2389 static midgard_block *
2390 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2391 {
2392 midgard_block *start_block = NULL;
2393
2394 foreach_list_typed(nir_cf_node, node, node, list) {
2395 switch (node->type) {
2396 case nir_cf_node_block: {
2397 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2398
2399 if (!start_block)
2400 start_block = block;
2401
2402 break;
2403 }
2404
2405 case nir_cf_node_if:
2406 emit_if(ctx, nir_cf_node_as_if(node));
2407 break;
2408
2409 case nir_cf_node_loop:
2410 emit_loop(ctx, nir_cf_node_as_loop(node));
2411 break;
2412
2413 case nir_cf_node_function:
2414 assert(0);
2415 break;
2416 }
2417 }
2418
2419 return start_block;
2420 }
2421
2422 /* Due to lookahead, we need to report the first tag executed in the command
2423 * stream and in branch targets. An initial block might be empty, so iterate
2424 * until we find one that 'works' */
2425
2426 static unsigned
2427 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2428 {
2429 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2430
2431 mir_foreach_block_from(ctx, initial_block, _v) {
2432 midgard_block *v = (midgard_block *) _v;
2433 if (v->quadword_count) {
2434 midgard_bundle *initial_bundle =
2435 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2436
2437 return initial_bundle->tag;
2438 }
2439 }
2440
2441 /* Default to a tag 1 which will break from the shader, in case we jump
2442 * to the exit block (i.e. `return` in a compute shader) */
2443
2444 return 1;
2445 }
2446
2447 /* For each fragment writeout instruction, generate a writeout loop to
2448 * associate with it */
2449
2450 static void
2451 mir_add_writeout_loops(compiler_context *ctx)
2452 {
2453 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2454 midgard_instruction *br = ctx->writeout_branch[rt];
2455 if (!br) continue;
2456
2457 unsigned popped = br->branch.target_block;
2458 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2459 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2460 br->branch.target_type = TARGET_GOTO;
2461
2462 /* If we have more RTs, we'll need to restore back after our
2463 * loop terminates */
2464
2465 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2466 midgard_instruction uncond = v_branch(false, false);
2467 uncond.branch.target_block = popped;
2468 uncond.branch.target_type = TARGET_GOTO;
2469 emit_mir_instruction(ctx, uncond);
2470 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2471 schedule_barrier(ctx);
2472 } else {
2473 /* We're last, so we can terminate here */
2474 br->last_writeout = true;
2475 }
2476 }
2477 }
2478
2479 int
2480 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2481 {
2482 struct util_dynarray *compiled = &program->compiled;
2483
2484 midgard_debug = debug_get_option_midgard_debug();
2485
2486 /* TODO: Bound against what? */
2487 compiler_context *ctx = rzalloc(NULL, compiler_context);
2488
2489 ctx->nir = nir;
2490 ctx->stage = nir->info.stage;
2491 ctx->is_blend = is_blend;
2492 ctx->alpha_ref = program->alpha_ref;
2493 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2494 ctx->quirks = midgard_get_quirks(gpu_id);
2495
2496 /* Start off with a safe cutoff, allowing usage of all 16 work
2497 * registers. Later, we'll promote uniform reads to uniform registers
2498 * if we determine it is beneficial to do so */
2499 ctx->uniform_cutoff = 8;
2500
2501 /* Initialize at a global (not block) level hash tables */
2502
2503 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2504 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2505
2506 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2507 * (so we don't accidentally duplicate the epilogue since mesa/st has
2508 * messed with our I/O quite a bit already) */
2509
2510 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2511
2512 if (ctx->stage == MESA_SHADER_VERTEX) {
2513 NIR_PASS_V(nir, nir_lower_viewport_transform);
2514 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2515 }
2516
2517 NIR_PASS_V(nir, nir_lower_var_copies);
2518 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2519 NIR_PASS_V(nir, nir_split_var_copies);
2520 NIR_PASS_V(nir, nir_lower_var_copies);
2521 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2522 NIR_PASS_V(nir, nir_lower_var_copies);
2523 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2524
2525 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2526 NIR_PASS_V(nir, nir_lower_ssbo);
2527
2528 /* Optimisation passes */
2529
2530 optimise_nir(nir, ctx->quirks, is_blend);
2531
2532 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2533 nir_print_shader(nir, stdout);
2534 }
2535
2536 /* Assign sysvals and counts, now that we're sure
2537 * (post-optimisation) */
2538
2539 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2540 program->sysval_count = ctx->sysvals.sysval_count;
2541 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2542
2543 nir_foreach_function(func, nir) {
2544 if (!func->impl)
2545 continue;
2546
2547 list_inithead(&ctx->blocks);
2548 ctx->block_count = 0;
2549 ctx->func = func;
2550 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
2551
2552 emit_cf_list(ctx, &func->impl->body);
2553 free(ctx->already_emitted);
2554 break; /* TODO: Multi-function shaders */
2555 }
2556
2557 util_dynarray_init(compiled, NULL);
2558
2559 /* Per-block lowering before opts */
2560
2561 mir_foreach_block(ctx, _block) {
2562 midgard_block *block = (midgard_block *) _block;
2563 inline_alu_constants(ctx, block);
2564 embedded_to_inline_constant(ctx, block);
2565 }
2566 /* MIR-level optimizations */
2567
2568 bool progress = false;
2569
2570 do {
2571 progress = false;
2572 progress |= midgard_opt_dead_code_eliminate(ctx);
2573
2574 mir_foreach_block(ctx, _block) {
2575 midgard_block *block = (midgard_block *) _block;
2576 progress |= midgard_opt_copy_prop(ctx, block);
2577 progress |= midgard_opt_combine_projection(ctx, block);
2578 progress |= midgard_opt_varying_projection(ctx, block);
2579 }
2580 } while (progress);
2581
2582 mir_foreach_block(ctx, _block) {
2583 midgard_block *block = (midgard_block *) _block;
2584 midgard_lower_derivatives(ctx, block);
2585 midgard_legalize_invert(ctx, block);
2586 midgard_cull_dead_branch(ctx, block);
2587 }
2588
2589 if (ctx->stage == MESA_SHADER_FRAGMENT)
2590 mir_add_writeout_loops(ctx);
2591
2592 /* Analyze now that the code is known but before scheduling creates
2593 * pipeline registers which are harder to track */
2594 mir_analyze_helper_terminate(ctx);
2595 mir_analyze_helper_requirements(ctx);
2596
2597 /* Schedule! */
2598 midgard_schedule_program(ctx);
2599 mir_ra(ctx);
2600
2601 /* Now that all the bundles are scheduled and we can calculate block
2602 * sizes, emit actual branch instructions rather than placeholders */
2603
2604 int br_block_idx = 0;
2605
2606 mir_foreach_block(ctx, _block) {
2607 midgard_block *block = (midgard_block *) _block;
2608 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2609 for (int c = 0; c < bundle->instruction_count; ++c) {
2610 midgard_instruction *ins = bundle->instructions[c];
2611
2612 if (!midgard_is_branch_unit(ins->unit)) continue;
2613
2614 /* Parse some basic branch info */
2615 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2616 bool is_conditional = ins->branch.conditional;
2617 bool is_inverted = ins->branch.invert_conditional;
2618 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2619 bool is_writeout = ins->writeout;
2620
2621 /* Determine the block we're jumping to */
2622 int target_number = ins->branch.target_block;
2623
2624 /* Report the destination tag */
2625 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2626
2627 /* Count up the number of quadwords we're
2628 * jumping over = number of quadwords until
2629 * (br_block_idx, target_number) */
2630
2631 int quadword_offset = 0;
2632
2633 if (is_discard) {
2634 /* Ignored */
2635 } else if (target_number > br_block_idx) {
2636 /* Jump forward */
2637
2638 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2639 midgard_block *blk = mir_get_block(ctx, idx);
2640 assert(blk);
2641
2642 quadword_offset += blk->quadword_count;
2643 }
2644 } else {
2645 /* Jump backwards */
2646
2647 for (int idx = br_block_idx; idx >= target_number; --idx) {
2648 midgard_block *blk = mir_get_block(ctx, idx);
2649 assert(blk);
2650
2651 quadword_offset -= blk->quadword_count;
2652 }
2653 }
2654
2655 /* Unconditional extended branches (far jumps)
2656 * have issues, so we always use a conditional
2657 * branch, setting the condition to always for
2658 * unconditional. For compact unconditional
2659 * branches, cond isn't used so it doesn't
2660 * matter what we pick. */
2661
2662 midgard_condition cond =
2663 !is_conditional ? midgard_condition_always :
2664 is_inverted ? midgard_condition_false :
2665 midgard_condition_true;
2666
2667 midgard_jmp_writeout_op op =
2668 is_discard ? midgard_jmp_writeout_op_discard :
2669 is_writeout ? midgard_jmp_writeout_op_writeout :
2670 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2671 midgard_jmp_writeout_op_branch_cond;
2672
2673 if (!is_compact) {
2674 midgard_branch_extended branch =
2675 midgard_create_branch_extended(
2676 cond, op,
2677 dest_tag,
2678 quadword_offset);
2679
2680 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2681 } else if (is_conditional || is_discard) {
2682 midgard_branch_cond branch = {
2683 .op = op,
2684 .dest_tag = dest_tag,
2685 .offset = quadword_offset,
2686 .cond = cond
2687 };
2688
2689 assert(branch.offset == quadword_offset);
2690
2691 memcpy(&ins->br_compact, &branch, sizeof(branch));
2692 } else {
2693 assert(op == midgard_jmp_writeout_op_branch_uncond);
2694
2695 midgard_branch_uncond branch = {
2696 .op = op,
2697 .dest_tag = dest_tag,
2698 .offset = quadword_offset,
2699 .unknown = 1
2700 };
2701
2702 assert(branch.offset == quadword_offset);
2703
2704 memcpy(&ins->br_compact, &branch, sizeof(branch));
2705 }
2706 }
2707 }
2708
2709 ++br_block_idx;
2710 }
2711
2712 /* Emit flat binary from the instruction arrays. Iterate each block in
2713 * sequence. Save instruction boundaries such that lookahead tags can
2714 * be assigned easily */
2715
2716 /* Cache _all_ bundles in source order for lookahead across failed branches */
2717
2718 int bundle_count = 0;
2719 mir_foreach_block(ctx, _block) {
2720 midgard_block *block = (midgard_block *) _block;
2721 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2722 }
2723 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2724 int bundle_idx = 0;
2725 mir_foreach_block(ctx, _block) {
2726 midgard_block *block = (midgard_block *) _block;
2727 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2728 source_order_bundles[bundle_idx++] = bundle;
2729 }
2730 }
2731
2732 int current_bundle = 0;
2733
2734 /* Midgard prefetches instruction types, so during emission we
2735 * need to lookahead. Unless this is the last instruction, in
2736 * which we return 1. */
2737
2738 mir_foreach_block(ctx, _block) {
2739 midgard_block *block = (midgard_block *) _block;
2740 mir_foreach_bundle_in_block(block, bundle) {
2741 int lookahead = 1;
2742
2743 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2744 lookahead = source_order_bundles[current_bundle + 1]->tag;
2745
2746 emit_binary_bundle(ctx, block, bundle, compiled, lookahead);
2747 ++current_bundle;
2748 }
2749
2750 /* TODO: Free deeper */
2751 //util_dynarray_fini(&block->instructions);
2752 }
2753
2754 free(source_order_bundles);
2755
2756 /* Report the very first tag executed */
2757 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2758
2759 /* Deal with off-by-one related to the fencepost problem */
2760 program->work_register_count = ctx->work_registers + 1;
2761 program->uniform_cutoff = ctx->uniform_cutoff;
2762
2763 program->blend_patch_offset = ctx->blend_constant_offset;
2764 program->tls_size = ctx->tls_size;
2765
2766 if (midgard_debug & MIDGARD_DBG_SHADERS)
2767 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2768
2769 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2770 unsigned nr_bundles = 0, nr_ins = 0;
2771
2772 /* Count instructions and bundles */
2773
2774 mir_foreach_block(ctx, _block) {
2775 midgard_block *block = (midgard_block *) _block;
2776 nr_bundles += util_dynarray_num_elements(
2777 &block->bundles, midgard_bundle);
2778
2779 mir_foreach_bundle_in_block(block, bun)
2780 nr_ins += bun->instruction_count;
2781 }
2782
2783 /* Calculate thread count. There are certain cutoffs by
2784 * register count for thread count */
2785
2786 unsigned nr_registers = program->work_register_count;
2787
2788 unsigned nr_threads =
2789 (nr_registers <= 4) ? 4 :
2790 (nr_registers <= 8) ? 2 :
2791 1;
2792
2793 /* Dump stats */
2794
2795 fprintf(stderr, "shader%d - %s shader: "
2796 "%u inst, %u bundles, %u quadwords, "
2797 "%u registers, %u threads, %u loops, "
2798 "%u:%u spills:fills\n",
2799 SHADER_DB_COUNT++,
2800 ctx->is_blend ? "PAN_SHADER_BLEND" :
2801 gl_shader_stage_name(ctx->stage),
2802 nr_ins, nr_bundles, ctx->quadword_count,
2803 nr_registers, nr_threads,
2804 ctx->loop_count,
2805 ctx->spills, ctx->fills);
2806 }
2807
2808 ralloc_free(ctx);
2809
2810 return 0;
2811 }