pan/midgard: Track csel swizzle
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 assert(block);
82 assert(successor);
83
84 /* Deduplicate */
85 for (unsigned i = 0; i < block->nr_successors; ++i) {
86 if (block->successors[i] == successor)
87 return;
88 }
89
90 block->successors[block->nr_successors++] = successor;
91 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
92
93 /* Note the predecessor in the other direction */
94 _mesa_set_add(successor->predecessors, block);
95 }
96
97 /* Helpers to generate midgard_instruction's using macro magic, since every
98 * driver seems to do it that way */
99
100 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
101
102 #define M_LOAD_STORE(name, store) \
103 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
104 midgard_instruction i = { \
105 .type = TAG_LOAD_STORE_4, \
106 .mask = 0xF, \
107 .dest = ~0, \
108 .src = { ~0, ~0, ~0 }, \
109 .load_store = { \
110 .op = midgard_op_##name, \
111 .swizzle = SWIZZLE_XYZW, \
112 .address = address \
113 } \
114 }; \
115 \
116 if (store) \
117 i.src[0] = ssa; \
118 else \
119 i.dest = ssa; \
120 \
121 return i; \
122 }
123
124 #define M_LOAD(name) M_LOAD_STORE(name, false)
125 #define M_STORE(name) M_LOAD_STORE(name, true)
126
127 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
128 * the corresponding Midgard source */
129
130 static midgard_vector_alu_src
131 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
132 bool half, bool sext)
133 {
134 if (!src) return blank_alu_src;
135
136 /* Figure out how many components there are so we can adjust the
137 * swizzle. Specifically we want to broadcast the last channel so
138 * things like ball2/3 work
139 */
140
141 if (broadcast_count) {
142 uint8_t last_component = src->swizzle[broadcast_count - 1];
143
144 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
145 src->swizzle[c] = last_component;
146 }
147 }
148
149 midgard_vector_alu_src alu_src = {
150 .rep_low = 0,
151 .rep_high = 0,
152 .half = half,
153 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
154 };
155
156 if (is_int) {
157 alu_src.mod = midgard_int_normal;
158
159 /* Sign/zero-extend if needed */
160
161 if (half) {
162 alu_src.mod = sext ?
163 midgard_int_sign_extend
164 : midgard_int_zero_extend;
165 }
166
167 /* These should have been lowered away */
168 assert(!(src->abs || src->negate));
169 } else {
170 alu_src.mod = (src->abs << 0) | (src->negate << 1);
171 }
172
173 return alu_src;
174 }
175
176 /* load/store instructions have both 32-bit and 16-bit variants, depending on
177 * whether we are using vectors composed of highp or mediump. At the moment, we
178 * don't support half-floats -- this requires changes in other parts of the
179 * compiler -- therefore the 16-bit versions are commented out. */
180
181 //M_LOAD(ld_attr_16);
182 M_LOAD(ld_attr_32);
183 //M_LOAD(ld_vary_16);
184 M_LOAD(ld_vary_32);
185 M_LOAD(ld_ubo_int4);
186 M_LOAD(ld_int4);
187 M_STORE(st_int4);
188 M_LOAD(ld_color_buffer_8);
189 //M_STORE(st_vary_16);
190 M_STORE(st_vary_32);
191 M_LOAD(ld_cubemap_coords);
192 M_LOAD(ld_compute_id);
193
194 static midgard_instruction
195 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
196 {
197 midgard_branch_cond branch = {
198 .op = op,
199 .dest_tag = tag,
200 .offset = offset,
201 .cond = cond
202 };
203
204 uint16_t compact;
205 memcpy(&compact, &branch, sizeof(branch));
206
207 midgard_instruction ins = {
208 .type = TAG_ALU_4,
209 .unit = ALU_ENAB_BR_COMPACT,
210 .prepacked_branch = true,
211 .compact_branch = true,
212 .br_compact = compact,
213 .dest = ~0,
214 .src = { ~0, ~0, ~0 },
215 };
216
217 if (op == midgard_jmp_writeout_op_writeout)
218 ins.writeout = true;
219
220 return ins;
221 }
222
223 static midgard_instruction
224 v_branch(bool conditional, bool invert)
225 {
226 midgard_instruction ins = {
227 .type = TAG_ALU_4,
228 .unit = ALU_ENAB_BRANCH,
229 .compact_branch = true,
230 .branch = {
231 .conditional = conditional,
232 .invert_conditional = invert
233 },
234 .dest = ~0,
235 .src = { ~0, ~0, ~0 },
236 };
237
238 return ins;
239 }
240
241 static midgard_branch_extended
242 midgard_create_branch_extended( midgard_condition cond,
243 midgard_jmp_writeout_op op,
244 unsigned dest_tag,
245 signed quadword_offset)
246 {
247 /* The condition code is actually a LUT describing a function to
248 * combine multiple condition codes. However, we only support a single
249 * condition code at the moment, so we just duplicate over a bunch of
250 * times. */
251
252 uint16_t duplicated_cond =
253 (cond << 14) |
254 (cond << 12) |
255 (cond << 10) |
256 (cond << 8) |
257 (cond << 6) |
258 (cond << 4) |
259 (cond << 2) |
260 (cond << 0);
261
262 midgard_branch_extended branch = {
263 .op = op,
264 .dest_tag = dest_tag,
265 .offset = quadword_offset,
266 .cond = duplicated_cond
267 };
268
269 return branch;
270 }
271
272 static void
273 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
274 {
275 ins->has_constants = true;
276 memcpy(&ins->constants, constants, 16);
277 }
278
279 static int
280 glsl_type_size(const struct glsl_type *type, bool bindless)
281 {
282 return glsl_count_attribute_slots(type, false);
283 }
284
285 /* Lower fdot2 to a vector multiplication followed by channel addition */
286 static void
287 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
288 {
289 if (alu->op != nir_op_fdot2)
290 return;
291
292 b->cursor = nir_before_instr(&alu->instr);
293
294 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
295 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
296
297 nir_ssa_def *product = nir_fmul(b, src0, src1);
298
299 nir_ssa_def *sum = nir_fadd(b,
300 nir_channel(b, product, 0),
301 nir_channel(b, product, 1));
302
303 /* Replace the fdot2 with this sum */
304 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
305 }
306
307 static int
308 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
309 {
310 /* This is way too meta */
311 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
312 unsigned idx_idx = is_store ? 1 : 0;
313
314 nir_src index = instr->src[idx_idx];
315 assert(nir_src_is_const(index));
316 uint32_t uindex = nir_src_as_uint(index);
317
318 return PAN_SYSVAL(SSBO, uindex);
319 }
320
321 static int
322 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
323 {
324 switch (instr->intrinsic) {
325 case nir_intrinsic_load_viewport_scale:
326 return PAN_SYSVAL_VIEWPORT_SCALE;
327 case nir_intrinsic_load_viewport_offset:
328 return PAN_SYSVAL_VIEWPORT_OFFSET;
329 case nir_intrinsic_load_num_work_groups:
330 return PAN_SYSVAL_NUM_WORK_GROUPS;
331 case nir_intrinsic_load_ssbo:
332 case nir_intrinsic_store_ssbo:
333 return midgard_sysval_for_ssbo(instr);
334 default:
335 return ~0;
336 }
337 }
338
339 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
340 unsigned *dest)
341 {
342 nir_intrinsic_instr *intr;
343 nir_dest *dst = NULL;
344 nir_tex_instr *tex;
345 int sysval = -1;
346
347 bool is_store = false;
348
349 switch (instr->type) {
350 case nir_instr_type_intrinsic:
351 intr = nir_instr_as_intrinsic(instr);
352 sysval = midgard_nir_sysval_for_intrinsic(intr);
353 dst = &intr->dest;
354 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
355 break;
356 case nir_instr_type_tex:
357 tex = nir_instr_as_tex(instr);
358 if (tex->op != nir_texop_txs)
359 break;
360
361 sysval = PAN_SYSVAL(TEXTURE_SIZE,
362 PAN_TXS_SYSVAL_ID(tex->texture_index,
363 nir_tex_instr_dest_size(tex) -
364 (tex->is_array ? 1 : 0),
365 tex->is_array));
366 dst = &tex->dest;
367 break;
368 default:
369 break;
370 }
371
372 if (dest && dst && !is_store)
373 *dest = nir_dest_index(ctx, dst);
374
375 return sysval;
376 }
377
378 static void
379 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
380 {
381 int sysval;
382
383 sysval = sysval_for_instr(ctx, instr, NULL);
384 if (sysval < 0)
385 return;
386
387 /* We have a sysval load; check if it's already been assigned */
388
389 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
390 return;
391
392 /* It hasn't -- so assign it now! */
393
394 unsigned id = ctx->sysval_count++;
395 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
396 ctx->sysvals[id] = sysval;
397 }
398
399 static void
400 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
401 {
402 ctx->sysval_count = 0;
403
404 nir_foreach_function(function, shader) {
405 if (!function->impl) continue;
406
407 nir_foreach_block(block, function->impl) {
408 nir_foreach_instr_safe(instr, block) {
409 midgard_nir_assign_sysval_body(ctx, instr);
410 }
411 }
412 }
413 }
414
415 static bool
416 midgard_nir_lower_fdot2(nir_shader *shader)
417 {
418 bool progress = false;
419
420 nir_foreach_function(function, shader) {
421 if (!function->impl) continue;
422
423 nir_builder _b;
424 nir_builder *b = &_b;
425 nir_builder_init(b, function->impl);
426
427 nir_foreach_block(block, function->impl) {
428 nir_foreach_instr_safe(instr, block) {
429 if (instr->type != nir_instr_type_alu) continue;
430
431 nir_alu_instr *alu = nir_instr_as_alu(instr);
432 midgard_nir_lower_fdot2_body(b, alu);
433
434 progress |= true;
435 }
436 }
437
438 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
439
440 }
441
442 return progress;
443 }
444
445 /* Flushes undefined values to zero */
446
447 static void
448 optimise_nir(nir_shader *nir)
449 {
450 bool progress;
451 unsigned lower_flrp =
452 (nir->options->lower_flrp16 ? 16 : 0) |
453 (nir->options->lower_flrp32 ? 32 : 0) |
454 (nir->options->lower_flrp64 ? 64 : 0);
455
456 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
457 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
458 NIR_PASS(progress, nir, nir_lower_idiv);
459
460 nir_lower_tex_options lower_tex_options = {
461 .lower_txs_lod = true,
462 .lower_txp = ~0
463 };
464
465 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
466
467 do {
468 progress = false;
469
470 NIR_PASS(progress, nir, nir_lower_var_copies);
471 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
472
473 NIR_PASS(progress, nir, nir_copy_prop);
474 NIR_PASS(progress, nir, nir_opt_dce);
475 NIR_PASS(progress, nir, nir_opt_dead_cf);
476 NIR_PASS(progress, nir, nir_opt_cse);
477 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
478 NIR_PASS(progress, nir, nir_opt_algebraic);
479 NIR_PASS(progress, nir, nir_opt_constant_folding);
480
481 if (lower_flrp != 0) {
482 bool lower_flrp_progress = false;
483 NIR_PASS(lower_flrp_progress,
484 nir,
485 nir_lower_flrp,
486 lower_flrp,
487 false /* always_precise */,
488 nir->options->lower_ffma);
489 if (lower_flrp_progress) {
490 NIR_PASS(progress, nir,
491 nir_opt_constant_folding);
492 progress = true;
493 }
494
495 /* Nothing should rematerialize any flrps, so we only
496 * need to do this lowering once.
497 */
498 lower_flrp = 0;
499 }
500
501 NIR_PASS(progress, nir, nir_opt_undef);
502 NIR_PASS(progress, nir, nir_undef_to_zero);
503
504 NIR_PASS(progress, nir, nir_opt_loop_unroll,
505 nir_var_shader_in |
506 nir_var_shader_out |
507 nir_var_function_temp);
508
509 NIR_PASS(progress, nir, nir_opt_vectorize);
510 } while (progress);
511
512 /* Must be run at the end to prevent creation of fsin/fcos ops */
513 NIR_PASS(progress, nir, midgard_nir_scale_trig);
514
515 do {
516 progress = false;
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 NIR_PASS(progress, nir, nir_opt_algebraic);
520 NIR_PASS(progress, nir, nir_opt_constant_folding);
521 NIR_PASS(progress, nir, nir_copy_prop);
522 } while (progress);
523
524 NIR_PASS(progress, nir, nir_opt_algebraic_late);
525
526 /* We implement booleans as 32-bit 0/~0 */
527 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
528
529 /* Now that booleans are lowered, we can run out late opts */
530 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
531
532 /* Lower mods for float ops only. Integer ops don't support modifiers
533 * (saturate doesn't make sense on integers, neg/abs require dedicated
534 * instructions) */
535
536 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
537 NIR_PASS(progress, nir, nir_copy_prop);
538 NIR_PASS(progress, nir, nir_opt_dce);
539
540 /* Take us out of SSA */
541 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
542 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
543
544 /* We are a vector architecture; write combine where possible */
545 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
546 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
547
548 NIR_PASS(progress, nir, nir_opt_dce);
549 }
550
551 /* Do not actually emit a load; instead, cache the constant for inlining */
552
553 static void
554 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
555 {
556 nir_ssa_def def = instr->def;
557
558 float *v = rzalloc_array(NULL, float, 4);
559 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
560
561 /* Shifted for SSA, +1 for off-by-one */
562 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
563 }
564
565 /* Normally constants are embedded implicitly, but for I/O and such we have to
566 * explicitly emit a move with the constant source */
567
568 static void
569 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
570 {
571 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
572
573 if (constant_value) {
574 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
575 attach_constants(ctx, &ins, constant_value, node + 1);
576 emit_mir_instruction(ctx, ins);
577 }
578 }
579
580 static bool
581 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
582 {
583 unsigned comp = src->swizzle[0];
584
585 for (unsigned c = 1; c < nr_components; ++c) {
586 if (src->swizzle[c] != comp)
587 return true;
588 }
589
590 return false;
591 }
592
593 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
594 * output of a conditional test) into that register */
595
596 static void
597 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
598 {
599 int condition = nir_src_index(ctx, src);
600
601 /* Source to swizzle the desired component into w */
602
603 const midgard_vector_alu_src alu_src = {
604 .swizzle = SWIZZLE(component, component, component, component),
605 };
606
607 /* There is no boolean move instruction. Instead, we simulate a move by
608 * ANDing the condition with itself to get it into r31.w */
609
610 midgard_instruction ins = {
611 .type = TAG_ALU_4,
612
613 /* We need to set the conditional as close as possible */
614 .precede_break = true,
615 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
616 .mask = 1 << COMPONENT_W,
617 .src = { condition, condition, ~0 },
618 .dest = SSA_FIXED_REGISTER(31),
619
620 .alu = {
621 .op = midgard_alu_op_iand,
622 .outmod = midgard_outmod_int_wrap,
623 .reg_mode = midgard_reg_mode_32,
624 .dest_override = midgard_dest_override_none,
625 .src1 = vector_alu_srco_unsigned(alu_src),
626 .src2 = vector_alu_srco_unsigned(alu_src)
627 },
628 };
629
630 emit_mir_instruction(ctx, ins);
631 }
632
633 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
634 * r31 instead */
635
636 static void
637 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
638 {
639 int condition = nir_src_index(ctx, &src->src);
640
641 /* Source to swizzle the desired component into w */
642
643 const midgard_vector_alu_src alu_src = {
644 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
645 };
646
647 /* There is no boolean move instruction. Instead, we simulate a move by
648 * ANDing the condition with itself to get it into r31.w */
649
650 midgard_instruction ins = {
651 .type = TAG_ALU_4,
652 .precede_break = true,
653 .mask = mask_of(nr_comp),
654 .src = { condition, condition, ~0 },
655 .dest = SSA_FIXED_REGISTER(31),
656 .alu = {
657 .op = midgard_alu_op_iand,
658 .outmod = midgard_outmod_int_wrap,
659 .reg_mode = midgard_reg_mode_32,
660 .dest_override = midgard_dest_override_none,
661 .src1 = vector_alu_srco_unsigned(alu_src),
662 .src2 = vector_alu_srco_unsigned(alu_src)
663 },
664 };
665
666 emit_mir_instruction(ctx, ins);
667 }
668
669 #define ALU_CASE(nir, _op) \
670 case nir_op_##nir: \
671 op = midgard_alu_op_##_op; \
672 assert(src_bitsize == dst_bitsize); \
673 break;
674
675 #define ALU_CASE_BCAST(nir, _op, count) \
676 case nir_op_##nir: \
677 op = midgard_alu_op_##_op; \
678 broadcast_swizzle = count; \
679 assert(src_bitsize == dst_bitsize); \
680 break;
681 static bool
682 nir_is_fzero_constant(nir_src src)
683 {
684 if (!nir_src_is_const(src))
685 return false;
686
687 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
688 if (nir_src_comp_as_float(src, c) != 0.0)
689 return false;
690 }
691
692 return true;
693 }
694
695 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
696 * special treatment override this anyway. */
697
698 static midgard_reg_mode
699 reg_mode_for_nir(nir_alu_instr *instr)
700 {
701 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
702
703 switch (src_bitsize) {
704 case 8:
705 return midgard_reg_mode_8;
706 case 16:
707 return midgard_reg_mode_16;
708 case 32:
709 return midgard_reg_mode_32;
710 case 64:
711 return midgard_reg_mode_64;
712 default:
713 unreachable("Invalid bit size");
714 }
715 }
716
717 static void
718 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
719 {
720 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
721 * is handled elsewhere */
722
723 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
724 midgard_emit_derivatives(ctx, instr);
725 return;
726 }
727
728 bool is_ssa = instr->dest.dest.is_ssa;
729
730 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
731 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
732 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
733
734 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
735 * supported. A few do not and are commented for now. Also, there are a
736 * number of NIR ops which Midgard does not support and need to be
737 * lowered, also TODO. This switch block emits the opcode and calling
738 * convention of the Midgard instruction; actual packing is done in
739 * emit_alu below */
740
741 unsigned op;
742
743 /* Number of components valid to check for the instruction (the rest
744 * will be forced to the last), or 0 to use as-is. Relevant as
745 * ball-type instructions have a channel count in NIR but are all vec4
746 * in Midgard */
747
748 unsigned broadcast_swizzle = 0;
749
750 /* What register mode should we operate in? */
751 midgard_reg_mode reg_mode =
752 reg_mode_for_nir(instr);
753
754 /* Do we need a destination override? Used for inline
755 * type conversion */
756
757 midgard_dest_override dest_override =
758 midgard_dest_override_none;
759
760 /* Should we use a smaller respective source and sign-extend? */
761
762 bool half_1 = false, sext_1 = false;
763 bool half_2 = false, sext_2 = false;
764
765 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
766 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
767
768 switch (instr->op) {
769 ALU_CASE(fadd, fadd);
770 ALU_CASE(fmul, fmul);
771 ALU_CASE(fmin, fmin);
772 ALU_CASE(fmax, fmax);
773 ALU_CASE(imin, imin);
774 ALU_CASE(imax, imax);
775 ALU_CASE(umin, umin);
776 ALU_CASE(umax, umax);
777 ALU_CASE(ffloor, ffloor);
778 ALU_CASE(fround_even, froundeven);
779 ALU_CASE(ftrunc, ftrunc);
780 ALU_CASE(fceil, fceil);
781 ALU_CASE(fdot3, fdot3);
782 ALU_CASE(fdot4, fdot4);
783 ALU_CASE(iadd, iadd);
784 ALU_CASE(isub, isub);
785 ALU_CASE(imul, imul);
786
787 /* Zero shoved as second-arg */
788 ALU_CASE(iabs, iabsdiff);
789
790 ALU_CASE(mov, imov);
791
792 ALU_CASE(feq32, feq);
793 ALU_CASE(fne32, fne);
794 ALU_CASE(flt32, flt);
795 ALU_CASE(ieq32, ieq);
796 ALU_CASE(ine32, ine);
797 ALU_CASE(ilt32, ilt);
798 ALU_CASE(ult32, ult);
799
800 /* We don't have a native b2f32 instruction. Instead, like many
801 * GPUs, we exploit booleans as 0/~0 for false/true, and
802 * correspondingly AND
803 * by 1.0 to do the type conversion. For the moment, prime us
804 * to emit:
805 *
806 * iand [whatever], #0
807 *
808 * At the end of emit_alu (as MIR), we'll fix-up the constant
809 */
810
811 ALU_CASE(b2f32, iand);
812 ALU_CASE(b2i32, iand);
813
814 /* Likewise, we don't have a dedicated f2b32 instruction, but
815 * we can do a "not equal to 0.0" test. */
816
817 ALU_CASE(f2b32, fne);
818 ALU_CASE(i2b32, ine);
819
820 ALU_CASE(frcp, frcp);
821 ALU_CASE(frsq, frsqrt);
822 ALU_CASE(fsqrt, fsqrt);
823 ALU_CASE(fexp2, fexp2);
824 ALU_CASE(flog2, flog2);
825
826 ALU_CASE(f2i32, f2i_rtz);
827 ALU_CASE(f2u32, f2u_rtz);
828 ALU_CASE(i2f32, i2f_rtz);
829 ALU_CASE(u2f32, u2f_rtz);
830
831 ALU_CASE(f2i16, f2i_rtz);
832 ALU_CASE(f2u16, f2u_rtz);
833 ALU_CASE(i2f16, i2f_rtz);
834 ALU_CASE(u2f16, u2f_rtz);
835
836 ALU_CASE(fsin, fsin);
837 ALU_CASE(fcos, fcos);
838
839 /* We'll set invert */
840 ALU_CASE(inot, imov);
841 ALU_CASE(iand, iand);
842 ALU_CASE(ior, ior);
843 ALU_CASE(ixor, ixor);
844 ALU_CASE(ishl, ishl);
845 ALU_CASE(ishr, iasr);
846 ALU_CASE(ushr, ilsr);
847
848 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
849 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
850 ALU_CASE(b32all_fequal4, fball_eq);
851
852 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
853 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
854 ALU_CASE(b32any_fnequal4, fbany_neq);
855
856 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
857 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
858 ALU_CASE(b32all_iequal4, iball_eq);
859
860 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
861 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
862 ALU_CASE(b32any_inequal4, ibany_neq);
863
864 /* Source mods will be shoved in later */
865 ALU_CASE(fabs, fmov);
866 ALU_CASE(fneg, fmov);
867 ALU_CASE(fsat, fmov);
868
869 /* For size conversion, we use a move. Ideally though we would squash
870 * these ops together; maybe that has to happen after in NIR as part of
871 * propagation...? An earlier algebraic pass ensured we step down by
872 * only / exactly one size. If stepping down, we use a dest override to
873 * reduce the size; if stepping up, we use a larger-sized move with a
874 * half source and a sign/zero-extension modifier */
875
876 case nir_op_i2i8:
877 case nir_op_i2i16:
878 case nir_op_i2i32:
879 /* If we end up upscale, we'll need a sign-extend on the
880 * operand (the second argument) */
881
882 sext_2 = true;
883 /* fallthrough */
884 case nir_op_u2u8:
885 case nir_op_u2u16:
886 case nir_op_u2u32: {
887 op = midgard_alu_op_imov;
888
889 if (dst_bitsize == (src_bitsize * 2)) {
890 /* Converting up */
891 half_2 = true;
892
893 /* Use a greater register mode */
894 reg_mode++;
895 } else if (src_bitsize == (dst_bitsize * 2)) {
896 /* Converting down */
897 dest_override = midgard_dest_override_lower;
898 }
899
900 break;
901 }
902
903 case nir_op_f2f16: {
904 assert(src_bitsize == 32);
905
906 op = midgard_alu_op_fmov;
907 dest_override = midgard_dest_override_lower;
908 break;
909 }
910
911 case nir_op_f2f32: {
912 assert(src_bitsize == 16);
913
914 op = midgard_alu_op_fmov;
915 half_2 = true;
916 reg_mode++;
917 break;
918 }
919
920
921 /* For greater-or-equal, we lower to less-or-equal and flip the
922 * arguments */
923
924 case nir_op_fge:
925 case nir_op_fge32:
926 case nir_op_ige32:
927 case nir_op_uge32: {
928 op =
929 instr->op == nir_op_fge ? midgard_alu_op_fle :
930 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
931 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
932 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
933 0;
934
935 /* Swap via temporary */
936 nir_alu_src temp = instr->src[1];
937 instr->src[1] = instr->src[0];
938 instr->src[0] = temp;
939
940 break;
941 }
942
943 case nir_op_b32csel: {
944 /* Midgard features both fcsel and icsel, depending on
945 * the type of the arguments/output. However, as long
946 * as we're careful we can _always_ use icsel and
947 * _never_ need fcsel, since the latter does additional
948 * floating-point-specific processing whereas the
949 * former just moves bits on the wire. It's not obvious
950 * why these are separate opcodes, save for the ability
951 * to do things like sat/pos/abs/neg for free */
952
953 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
954 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
955
956 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
957 nr_inputs = 2;
958
959 /* Emit the condition into r31 */
960
961 if (mixed)
962 emit_condition_mixed(ctx, &instr->src[0], nr_components);
963 else
964 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
965
966 /* The condition is the first argument; move the other
967 * arguments up one to be a binary instruction for
968 * Midgard */
969
970 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
971 break;
972 }
973
974 default:
975 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
976 assert(0);
977 return;
978 }
979
980 /* Midgard can perform certain modifiers on output of an ALU op */
981 unsigned outmod;
982
983 if (midgard_is_integer_out_op(op)) {
984 outmod = midgard_outmod_int_wrap;
985 } else {
986 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
987 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
988 }
989
990 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
991
992 if (instr->op == nir_op_fmax) {
993 if (nir_is_fzero_constant(instr->src[0].src)) {
994 op = midgard_alu_op_fmov;
995 nr_inputs = 1;
996 outmod = midgard_outmod_pos;
997 instr->src[0] = instr->src[1];
998 } else if (nir_is_fzero_constant(instr->src[1].src)) {
999 op = midgard_alu_op_fmov;
1000 nr_inputs = 1;
1001 outmod = midgard_outmod_pos;
1002 }
1003 }
1004
1005 /* Fetch unit, quirks, etc information */
1006 unsigned opcode_props = alu_opcode_props[op].props;
1007 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1008
1009 /* src0 will always exist afaik, but src1 will not for 1-argument
1010 * instructions. The latter can only be fetched if the instruction
1011 * needs it, or else we may segfault. */
1012
1013 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1014 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
1015 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
1016
1017 /* Rather than use the instruction generation helpers, we do it
1018 * ourselves here to avoid the mess */
1019
1020 midgard_instruction ins = {
1021 .type = TAG_ALU_4,
1022 .src = {
1023 quirk_flipped_r24 ? ~0 : src0,
1024 quirk_flipped_r24 ? src0 : src1,
1025 src2,
1026 },
1027 .dest = dest,
1028 };
1029
1030 nir_alu_src *nirmods[3] = { NULL };
1031
1032 if (nr_inputs >= 2) {
1033 nirmods[0] = &instr->src[0];
1034 nirmods[1] = &instr->src[1];
1035 } else if (nr_inputs == 1) {
1036 nirmods[quirk_flipped_r24] = &instr->src[0];
1037 } else {
1038 assert(0);
1039 }
1040
1041 if (nr_inputs == 3)
1042 nirmods[2] = &instr->src[2];
1043
1044 /* These were lowered to a move, so apply the corresponding mod */
1045
1046 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1047 nir_alu_src *s = nirmods[quirk_flipped_r24];
1048
1049 if (instr->op == nir_op_fneg)
1050 s->negate = !s->negate;
1051
1052 if (instr->op == nir_op_fabs)
1053 s->abs = !s->abs;
1054 }
1055
1056 bool is_int = midgard_is_integer_op(op);
1057
1058 ins.mask = mask_of(nr_components);
1059
1060 midgard_vector_alu alu = {
1061 .op = op,
1062 .reg_mode = reg_mode,
1063 .dest_override = dest_override,
1064 .outmod = outmod,
1065
1066 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1067 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1068 };
1069
1070 if (nr_inputs == 3) {
1071 ins.csel_swizzle = SWIZZLE_FROM_ARRAY(nirmods[2]->swizzle);
1072 assert(!nirmods[2]->abs);
1073 assert(!nirmods[2]->negate);
1074 }
1075
1076 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1077
1078 if (!is_ssa)
1079 ins.mask &= instr->dest.write_mask;
1080
1081 ins.alu = alu;
1082
1083 /* Late fixup for emulated instructions */
1084
1085 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1086 /* Presently, our second argument is an inline #0 constant.
1087 * Switch over to an embedded 1.0 constant (that can't fit
1088 * inline, since we're 32-bit, not 16-bit like the inline
1089 * constants) */
1090
1091 ins.has_inline_constant = false;
1092 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1093 ins.has_constants = true;
1094
1095 if (instr->op == nir_op_b2f32) {
1096 float f = 1.0f;
1097 memcpy(&ins.constants, &f, sizeof(float));
1098 } else {
1099 ins.constants[0] = 1;
1100 }
1101
1102 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1103 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1104 /* Lots of instructions need a 0 plonked in */
1105 ins.has_inline_constant = false;
1106 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1107 ins.has_constants = true;
1108 ins.constants[0] = 0;
1109 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1110 } else if (instr->op == nir_op_inot) {
1111 ins.invert = true;
1112 }
1113
1114 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1115 /* To avoid duplicating the lookup tables (probably), true LUT
1116 * instructions can only operate as if they were scalars. Lower
1117 * them here by changing the component. */
1118
1119 uint8_t original_swizzle[4];
1120 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1121 unsigned orig_mask = ins.mask;
1122
1123 for (int i = 0; i < nr_components; ++i) {
1124 /* Mask the associated component, dropping the
1125 * instruction if needed */
1126
1127 ins.mask = 1 << i;
1128 ins.mask &= orig_mask;
1129
1130 if (!ins.mask)
1131 continue;
1132
1133 for (int j = 0; j < 4; ++j)
1134 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1135
1136 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1137 emit_mir_instruction(ctx, ins);
1138 }
1139 } else {
1140 emit_mir_instruction(ctx, ins);
1141 }
1142 }
1143
1144 #undef ALU_CASE
1145
1146 static unsigned
1147 mir_mask_for_intr(nir_instr *instr, bool is_read)
1148 {
1149 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1150
1151 if (is_read)
1152 return mask_of(nir_intrinsic_dest_components(intr));
1153 else
1154 return nir_intrinsic_write_mask(intr);
1155 }
1156
1157 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1158 * optimized) versions of UBO #0 */
1159
1160 midgard_instruction *
1161 emit_ubo_read(
1162 compiler_context *ctx,
1163 nir_instr *instr,
1164 unsigned dest,
1165 unsigned offset,
1166 nir_src *indirect_offset,
1167 unsigned index)
1168 {
1169 /* TODO: half-floats */
1170
1171 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1172
1173 assert((offset & 0xF) == 0);
1174 offset /= 16;
1175
1176 /* TODO: Don't split */
1177 ins.load_store.varying_parameters = (offset & 7) << 7;
1178 ins.load_store.address = offset >> 3;
1179 ins.mask = mir_mask_for_intr(instr, true);
1180
1181 if (indirect_offset) {
1182 ins.src[1] = nir_src_index(ctx, indirect_offset);
1183 ins.load_store.arg_2 = 0x80;
1184 } else {
1185 ins.load_store.arg_2 = 0x1E;
1186 }
1187
1188 ins.load_store.arg_1 = index;
1189
1190 return emit_mir_instruction(ctx, ins);
1191 }
1192
1193 /* SSBO reads are like UBO reads if you squint */
1194
1195 static void
1196 emit_ssbo_access(
1197 compiler_context *ctx,
1198 nir_instr *instr,
1199 bool is_read,
1200 unsigned srcdest,
1201 unsigned offset,
1202 nir_src *indirect_offset,
1203 unsigned index)
1204 {
1205 /* TODO: types */
1206
1207 midgard_instruction ins;
1208
1209 if (is_read)
1210 ins = m_ld_int4(srcdest, offset);
1211 else
1212 ins = m_st_int4(srcdest, offset);
1213
1214 /* SSBO reads use a generic memory read interface, so we need the
1215 * address of the SSBO as the first argument. This is a sysval. */
1216
1217 unsigned addr = make_compiler_temp(ctx);
1218 emit_sysval_read(ctx, instr, addr, 2);
1219
1220 /* The source array is a bit of a leaky abstraction for SSBOs.
1221 * Nevertheless, for loads:
1222 *
1223 * src[0] = arg_1
1224 * src[1] = arg_2
1225 * src[2] = unused
1226 *
1227 * Whereas for stores:
1228 *
1229 * src[0] = value
1230 * src[1] = arg_1
1231 * src[2] = arg_2
1232 *
1233 * We would like arg_1 = the address and
1234 * arg_2 = the offset.
1235 */
1236
1237 ins.src[is_read ? 0 : 1] = addr;
1238
1239 /* TODO: What is this? It looks superficially like a shift << 5, but
1240 * arg_1 doesn't take a shift Should it be E0 or A0? */
1241 if (indirect_offset)
1242 ins.load_store.arg_1 |= 0xE0;
1243
1244 /* We also need to emit the indirect offset */
1245
1246 if (indirect_offset)
1247 ins.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1248 else
1249 ins.load_store.arg_2 = 0x7E;
1250
1251 /* TODO: Bounds check */
1252
1253 /* Finally, we emit the direct offset */
1254
1255 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1256 ins.load_store.address = (offset >> 9);
1257 ins.mask = mir_mask_for_intr(instr, is_read);
1258
1259 emit_mir_instruction(ctx, ins);
1260 }
1261
1262 static void
1263 emit_varying_read(
1264 compiler_context *ctx,
1265 unsigned dest, unsigned offset,
1266 unsigned nr_comp, unsigned component,
1267 nir_src *indirect_offset, nir_alu_type type)
1268 {
1269 /* XXX: Half-floats? */
1270 /* TODO: swizzle, mask */
1271
1272 midgard_instruction ins = m_ld_vary_32(dest, offset);
1273 ins.mask = mask_of(nr_comp);
1274 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1275
1276 midgard_varying_parameter p = {
1277 .is_varying = 1,
1278 .interpolation = midgard_interp_default,
1279 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1280 };
1281
1282 unsigned u;
1283 memcpy(&u, &p, sizeof(p));
1284 ins.load_store.varying_parameters = u;
1285
1286 if (indirect_offset)
1287 ins.src[1] = nir_src_index(ctx, indirect_offset);
1288 else
1289 ins.load_store.arg_2 = 0x1E;
1290
1291 ins.load_store.arg_1 = 0x9E;
1292
1293 /* Use the type appropriate load */
1294 switch (type) {
1295 case nir_type_uint:
1296 case nir_type_bool:
1297 ins.load_store.op = midgard_op_ld_vary_32u;
1298 break;
1299 case nir_type_int:
1300 ins.load_store.op = midgard_op_ld_vary_32i;
1301 break;
1302 case nir_type_float:
1303 ins.load_store.op = midgard_op_ld_vary_32;
1304 break;
1305 default:
1306 unreachable("Attempted to load unknown type");
1307 break;
1308 }
1309
1310 emit_mir_instruction(ctx, ins);
1311 }
1312
1313 void
1314 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1315 unsigned nr_components)
1316 {
1317 unsigned dest = 0;
1318
1319 /* Figure out which uniform this is */
1320 int sysval = sysval_for_instr(ctx, instr, &dest);
1321 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1322
1323 if (dest_override >= 0)
1324 dest = dest_override;
1325
1326 /* Sysvals are prefix uniforms */
1327 unsigned uniform = ((uintptr_t) val) - 1;
1328
1329 /* Emit the read itself -- this is never indirect */
1330 midgard_instruction *ins =
1331 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1332
1333 ins->mask = mask_of(nr_components);
1334 }
1335
1336 static unsigned
1337 compute_builtin_arg(nir_op op)
1338 {
1339 switch (op) {
1340 case nir_intrinsic_load_work_group_id:
1341 return 0x14;
1342 case nir_intrinsic_load_local_invocation_id:
1343 return 0x10;
1344 default:
1345 unreachable("Invalid compute paramater loaded");
1346 }
1347 }
1348
1349 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1350 * Handle MRT here */
1351
1352 static void
1353 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1354 {
1355 /* First, move in whatever we're outputting */
1356 midgard_instruction move = v_mov(src, blank_alu_src, SSA_FIXED_REGISTER(0));
1357 if (rt != 0) {
1358 /* Force a tight schedule. TODO: Make the scheduler MRT aware */
1359 move.unit = UNIT_VMUL;
1360 move.precede_break = true;
1361 move.dont_eliminate = true;
1362 }
1363
1364 emit_mir_instruction(ctx, move);
1365
1366 /* If we're doing MRT, we need to specify the render target */
1367
1368 midgard_instruction rt_move = {
1369 .dest = ~0
1370 };
1371
1372 if (rt != 0) {
1373 /* We'll write to r1.z */
1374 rt_move = v_mov(~0, blank_alu_src, SSA_FIXED_REGISTER(1));
1375 rt_move.mask = 1 << COMPONENT_Z;
1376 rt_move.unit = UNIT_SADD;
1377
1378 /* r1.z = (rt * 0x100) */
1379 rt_move.has_inline_constant = true;
1380 rt_move.inline_constant = (rt * 0x100);
1381
1382 /* r1 */
1383 ctx->work_registers = MAX2(ctx->work_registers, 1);
1384
1385 /* Do the write */
1386 emit_mir_instruction(ctx, rt_move);
1387 }
1388
1389 /* Next, generate the branch. For R render targets in the writeout, the
1390 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1391
1392 unsigned offset = (2 * (ctx->nir->num_outputs - 1)) + rt;
1393
1394 struct midgard_instruction ins =
1395 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1396
1397 /* Add dependencies */
1398 ins.src[0] = move.dest;
1399 ins.src[1] = rt_move.dest;
1400
1401 /* Emit the branch */
1402 emit_mir_instruction(ctx, ins);
1403 }
1404
1405 static void
1406 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1407 {
1408 unsigned reg = nir_dest_index(ctx, &instr->dest);
1409 midgard_instruction ins = m_ld_compute_id(reg, 0);
1410 ins.mask = mask_of(3);
1411 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1412 emit_mir_instruction(ctx, ins);
1413 }
1414 static void
1415 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1416 {
1417 unsigned offset = 0, reg;
1418
1419 switch (instr->intrinsic) {
1420 case nir_intrinsic_discard_if:
1421 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1422
1423 /* fallthrough */
1424
1425 case nir_intrinsic_discard: {
1426 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1427 struct midgard_instruction discard = v_branch(conditional, false);
1428 discard.branch.target_type = TARGET_DISCARD;
1429
1430 if (conditional)
1431 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1432
1433 emit_mir_instruction(ctx, discard);
1434 break;
1435 }
1436
1437 case nir_intrinsic_load_uniform:
1438 case nir_intrinsic_load_ubo:
1439 case nir_intrinsic_load_ssbo:
1440 case nir_intrinsic_load_input: {
1441 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1442 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1443 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1444
1445 /* Get the base type of the intrinsic */
1446 /* TODO: Infer type? Does it matter? */
1447 nir_alu_type t =
1448 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1449 t = nir_alu_type_get_base_type(t);
1450
1451 if (!(is_ubo || is_ssbo)) {
1452 offset = nir_intrinsic_base(instr);
1453 }
1454
1455 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1456
1457 nir_src *src_offset = nir_get_io_offset_src(instr);
1458
1459 bool direct = nir_src_is_const(*src_offset);
1460 nir_src *indirect_offset = direct ? NULL : src_offset;
1461
1462 if (direct)
1463 offset += nir_src_as_uint(*src_offset);
1464
1465 /* We may need to apply a fractional offset */
1466 int component = instr->intrinsic == nir_intrinsic_load_input ?
1467 nir_intrinsic_component(instr) : 0;
1468 reg = nir_dest_index(ctx, &instr->dest);
1469
1470 if (is_uniform && !ctx->is_blend) {
1471 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1472 } else if (is_ubo) {
1473 nir_src index = instr->src[0];
1474
1475 /* We don't yet support indirect UBOs. For indirect
1476 * block numbers (if that's possible), we don't know
1477 * enough about the hardware yet. For indirect sources,
1478 * we know what we need but we need to add some NIR
1479 * support for lowering correctly with respect to
1480 * 128-bit reads */
1481
1482 assert(nir_src_is_const(index));
1483 assert(nir_src_is_const(*src_offset));
1484
1485 uint32_t uindex = nir_src_as_uint(index) + 1;
1486 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1487 } else if (is_ssbo) {
1488 nir_src index = instr->src[0];
1489 assert(nir_src_is_const(index));
1490 uint32_t uindex = nir_src_as_uint(index);
1491
1492 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1493 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1494 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1495 } else if (ctx->is_blend) {
1496 /* For blend shaders, load the input color, which is
1497 * preloaded to r0 */
1498
1499 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1500 emit_mir_instruction(ctx, move);
1501 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1502 midgard_instruction ins = m_ld_attr_32(reg, offset);
1503 ins.load_store.arg_1 = 0x1E;
1504 ins.load_store.arg_2 = 0x1E;
1505 ins.mask = mask_of(nr_comp);
1506
1507 /* Use the type appropriate load */
1508 switch (t) {
1509 case nir_type_uint:
1510 case nir_type_bool:
1511 ins.load_store.op = midgard_op_ld_attr_32u;
1512 break;
1513 case nir_type_int:
1514 ins.load_store.op = midgard_op_ld_attr_32i;
1515 break;
1516 case nir_type_float:
1517 ins.load_store.op = midgard_op_ld_attr_32;
1518 break;
1519 default:
1520 unreachable("Attempted to load unknown type");
1521 break;
1522 }
1523
1524 emit_mir_instruction(ctx, ins);
1525 } else {
1526 DBG("Unknown load\n");
1527 assert(0);
1528 }
1529
1530 break;
1531 }
1532
1533 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1534
1535 case nir_intrinsic_load_raw_output_pan:
1536 reg = nir_dest_index(ctx, &instr->dest);
1537 assert(ctx->is_blend);
1538
1539 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1540 emit_mir_instruction(ctx, ins);
1541 break;
1542
1543 case nir_intrinsic_load_blend_const_color_rgba: {
1544 assert(ctx->is_blend);
1545 reg = nir_dest_index(ctx, &instr->dest);
1546
1547 /* Blend constants are embedded directly in the shader and
1548 * patched in, so we use some magic routing */
1549
1550 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1551 ins.has_constants = true;
1552 ins.has_blend_constant = true;
1553 emit_mir_instruction(ctx, ins);
1554 break;
1555 }
1556
1557 case nir_intrinsic_store_output:
1558 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1559
1560 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1561
1562 reg = nir_src_index(ctx, &instr->src[0]);
1563
1564 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1565 /* Determine number of render targets */
1566 emit_fragment_store(ctx, reg, offset);
1567 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1568 /* We should have been vectorized, though we don't
1569 * currently check that st_vary is emitted only once
1570 * per slot (this is relevant, since there's not a mask
1571 * parameter available on the store [set to 0 by the
1572 * blob]). We do respect the component by adjusting the
1573 * swizzle. If this is a constant source, we'll need to
1574 * emit that explicitly. */
1575
1576 emit_explicit_constant(ctx, reg, reg);
1577
1578 unsigned component = nir_intrinsic_component(instr);
1579 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1580
1581 midgard_instruction st = m_st_vary_32(reg, offset);
1582 st.load_store.arg_1 = 0x9E;
1583 st.load_store.arg_2 = 0x1E;
1584 st.load_store.swizzle = swizzle_of(nr_comp) << (2*component);
1585 emit_mir_instruction(ctx, st);
1586 } else {
1587 DBG("Unknown store\n");
1588 assert(0);
1589 }
1590
1591 break;
1592
1593 /* Special case of store_output for lowered blend shaders */
1594 case nir_intrinsic_store_raw_output_pan:
1595 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1596 reg = nir_src_index(ctx, &instr->src[0]);
1597 emit_fragment_store(ctx, reg, 0);
1598
1599 break;
1600
1601 case nir_intrinsic_store_ssbo:
1602 assert(nir_src_is_const(instr->src[1]));
1603
1604 bool direct_offset = nir_src_is_const(instr->src[2]);
1605 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1606 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1607 reg = nir_src_index(ctx, &instr->src[0]);
1608
1609 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1610
1611 emit_explicit_constant(ctx, reg, reg);
1612 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1613 break;
1614
1615 case nir_intrinsic_load_alpha_ref_float:
1616 assert(instr->dest.is_ssa);
1617
1618 float ref_value = ctx->alpha_ref;
1619
1620 /* See emit_load_const */
1621 float *v = ralloc_array(NULL, float, 4);
1622 memcpy(v, &ref_value, sizeof(float));
1623 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1624 break;
1625
1626 case nir_intrinsic_load_viewport_scale:
1627 case nir_intrinsic_load_viewport_offset:
1628 case nir_intrinsic_load_num_work_groups:
1629 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1630 break;
1631
1632 case nir_intrinsic_load_work_group_id:
1633 case nir_intrinsic_load_local_invocation_id:
1634 emit_compute_builtin(ctx, instr);
1635 break;
1636
1637 default:
1638 printf ("Unhandled intrinsic\n");
1639 assert(0);
1640 break;
1641 }
1642 }
1643
1644 static unsigned
1645 midgard_tex_format(enum glsl_sampler_dim dim)
1646 {
1647 switch (dim) {
1648 case GLSL_SAMPLER_DIM_1D:
1649 case GLSL_SAMPLER_DIM_BUF:
1650 return MALI_TEX_1D;
1651
1652 case GLSL_SAMPLER_DIM_2D:
1653 case GLSL_SAMPLER_DIM_EXTERNAL:
1654 case GLSL_SAMPLER_DIM_RECT:
1655 return MALI_TEX_2D;
1656
1657 case GLSL_SAMPLER_DIM_3D:
1658 return MALI_TEX_3D;
1659
1660 case GLSL_SAMPLER_DIM_CUBE:
1661 return MALI_TEX_CUBE;
1662
1663 default:
1664 DBG("Unknown sampler dim type\n");
1665 assert(0);
1666 return 0;
1667 }
1668 }
1669
1670 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1671 * was successful */
1672
1673 static bool
1674 pan_attach_constant_bias(
1675 compiler_context *ctx,
1676 nir_src lod,
1677 midgard_texture_word *word)
1678 {
1679 /* To attach as constant, it has to *be* constant */
1680
1681 if (!nir_src_is_const(lod))
1682 return false;
1683
1684 float f = nir_src_as_float(lod);
1685
1686 /* Break into fixed-point */
1687 signed lod_int = f;
1688 float lod_frac = f - lod_int;
1689
1690 /* Carry over negative fractions */
1691 if (lod_frac < 0.0) {
1692 lod_int--;
1693 lod_frac += 1.0;
1694 }
1695
1696 /* Encode */
1697 word->bias = float_to_ubyte(lod_frac);
1698 word->bias_int = lod_int;
1699
1700 return true;
1701 }
1702
1703 static enum mali_sampler_type
1704 midgard_sampler_type(nir_alu_type t) {
1705 switch (nir_alu_type_get_base_type(t))
1706 {
1707 case nir_type_float:
1708 return MALI_SAMPLER_FLOAT;
1709 case nir_type_int:
1710 return MALI_SAMPLER_SIGNED;
1711 case nir_type_uint:
1712 return MALI_SAMPLER_UNSIGNED;
1713 default:
1714 unreachable("Unknown sampler type");
1715 }
1716 }
1717
1718 static void
1719 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1720 unsigned midgard_texop)
1721 {
1722 /* TODO */
1723 //assert (!instr->sampler);
1724 //assert (!instr->texture_array_size);
1725
1726 int texture_index = instr->texture_index;
1727 int sampler_index = texture_index;
1728
1729 /* No helper to build texture words -- we do it all here */
1730 midgard_instruction ins = {
1731 .type = TAG_TEXTURE_4,
1732 .mask = 0xF,
1733 .dest = nir_dest_index(ctx, &instr->dest),
1734 .src = { ~0, ~0, ~0 },
1735 .texture = {
1736 .op = midgard_texop,
1737 .format = midgard_tex_format(instr->sampler_dim),
1738 .texture_handle = texture_index,
1739 .sampler_handle = sampler_index,
1740 .swizzle = SWIZZLE_XYZW,
1741 .in_reg_swizzle = SWIZZLE_XYZW,
1742
1743 /* TODO: half */
1744 .in_reg_full = 1,
1745 .out_full = 1,
1746
1747 .sampler_type = midgard_sampler_type(instr->dest_type),
1748 }
1749 };
1750
1751 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1752 int index = nir_src_index(ctx, &instr->src[i].src);
1753 midgard_vector_alu_src alu_src = blank_alu_src;
1754 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1755
1756 switch (instr->src[i].src_type) {
1757 case nir_tex_src_coord: {
1758 emit_explicit_constant(ctx, index, index);
1759
1760 /* Texelfetch coordinates uses all four elements
1761 * (xyz/index) regardless of texture dimensionality,
1762 * which means it's necessary to zero the unused
1763 * components to keep everything happy */
1764
1765 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1766 unsigned old_index = index;
1767
1768 index = make_compiler_temp(ctx);
1769
1770 /* mov index, old_index */
1771 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1772 mov.mask = 0x3;
1773 emit_mir_instruction(ctx, mov);
1774
1775 /* mov index.zw, #0 */
1776 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1777 blank_alu_src, index);
1778 mov.has_constants = true;
1779 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1780 emit_mir_instruction(ctx, mov);
1781 }
1782
1783 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1784 /* texelFetch is undefined on samplerCube */
1785 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1786
1787 /* For cubemaps, we use a special ld/st op to
1788 * select the face and copy the xy into the
1789 * texture register */
1790
1791 unsigned temp = make_compiler_temp(ctx);
1792 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1793 ld.src[0] = index;
1794 ld.mask = 0x3; /* xy */
1795 ld.load_store.arg_1 = 0x20;
1796 ld.load_store.swizzle = alu_src.swizzle;
1797 emit_mir_instruction(ctx, ld);
1798
1799 ins.src[0] = temp;
1800 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1801 } else {
1802 ins.src[0] = index;
1803 }
1804
1805 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1806 /* Array component in w but NIR wants it in z */
1807 if (nr_components == 3)
1808 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1809 else if (nr_components == 2)
1810 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1811 else
1812 unreachable("Invalid texture 2D components");
1813 }
1814
1815 break;
1816 }
1817
1818 case nir_tex_src_bias:
1819 case nir_tex_src_lod: {
1820 /* Try as a constant if we can */
1821
1822 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1823 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1824 break;
1825
1826 ins.texture.lod_register = true;
1827 ins.src[1] = index;
1828 emit_explicit_constant(ctx, index, index);
1829
1830 break;
1831 };
1832
1833 default:
1834 unreachable("Unknown texture source type\n");
1835 }
1836 }
1837
1838 emit_mir_instruction(ctx, ins);
1839
1840 /* Used for .cont and .last hinting */
1841 ctx->texture_op_count++;
1842 }
1843
1844 static void
1845 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1846 {
1847 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1848 * generic tex in some cases (which confuses the hardware) */
1849
1850 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1851
1852 if (is_vertex && instr->op == nir_texop_tex)
1853 instr->op = nir_texop_txl;
1854
1855 switch (instr->op) {
1856 case nir_texop_tex:
1857 case nir_texop_txb:
1858 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1859 break;
1860 case nir_texop_txl:
1861 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1862 break;
1863 case nir_texop_txf:
1864 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1865 break;
1866 case nir_texop_txs:
1867 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1868 break;
1869 default:
1870 unreachable("Unhanlded texture op");
1871 }
1872 }
1873
1874 static void
1875 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1876 {
1877 switch (instr->type) {
1878 case nir_jump_break: {
1879 /* Emit a branch out of the loop */
1880 struct midgard_instruction br = v_branch(false, false);
1881 br.branch.target_type = TARGET_BREAK;
1882 br.branch.target_break = ctx->current_loop_depth;
1883 emit_mir_instruction(ctx, br);
1884 break;
1885 }
1886
1887 default:
1888 DBG("Unknown jump type %d\n", instr->type);
1889 break;
1890 }
1891 }
1892
1893 static void
1894 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1895 {
1896 switch (instr->type) {
1897 case nir_instr_type_load_const:
1898 emit_load_const(ctx, nir_instr_as_load_const(instr));
1899 break;
1900
1901 case nir_instr_type_intrinsic:
1902 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1903 break;
1904
1905 case nir_instr_type_alu:
1906 emit_alu(ctx, nir_instr_as_alu(instr));
1907 break;
1908
1909 case nir_instr_type_tex:
1910 emit_tex(ctx, nir_instr_as_tex(instr));
1911 break;
1912
1913 case nir_instr_type_jump:
1914 emit_jump(ctx, nir_instr_as_jump(instr));
1915 break;
1916
1917 case nir_instr_type_ssa_undef:
1918 /* Spurious */
1919 break;
1920
1921 default:
1922 DBG("Unhandled instruction type\n");
1923 break;
1924 }
1925 }
1926
1927
1928 /* ALU instructions can inline or embed constants, which decreases register
1929 * pressure and saves space. */
1930
1931 #define CONDITIONAL_ATTACH(idx) { \
1932 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1933 \
1934 if (entry) { \
1935 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1936 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1937 } \
1938 }
1939
1940 static void
1941 inline_alu_constants(compiler_context *ctx)
1942 {
1943 mir_foreach_instr(ctx, alu) {
1944 /* Other instructions cannot inline constants */
1945 if (alu->type != TAG_ALU_4) continue;
1946
1947 /* If there is already a constant here, we can do nothing */
1948 if (alu->has_constants) continue;
1949
1950 CONDITIONAL_ATTACH(0);
1951
1952 if (!alu->has_constants) {
1953 CONDITIONAL_ATTACH(1)
1954 } else if (!alu->inline_constant) {
1955 /* Corner case: _two_ vec4 constants, for instance with a
1956 * csel. For this case, we can only use a constant
1957 * register for one, we'll have to emit a move for the
1958 * other. Note, if both arguments are constants, then
1959 * necessarily neither argument depends on the value of
1960 * any particular register. As the destination register
1961 * will be wiped, that means we can spill the constant
1962 * to the destination register.
1963 */
1964
1965 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1966 unsigned scratch = alu->dest;
1967
1968 if (entry) {
1969 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1970 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1971
1972 /* Force a break XXX Defer r31 writes */
1973 ins.unit = UNIT_VLUT;
1974
1975 /* Set the source */
1976 alu->src[1] = scratch;
1977
1978 /* Inject us -before- the last instruction which set r31 */
1979 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
1980 }
1981 }
1982 }
1983 }
1984
1985 /* Being a little silly with the names, but returns the op that is the bitwise
1986 * inverse of the op with the argument switched. I.e. (f and g are
1987 * contrapositives):
1988 *
1989 * f(a, b) = ~g(b, a)
1990 *
1991 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1992 *
1993 * f(a, b) = ~g(b, a)
1994 * ~f(a, b) = g(b, a)
1995 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1996 * f(a, b) = h(a, b)
1997 *
1998 * Thus we define this function in pairs.
1999 */
2000
2001 static inline midgard_alu_op
2002 mir_contrapositive(midgard_alu_op op)
2003 {
2004 switch (op) {
2005 case midgard_alu_op_flt:
2006 return midgard_alu_op_fle;
2007 case midgard_alu_op_fle:
2008 return midgard_alu_op_flt;
2009
2010 case midgard_alu_op_ilt:
2011 return midgard_alu_op_ile;
2012 case midgard_alu_op_ile:
2013 return midgard_alu_op_ilt;
2014
2015 default:
2016 unreachable("No known contrapositive");
2017 }
2018 }
2019
2020 /* Midgard supports two types of constants, embedded constants (128-bit) and
2021 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2022 * constants can be demoted to inline constants, for space savings and
2023 * sometimes a performance boost */
2024
2025 static void
2026 embedded_to_inline_constant(compiler_context *ctx)
2027 {
2028 mir_foreach_instr(ctx, ins) {
2029 if (!ins->has_constants) continue;
2030 if (ins->has_inline_constant) continue;
2031
2032 /* Blend constants must not be inlined by definition */
2033 if (ins->has_blend_constant) continue;
2034
2035 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2036 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2037 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2038
2039 if (!(is_16 || is_32))
2040 continue;
2041
2042 /* src1 cannot be an inline constant due to encoding
2043 * restrictions. So, if possible we try to flip the arguments
2044 * in that case */
2045
2046 int op = ins->alu.op;
2047
2048 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2049 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2050
2051 switch (op) {
2052 /* Conditionals can be inverted */
2053 case midgard_alu_op_flt:
2054 case midgard_alu_op_ilt:
2055 case midgard_alu_op_fle:
2056 case midgard_alu_op_ile:
2057 ins->alu.op = mir_contrapositive(ins->alu.op);
2058 ins->invert = true;
2059 flip = true;
2060 break;
2061
2062 case midgard_alu_op_fcsel:
2063 case midgard_alu_op_icsel:
2064 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2065 default:
2066 break;
2067 }
2068
2069 if (flip) {
2070 /* Flip the SSA numbers */
2071 ins->src[0] = ins->src[1];
2072 ins->src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2073
2074 /* And flip the modifiers */
2075
2076 unsigned src_temp;
2077
2078 src_temp = ins->alu.src2;
2079 ins->alu.src2 = ins->alu.src1;
2080 ins->alu.src1 = src_temp;
2081 }
2082 }
2083
2084 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2085 /* Extract the source information */
2086
2087 midgard_vector_alu_src *src;
2088 int q = ins->alu.src2;
2089 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2090 src = m;
2091
2092 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2093 int component = src->swizzle & 3;
2094
2095 /* Scale constant appropriately, if we can legally */
2096 uint16_t scaled_constant = 0;
2097
2098 if (midgard_is_integer_op(op) || is_16) {
2099 unsigned int *iconstants = (unsigned int *) ins->constants;
2100 scaled_constant = (uint16_t) iconstants[component];
2101
2102 /* Constant overflow after resize */
2103 if (scaled_constant != iconstants[component])
2104 continue;
2105 } else {
2106 float *f = (float *) ins->constants;
2107 float original = f[component];
2108 scaled_constant = _mesa_float_to_half(original);
2109
2110 /* Check for loss of precision. If this is
2111 * mediump, we don't care, but for a highp
2112 * shader, we need to pay attention. NIR
2113 * doesn't yet tell us which mode we're in!
2114 * Practically this prevents most constants
2115 * from being inlined, sadly. */
2116
2117 float fp32 = _mesa_half_to_float(scaled_constant);
2118
2119 if (fp32 != original)
2120 continue;
2121 }
2122
2123 /* We don't know how to handle these with a constant */
2124
2125 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2126 DBG("Bailing inline constant...\n");
2127 continue;
2128 }
2129
2130 /* Make sure that the constant is not itself a
2131 * vector by checking if all accessed values
2132 * (by the swizzle) are the same. */
2133
2134 uint32_t *cons = ins->constants;
2135 uint32_t value = cons[component];
2136
2137 bool is_vector = false;
2138 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2139
2140 for (int c = 1; c < 4; ++c) {
2141 /* We only care if this component is actually used */
2142 if (!(mask & (1 << c)))
2143 continue;
2144
2145 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2146
2147 if (test != value) {
2148 is_vector = true;
2149 break;
2150 }
2151 }
2152
2153 if (is_vector)
2154 continue;
2155
2156 /* Get rid of the embedded constant */
2157 ins->has_constants = false;
2158 ins->src[1] = ~0;
2159 ins->has_inline_constant = true;
2160 ins->inline_constant = scaled_constant;
2161 }
2162 }
2163 }
2164
2165 /* Dead code elimination for branches at the end of a block - only one branch
2166 * per block is legal semantically */
2167
2168 static void
2169 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2170 {
2171 bool branched = false;
2172
2173 mir_foreach_instr_in_block_safe(block, ins) {
2174 if (!midgard_is_branch_unit(ins->unit)) continue;
2175
2176 /* We ignore prepacked branches since the fragment epilogue is
2177 * just generally special */
2178 if (ins->prepacked_branch) continue;
2179
2180 /* Discards are similarly special and may not correspond to the
2181 * end of a block */
2182
2183 if (ins->branch.target_type == TARGET_DISCARD) continue;
2184
2185 if (branched) {
2186 /* We already branched, so this is dead */
2187 mir_remove_instruction(ins);
2188 }
2189
2190 branched = true;
2191 }
2192 }
2193
2194 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2195 * the move can be propagated away entirely */
2196
2197 static bool
2198 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2199 {
2200 /* Nothing to do */
2201 if (comp == midgard_outmod_none)
2202 return true;
2203
2204 if (*outmod == midgard_outmod_none) {
2205 *outmod = comp;
2206 return true;
2207 }
2208
2209 /* TODO: Compose rules */
2210 return false;
2211 }
2212
2213 static bool
2214 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2215 {
2216 bool progress = false;
2217
2218 mir_foreach_instr_in_block_safe(block, ins) {
2219 if (ins->type != TAG_ALU_4) continue;
2220 if (ins->alu.op != midgard_alu_op_fmov) continue;
2221 if (ins->alu.outmod != midgard_outmod_pos) continue;
2222
2223 /* TODO: Registers? */
2224 unsigned src = ins->src[1];
2225 if (src & IS_REG) continue;
2226 assert(!mir_has_multiple_writes(ctx, src));
2227
2228 /* There might be a source modifier, too */
2229 if (mir_nontrivial_source2_mod(ins)) continue;
2230
2231 /* Backpropagate the modifier */
2232 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2233 if (v->type != TAG_ALU_4) continue;
2234 if (v->dest != src) continue;
2235
2236 /* Can we even take a float outmod? */
2237 if (midgard_is_integer_out_op(v->alu.op)) continue;
2238
2239 midgard_outmod_float temp = v->alu.outmod;
2240 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2241
2242 /* Throw in the towel.. */
2243 if (!progress) break;
2244
2245 /* Otherwise, transfer the modifier */
2246 v->alu.outmod = temp;
2247 ins->alu.outmod = midgard_outmod_none;
2248
2249 break;
2250 }
2251 }
2252
2253 return progress;
2254 }
2255
2256 static void
2257 emit_fragment_epilogue(compiler_context *ctx)
2258 {
2259 /* Just emit the last chunk with the branch */
2260 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2261 }
2262
2263 static midgard_block *
2264 create_empty_block(compiler_context *ctx)
2265 {
2266 midgard_block *blk = rzalloc(ctx, midgard_block);
2267
2268 blk->predecessors = _mesa_set_create(blk,
2269 _mesa_hash_pointer,
2270 _mesa_key_pointer_equal);
2271
2272 blk->source_id = ctx->block_source_count++;
2273
2274 return blk;
2275 }
2276
2277 static midgard_block *
2278 emit_block(compiler_context *ctx, nir_block *block)
2279 {
2280 midgard_block *this_block = ctx->after_block;
2281 ctx->after_block = NULL;
2282
2283 if (!this_block)
2284 this_block = create_empty_block(ctx);
2285
2286 list_addtail(&this_block->link, &ctx->blocks);
2287
2288 this_block->is_scheduled = false;
2289 ++ctx->block_count;
2290
2291 ctx->texture_index[0] = ~0;
2292 ctx->texture_index[1] = ~0;
2293
2294 /* Set up current block */
2295 list_inithead(&this_block->instructions);
2296 ctx->current_block = this_block;
2297
2298 nir_foreach_instr(instr, block) {
2299 emit_instr(ctx, instr);
2300 ++ctx->instruction_count;
2301 }
2302
2303 inline_alu_constants(ctx);
2304 midgard_opt_promote_fmov(ctx, ctx->current_block);
2305 embedded_to_inline_constant(ctx);
2306
2307 /* Allow the next control flow to access us retroactively, for
2308 * branching etc */
2309 ctx->current_block = this_block;
2310
2311 return this_block;
2312 }
2313
2314 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2315
2316 static void
2317 emit_if(struct compiler_context *ctx, nir_if *nif)
2318 {
2319 midgard_block *before_block = ctx->current_block;
2320
2321 /* Conditional branches expect the condition in r31.w; emit a move for
2322 * that in the _previous_ block (which is the current block). */
2323 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2324
2325 /* Speculatively emit the branch, but we can't fill it in until later */
2326 EMIT(branch, true, true);
2327 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2328 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2329
2330 /* Emit the two subblocks. */
2331 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2332 midgard_block *end_then_block = ctx->current_block;
2333
2334 /* Emit a jump from the end of the then block to the end of the else */
2335 EMIT(branch, false, false);
2336 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2337
2338 /* Emit second block, and check if it's empty */
2339
2340 int else_idx = ctx->block_count;
2341 int count_in = ctx->instruction_count;
2342 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2343 midgard_block *end_else_block = ctx->current_block;
2344 int after_else_idx = ctx->block_count;
2345
2346 /* Now that we have the subblocks emitted, fix up the branches */
2347
2348 assert(then_block);
2349 assert(else_block);
2350
2351 if (ctx->instruction_count == count_in) {
2352 /* The else block is empty, so don't emit an exit jump */
2353 mir_remove_instruction(then_exit);
2354 then_branch->branch.target_block = after_else_idx;
2355 } else {
2356 then_branch->branch.target_block = else_idx;
2357 then_exit->branch.target_block = after_else_idx;
2358 }
2359
2360 /* Wire up the successors */
2361
2362 ctx->after_block = create_empty_block(ctx);
2363
2364 midgard_block_add_successor(before_block, then_block);
2365 midgard_block_add_successor(before_block, else_block);
2366
2367 midgard_block_add_successor(end_then_block, ctx->after_block);
2368 midgard_block_add_successor(end_else_block, ctx->after_block);
2369 }
2370
2371 static void
2372 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2373 {
2374 /* Remember where we are */
2375 midgard_block *start_block = ctx->current_block;
2376
2377 /* Allocate a loop number, growing the current inner loop depth */
2378 int loop_idx = ++ctx->current_loop_depth;
2379
2380 /* Get index from before the body so we can loop back later */
2381 int start_idx = ctx->block_count;
2382
2383 /* Emit the body itself */
2384 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2385
2386 /* Branch back to loop back */
2387 struct midgard_instruction br_back = v_branch(false, false);
2388 br_back.branch.target_block = start_idx;
2389 emit_mir_instruction(ctx, br_back);
2390
2391 /* Mark down that branch in the graph. */
2392 midgard_block_add_successor(start_block, loop_block);
2393 midgard_block_add_successor(ctx->current_block, loop_block);
2394
2395 /* Find the index of the block about to follow us (note: we don't add
2396 * one; blocks are 0-indexed so we get a fencepost problem) */
2397 int break_block_idx = ctx->block_count;
2398
2399 /* Fix up the break statements we emitted to point to the right place,
2400 * now that we can allocate a block number for them */
2401 ctx->after_block = create_empty_block(ctx);
2402
2403 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2404 mir_foreach_instr_in_block(block, ins) {
2405 if (ins->type != TAG_ALU_4) continue;
2406 if (!ins->compact_branch) continue;
2407 if (ins->prepacked_branch) continue;
2408
2409 /* We found a branch -- check the type to see if we need to do anything */
2410 if (ins->branch.target_type != TARGET_BREAK) continue;
2411
2412 /* It's a break! Check if it's our break */
2413 if (ins->branch.target_break != loop_idx) continue;
2414
2415 /* Okay, cool, we're breaking out of this loop.
2416 * Rewrite from a break to a goto */
2417
2418 ins->branch.target_type = TARGET_GOTO;
2419 ins->branch.target_block = break_block_idx;
2420
2421 midgard_block_add_successor(block, ctx->after_block);
2422 }
2423 }
2424
2425 /* Now that we've finished emitting the loop, free up the depth again
2426 * so we play nice with recursion amid nested loops */
2427 --ctx->current_loop_depth;
2428
2429 /* Dump loop stats */
2430 ++ctx->loop_count;
2431 }
2432
2433 static midgard_block *
2434 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2435 {
2436 midgard_block *start_block = NULL;
2437
2438 foreach_list_typed(nir_cf_node, node, node, list) {
2439 switch (node->type) {
2440 case nir_cf_node_block: {
2441 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2442
2443 if (!start_block)
2444 start_block = block;
2445
2446 break;
2447 }
2448
2449 case nir_cf_node_if:
2450 emit_if(ctx, nir_cf_node_as_if(node));
2451 break;
2452
2453 case nir_cf_node_loop:
2454 emit_loop(ctx, nir_cf_node_as_loop(node));
2455 break;
2456
2457 case nir_cf_node_function:
2458 assert(0);
2459 break;
2460 }
2461 }
2462
2463 return start_block;
2464 }
2465
2466 /* Due to lookahead, we need to report the first tag executed in the command
2467 * stream and in branch targets. An initial block might be empty, so iterate
2468 * until we find one that 'works' */
2469
2470 static unsigned
2471 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2472 {
2473 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2474
2475 unsigned first_tag = 0;
2476
2477 mir_foreach_block_from(ctx, initial_block, v) {
2478 midgard_bundle *initial_bundle =
2479 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2480
2481 if (initial_bundle) {
2482 first_tag = initial_bundle->tag;
2483 break;
2484 }
2485 }
2486
2487 return first_tag;
2488 }
2489
2490 int
2491 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2492 {
2493 struct util_dynarray *compiled = &program->compiled;
2494
2495 midgard_debug = debug_get_option_midgard_debug();
2496
2497 /* TODO: Bound against what? */
2498 compiler_context *ctx = rzalloc(NULL, compiler_context);
2499
2500 ctx->nir = nir;
2501 ctx->screen = screen;
2502 ctx->stage = nir->info.stage;
2503 ctx->is_blend = is_blend;
2504 ctx->alpha_ref = program->alpha_ref;
2505
2506 /* Start off with a safe cutoff, allowing usage of all 16 work
2507 * registers. Later, we'll promote uniform reads to uniform registers
2508 * if we determine it is beneficial to do so */
2509 ctx->uniform_cutoff = 8;
2510
2511 /* Initialize at a global (not block) level hash tables */
2512
2513 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2514 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2515 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2516
2517 /* Record the varying mapping for the command stream's bookkeeping */
2518
2519 struct exec_list *varyings =
2520 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2521
2522 unsigned max_varying = 0;
2523 nir_foreach_variable(var, varyings) {
2524 unsigned loc = var->data.driver_location;
2525 unsigned sz = glsl_type_size(var->type, FALSE);
2526
2527 for (int c = 0; c < sz; ++c) {
2528 program->varyings[loc + c] = var->data.location + c;
2529 max_varying = MAX2(max_varying, loc + c);
2530 }
2531 }
2532
2533 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2534 * (so we don't accidentally duplicate the epilogue since mesa/st has
2535 * messed with our I/O quite a bit already) */
2536
2537 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2538
2539 if (ctx->stage == MESA_SHADER_VERTEX) {
2540 NIR_PASS_V(nir, nir_lower_viewport_transform);
2541 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2542 }
2543
2544 NIR_PASS_V(nir, nir_lower_var_copies);
2545 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2546 NIR_PASS_V(nir, nir_split_var_copies);
2547 NIR_PASS_V(nir, nir_lower_var_copies);
2548 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2549 NIR_PASS_V(nir, nir_lower_var_copies);
2550 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2551
2552 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2553
2554 /* Optimisation passes */
2555
2556 optimise_nir(nir);
2557
2558 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2559 nir_print_shader(nir, stdout);
2560 }
2561
2562 /* Assign sysvals and counts, now that we're sure
2563 * (post-optimisation) */
2564
2565 midgard_nir_assign_sysvals(ctx, nir);
2566
2567 program->uniform_count = nir->num_uniforms;
2568 program->sysval_count = ctx->sysval_count;
2569 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2570
2571 nir_foreach_function(func, nir) {
2572 if (!func->impl)
2573 continue;
2574
2575 list_inithead(&ctx->blocks);
2576 ctx->block_count = 0;
2577 ctx->func = func;
2578
2579 emit_cf_list(ctx, &func->impl->body);
2580
2581 /* Emit empty exit block with successor */
2582
2583 struct midgard_block *semi_end = ctx->current_block;
2584
2585 struct midgard_block *end =
2586 emit_block(ctx, func->impl->end_block);
2587
2588 if (ctx->stage == MESA_SHADER_FRAGMENT)
2589 emit_fragment_epilogue(ctx);
2590
2591 midgard_block_add_successor(semi_end, end);
2592
2593 break; /* TODO: Multi-function shaders */
2594 }
2595
2596 util_dynarray_init(compiled, NULL);
2597
2598 /* MIR-level optimizations */
2599
2600 bool progress = false;
2601
2602 do {
2603 progress = false;
2604
2605 mir_foreach_block(ctx, block) {
2606 progress |= midgard_opt_pos_propagate(ctx, block);
2607 progress |= midgard_opt_copy_prop(ctx, block);
2608 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2609 progress |= midgard_opt_combine_projection(ctx, block);
2610 progress |= midgard_opt_varying_projection(ctx, block);
2611 progress |= midgard_opt_not_propagate(ctx, block);
2612 progress |= midgard_opt_fuse_src_invert(ctx, block);
2613 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2614 }
2615 } while (progress);
2616
2617 mir_foreach_block(ctx, block) {
2618 midgard_lower_invert(ctx, block);
2619 midgard_lower_derivatives(ctx, block);
2620 }
2621
2622 /* Nested control-flow can result in dead branches at the end of the
2623 * block. This messes with our analysis and is just dead code, so cull
2624 * them */
2625 mir_foreach_block(ctx, block) {
2626 midgard_opt_cull_dead_branch(ctx, block);
2627 }
2628
2629 /* Ensure we were lowered */
2630 mir_foreach_instr_global(ctx, ins) {
2631 assert(!ins->invert);
2632 }
2633
2634 /* Schedule! */
2635 schedule_program(ctx);
2636
2637 /* Now that all the bundles are scheduled and we can calculate block
2638 * sizes, emit actual branch instructions rather than placeholders */
2639
2640 int br_block_idx = 0;
2641
2642 mir_foreach_block(ctx, block) {
2643 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2644 for (int c = 0; c < bundle->instruction_count; ++c) {
2645 midgard_instruction *ins = bundle->instructions[c];
2646
2647 if (!midgard_is_branch_unit(ins->unit)) continue;
2648
2649 if (ins->prepacked_branch) continue;
2650
2651 /* Parse some basic branch info */
2652 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2653 bool is_conditional = ins->branch.conditional;
2654 bool is_inverted = ins->branch.invert_conditional;
2655 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2656
2657 /* Determine the block we're jumping to */
2658 int target_number = ins->branch.target_block;
2659
2660 /* Report the destination tag */
2661 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2662
2663 /* Count up the number of quadwords we're
2664 * jumping over = number of quadwords until
2665 * (br_block_idx, target_number) */
2666
2667 int quadword_offset = 0;
2668
2669 if (is_discard) {
2670 /* Ignored */
2671 } else if (target_number > br_block_idx) {
2672 /* Jump forward */
2673
2674 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2675 midgard_block *blk = mir_get_block(ctx, idx);
2676 assert(blk);
2677
2678 quadword_offset += blk->quadword_count;
2679 }
2680 } else {
2681 /* Jump backwards */
2682
2683 for (int idx = br_block_idx; idx >= target_number; --idx) {
2684 midgard_block *blk = mir_get_block(ctx, idx);
2685 assert(blk);
2686
2687 quadword_offset -= blk->quadword_count;
2688 }
2689 }
2690
2691 /* Unconditional extended branches (far jumps)
2692 * have issues, so we always use a conditional
2693 * branch, setting the condition to always for
2694 * unconditional. For compact unconditional
2695 * branches, cond isn't used so it doesn't
2696 * matter what we pick. */
2697
2698 midgard_condition cond =
2699 !is_conditional ? midgard_condition_always :
2700 is_inverted ? midgard_condition_false :
2701 midgard_condition_true;
2702
2703 midgard_jmp_writeout_op op =
2704 is_discard ? midgard_jmp_writeout_op_discard :
2705 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2706 midgard_jmp_writeout_op_branch_cond;
2707
2708 if (!is_compact) {
2709 midgard_branch_extended branch =
2710 midgard_create_branch_extended(
2711 cond, op,
2712 dest_tag,
2713 quadword_offset);
2714
2715 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2716 } else if (is_conditional || is_discard) {
2717 midgard_branch_cond branch = {
2718 .op = op,
2719 .dest_tag = dest_tag,
2720 .offset = quadword_offset,
2721 .cond = cond
2722 };
2723
2724 assert(branch.offset == quadword_offset);
2725
2726 memcpy(&ins->br_compact, &branch, sizeof(branch));
2727 } else {
2728 assert(op == midgard_jmp_writeout_op_branch_uncond);
2729
2730 midgard_branch_uncond branch = {
2731 .op = op,
2732 .dest_tag = dest_tag,
2733 .offset = quadword_offset,
2734 .unknown = 1
2735 };
2736
2737 assert(branch.offset == quadword_offset);
2738
2739 memcpy(&ins->br_compact, &branch, sizeof(branch));
2740 }
2741 }
2742 }
2743
2744 ++br_block_idx;
2745 }
2746
2747 /* Emit flat binary from the instruction arrays. Iterate each block in
2748 * sequence. Save instruction boundaries such that lookahead tags can
2749 * be assigned easily */
2750
2751 /* Cache _all_ bundles in source order for lookahead across failed branches */
2752
2753 int bundle_count = 0;
2754 mir_foreach_block(ctx, block) {
2755 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2756 }
2757 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2758 int bundle_idx = 0;
2759 mir_foreach_block(ctx, block) {
2760 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2761 source_order_bundles[bundle_idx++] = bundle;
2762 }
2763 }
2764
2765 int current_bundle = 0;
2766
2767 /* Midgard prefetches instruction types, so during emission we
2768 * need to lookahead. Unless this is the last instruction, in
2769 * which we return 1. Or if this is the second to last and the
2770 * last is an ALU, then it's also 1... */
2771
2772 mir_foreach_block(ctx, block) {
2773 mir_foreach_bundle_in_block(block, bundle) {
2774 int lookahead = 1;
2775
2776 if (current_bundle + 1 < bundle_count) {
2777 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2778
2779 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2780 lookahead = 1;
2781 } else {
2782 lookahead = next;
2783 }
2784 }
2785
2786 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2787 ++current_bundle;
2788 }
2789
2790 /* TODO: Free deeper */
2791 //util_dynarray_fini(&block->instructions);
2792 }
2793
2794 free(source_order_bundles);
2795
2796 /* Report the very first tag executed */
2797 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2798
2799 /* Deal with off-by-one related to the fencepost problem */
2800 program->work_register_count = ctx->work_registers + 1;
2801 program->uniform_cutoff = ctx->uniform_cutoff;
2802
2803 program->blend_patch_offset = ctx->blend_constant_offset;
2804 program->tls_size = ctx->tls_size;
2805
2806 if (midgard_debug & MIDGARD_DBG_SHADERS)
2807 disassemble_midgard(program->compiled.data, program->compiled.size);
2808
2809 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2810 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2811
2812 /* Count instructions and bundles */
2813
2814 mir_foreach_block(ctx, block) {
2815 nr_bundles += util_dynarray_num_elements(
2816 &block->bundles, midgard_bundle);
2817
2818 nr_quadwords += block->quadword_count;
2819
2820 mir_foreach_bundle_in_block(block, bun)
2821 nr_ins += bun->instruction_count;
2822 }
2823
2824 /* Calculate thread count. There are certain cutoffs by
2825 * register count for thread count */
2826
2827 unsigned nr_registers = program->work_register_count;
2828
2829 unsigned nr_threads =
2830 (nr_registers <= 4) ? 4 :
2831 (nr_registers <= 8) ? 2 :
2832 1;
2833
2834 /* Dump stats */
2835
2836 fprintf(stderr, "shader%d - %s shader: "
2837 "%u inst, %u bundles, %u quadwords, "
2838 "%u registers, %u threads, %u loops, "
2839 "%d:%d spills:fills\n",
2840 SHADER_DB_COUNT++,
2841 gl_shader_stage_name(ctx->stage),
2842 nr_ins, nr_bundles, nr_quadwords,
2843 nr_registers, nr_threads,
2844 ctx->loop_count,
2845 ctx->spills, ctx->fills);
2846 }
2847
2848 ralloc_free(ctx);
2849
2850 return 0;
2851 }