pan/midgard: Address emit_ubo_read offset in bytes
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 assert(block);
82 assert(successor);
83
84 /* Deduplicate */
85 for (unsigned i = 0; i < block->nr_successors; ++i) {
86 if (block->successors[i] == successor)
87 return;
88 }
89
90 block->successors[block->nr_successors++] = successor;
91 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
92 }
93
94 /* Helpers to generate midgard_instruction's using macro magic, since every
95 * driver seems to do it that way */
96
97 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
98
99 #define M_LOAD_STORE(name, store) \
100 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
101 midgard_instruction i = { \
102 .type = TAG_LOAD_STORE_4, \
103 .mask = 0xF, \
104 .ssa_args = { \
105 .dest = -1, \
106 .src = { -1, -1, -1 }, \
107 }, \
108 .load_store = { \
109 .op = midgard_op_##name, \
110 .swizzle = SWIZZLE_XYZW, \
111 .address = address \
112 } \
113 }; \
114 \
115 if (store) \
116 i.ssa_args.src[0] = ssa; \
117 else \
118 i.ssa_args.dest = ssa; \
119 \
120 return i; \
121 }
122
123 #define M_LOAD(name) M_LOAD_STORE(name, false)
124 #define M_STORE(name) M_LOAD_STORE(name, true)
125
126 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
127 * the corresponding Midgard source */
128
129 static midgard_vector_alu_src
130 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
131 bool half, bool sext)
132 {
133 if (!src) return blank_alu_src;
134
135 /* Figure out how many components there are so we can adjust the
136 * swizzle. Specifically we want to broadcast the last channel so
137 * things like ball2/3 work
138 */
139
140 if (broadcast_count) {
141 uint8_t last_component = src->swizzle[broadcast_count - 1];
142
143 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
144 src->swizzle[c] = last_component;
145 }
146 }
147
148 midgard_vector_alu_src alu_src = {
149 .rep_low = 0,
150 .rep_high = 0,
151 .half = half,
152 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
153 };
154
155 if (is_int) {
156 alu_src.mod = midgard_int_normal;
157
158 /* Sign/zero-extend if needed */
159
160 if (half) {
161 alu_src.mod = sext ?
162 midgard_int_sign_extend
163 : midgard_int_zero_extend;
164 }
165
166 /* These should have been lowered away */
167 assert(!(src->abs || src->negate));
168 } else {
169 alu_src.mod = (src->abs << 0) | (src->negate << 1);
170 }
171
172 return alu_src;
173 }
174
175 /* load/store instructions have both 32-bit and 16-bit variants, depending on
176 * whether we are using vectors composed of highp or mediump. At the moment, we
177 * don't support half-floats -- this requires changes in other parts of the
178 * compiler -- therefore the 16-bit versions are commented out. */
179
180 //M_LOAD(ld_attr_16);
181 M_LOAD(ld_attr_32);
182 //M_LOAD(ld_vary_16);
183 M_LOAD(ld_vary_32);
184 M_LOAD(ld_ubo_int4);
185 M_LOAD(ld_int4);
186 M_STORE(st_int4);
187 M_LOAD(ld_color_buffer_8);
188 //M_STORE(st_vary_16);
189 M_STORE(st_vary_32);
190 M_LOAD(st_cubemap_coords);
191 M_LOAD(ld_compute_id);
192
193 static midgard_instruction
194 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
195 {
196 midgard_branch_cond branch = {
197 .op = op,
198 .dest_tag = tag,
199 .offset = offset,
200 .cond = cond
201 };
202
203 uint16_t compact;
204 memcpy(&compact, &branch, sizeof(branch));
205
206 midgard_instruction ins = {
207 .type = TAG_ALU_4,
208 .unit = ALU_ENAB_BR_COMPACT,
209 .prepacked_branch = true,
210 .compact_branch = true,
211 .br_compact = compact,
212 .ssa_args = {
213 .dest = -1,
214 .src = { -1, -1, -1 },
215 }
216 };
217
218 if (op == midgard_jmp_writeout_op_writeout)
219 ins.writeout = true;
220
221 return ins;
222 }
223
224 static midgard_instruction
225 v_branch(bool conditional, bool invert)
226 {
227 midgard_instruction ins = {
228 .type = TAG_ALU_4,
229 .unit = ALU_ENAB_BRANCH,
230 .compact_branch = true,
231 .branch = {
232 .conditional = conditional,
233 .invert_conditional = invert
234 },
235 .ssa_args = {
236 .dest = -1,
237 .src = { -1, -1, -1 },
238 }
239 };
240
241 return ins;
242 }
243
244 static midgard_branch_extended
245 midgard_create_branch_extended( midgard_condition cond,
246 midgard_jmp_writeout_op op,
247 unsigned dest_tag,
248 signed quadword_offset)
249 {
250 /* The condition code is actually a LUT describing a function to
251 * combine multiple condition codes. However, we only support a single
252 * condition code at the moment, so we just duplicate over a bunch of
253 * times. */
254
255 uint16_t duplicated_cond =
256 (cond << 14) |
257 (cond << 12) |
258 (cond << 10) |
259 (cond << 8) |
260 (cond << 6) |
261 (cond << 4) |
262 (cond << 2) |
263 (cond << 0);
264
265 midgard_branch_extended branch = {
266 .op = op,
267 .dest_tag = dest_tag,
268 .offset = quadword_offset,
269 .cond = duplicated_cond
270 };
271
272 return branch;
273 }
274
275 static void
276 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
277 {
278 ins->has_constants = true;
279 memcpy(&ins->constants, constants, 16);
280 }
281
282 static int
283 glsl_type_size(const struct glsl_type *type, bool bindless)
284 {
285 return glsl_count_attribute_slots(type, false);
286 }
287
288 /* Lower fdot2 to a vector multiplication followed by channel addition */
289 static void
290 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
291 {
292 if (alu->op != nir_op_fdot2)
293 return;
294
295 b->cursor = nir_before_instr(&alu->instr);
296
297 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
298 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
299
300 nir_ssa_def *product = nir_fmul(b, src0, src1);
301
302 nir_ssa_def *sum = nir_fadd(b,
303 nir_channel(b, product, 0),
304 nir_channel(b, product, 1));
305
306 /* Replace the fdot2 with this sum */
307 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
308 }
309
310 static int
311 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
312 {
313 /* This is way too meta */
314 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
315 unsigned idx_idx = is_store ? 1 : 0;
316
317 nir_src index = instr->src[idx_idx];
318 assert(nir_src_is_const(index));
319 uint32_t uindex = nir_src_as_uint(index);
320
321 return PAN_SYSVAL(SSBO, uindex);
322 }
323
324 static int
325 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
326 {
327 switch (instr->intrinsic) {
328 case nir_intrinsic_load_viewport_scale:
329 return PAN_SYSVAL_VIEWPORT_SCALE;
330 case nir_intrinsic_load_viewport_offset:
331 return PAN_SYSVAL_VIEWPORT_OFFSET;
332 case nir_intrinsic_load_num_work_groups:
333 return PAN_SYSVAL_NUM_WORK_GROUPS;
334 case nir_intrinsic_load_ssbo:
335 case nir_intrinsic_store_ssbo:
336 return midgard_sysval_for_ssbo(instr);
337 default:
338 return -1;
339 }
340 }
341
342 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
343 unsigned *dest)
344 {
345 nir_intrinsic_instr *intr;
346 nir_dest *dst = NULL;
347 nir_tex_instr *tex;
348 int sysval = -1;
349
350 bool is_store = false;
351
352 switch (instr->type) {
353 case nir_instr_type_intrinsic:
354 intr = nir_instr_as_intrinsic(instr);
355 sysval = midgard_nir_sysval_for_intrinsic(intr);
356 dst = &intr->dest;
357 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
358 break;
359 case nir_instr_type_tex:
360 tex = nir_instr_as_tex(instr);
361 if (tex->op != nir_texop_txs)
362 break;
363
364 sysval = PAN_SYSVAL(TEXTURE_SIZE,
365 PAN_TXS_SYSVAL_ID(tex->texture_index,
366 nir_tex_instr_dest_size(tex) -
367 (tex->is_array ? 1 : 0),
368 tex->is_array));
369 dst = &tex->dest;
370 break;
371 default:
372 break;
373 }
374
375 if (dest && dst && !is_store)
376 *dest = nir_dest_index(ctx, dst);
377
378 return sysval;
379 }
380
381 static void
382 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
383 {
384 int sysval;
385
386 sysval = sysval_for_instr(ctx, instr, NULL);
387 if (sysval < 0)
388 return;
389
390 /* We have a sysval load; check if it's already been assigned */
391
392 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
393 return;
394
395 /* It hasn't -- so assign it now! */
396
397 unsigned id = ctx->sysval_count++;
398 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
399 ctx->sysvals[id] = sysval;
400 }
401
402 static void
403 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
404 {
405 ctx->sysval_count = 0;
406
407 nir_foreach_function(function, shader) {
408 if (!function->impl) continue;
409
410 nir_foreach_block(block, function->impl) {
411 nir_foreach_instr_safe(instr, block) {
412 midgard_nir_assign_sysval_body(ctx, instr);
413 }
414 }
415 }
416 }
417
418 static bool
419 midgard_nir_lower_fdot2(nir_shader *shader)
420 {
421 bool progress = false;
422
423 nir_foreach_function(function, shader) {
424 if (!function->impl) continue;
425
426 nir_builder _b;
427 nir_builder *b = &_b;
428 nir_builder_init(b, function->impl);
429
430 nir_foreach_block(block, function->impl) {
431 nir_foreach_instr_safe(instr, block) {
432 if (instr->type != nir_instr_type_alu) continue;
433
434 nir_alu_instr *alu = nir_instr_as_alu(instr);
435 midgard_nir_lower_fdot2_body(b, alu);
436
437 progress |= true;
438 }
439 }
440
441 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
442
443 }
444
445 return progress;
446 }
447
448 /* Flushes undefined values to zero */
449
450 static void
451 optimise_nir(nir_shader *nir)
452 {
453 bool progress;
454 unsigned lower_flrp =
455 (nir->options->lower_flrp16 ? 16 : 0) |
456 (nir->options->lower_flrp32 ? 32 : 0) |
457 (nir->options->lower_flrp64 ? 64 : 0);
458
459 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
460 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
461 NIR_PASS(progress, nir, nir_lower_idiv);
462
463 nir_lower_tex_options lower_tex_1st_pass_options = {
464 .lower_rect = true,
465 .lower_txp = ~0
466 };
467
468 nir_lower_tex_options lower_tex_2nd_pass_options = {
469 .lower_txs_lod = true,
470 };
471
472 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
473 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
474
475 do {
476 progress = false;
477
478 NIR_PASS(progress, nir, nir_lower_var_copies);
479 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
480
481 NIR_PASS(progress, nir, nir_copy_prop);
482 NIR_PASS(progress, nir, nir_opt_dce);
483 NIR_PASS(progress, nir, nir_opt_dead_cf);
484 NIR_PASS(progress, nir, nir_opt_cse);
485 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
486 NIR_PASS(progress, nir, nir_opt_algebraic);
487 NIR_PASS(progress, nir, nir_opt_constant_folding);
488
489 if (lower_flrp != 0) {
490 bool lower_flrp_progress = false;
491 NIR_PASS(lower_flrp_progress,
492 nir,
493 nir_lower_flrp,
494 lower_flrp,
495 false /* always_precise */,
496 nir->options->lower_ffma);
497 if (lower_flrp_progress) {
498 NIR_PASS(progress, nir,
499 nir_opt_constant_folding);
500 progress = true;
501 }
502
503 /* Nothing should rematerialize any flrps, so we only
504 * need to do this lowering once.
505 */
506 lower_flrp = 0;
507 }
508
509 NIR_PASS(progress, nir, nir_opt_undef);
510 NIR_PASS(progress, nir, nir_undef_to_zero);
511
512 NIR_PASS(progress, nir, nir_opt_loop_unroll,
513 nir_var_shader_in |
514 nir_var_shader_out |
515 nir_var_function_temp);
516
517 NIR_PASS(progress, nir, nir_opt_vectorize);
518 } while (progress);
519
520 /* Must be run at the end to prevent creation of fsin/fcos ops */
521 NIR_PASS(progress, nir, midgard_nir_scale_trig);
522
523 do {
524 progress = false;
525
526 NIR_PASS(progress, nir, nir_opt_dce);
527 NIR_PASS(progress, nir, nir_opt_algebraic);
528 NIR_PASS(progress, nir, nir_opt_constant_folding);
529 NIR_PASS(progress, nir, nir_copy_prop);
530 } while (progress);
531
532 NIR_PASS(progress, nir, nir_opt_algebraic_late);
533
534 /* We implement booleans as 32-bit 0/~0 */
535 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
536
537 /* Now that booleans are lowered, we can run out late opts */
538 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
539
540 /* Lower mods for float ops only. Integer ops don't support modifiers
541 * (saturate doesn't make sense on integers, neg/abs require dedicated
542 * instructions) */
543
544 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
545 NIR_PASS(progress, nir, nir_copy_prop);
546 NIR_PASS(progress, nir, nir_opt_dce);
547
548 /* Take us out of SSA */
549 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
550 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
551
552 /* We are a vector architecture; write combine where possible */
553 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
554 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
555
556 NIR_PASS(progress, nir, nir_opt_dce);
557 }
558
559 /* Do not actually emit a load; instead, cache the constant for inlining */
560
561 static void
562 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
563 {
564 nir_ssa_def def = instr->def;
565
566 float *v = rzalloc_array(NULL, float, 4);
567 nir_const_load_to_arr(v, instr, f32);
568
569 /* Shifted for SSA, +1 for off-by-one */
570 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
571 }
572
573 /* Normally constants are embedded implicitly, but for I/O and such we have to
574 * explicitly emit a move with the constant source */
575
576 static void
577 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
578 {
579 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
580
581 if (constant_value) {
582 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
583 attach_constants(ctx, &ins, constant_value, node + 1);
584 emit_mir_instruction(ctx, ins);
585 }
586 }
587
588 static bool
589 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
590 {
591 unsigned comp = src->swizzle[0];
592
593 for (unsigned c = 1; c < nr_components; ++c) {
594 if (src->swizzle[c] != comp)
595 return true;
596 }
597
598 return false;
599 }
600
601 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
602 * output of a conditional test) into that register */
603
604 static void
605 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
606 {
607 int condition = nir_src_index(ctx, src);
608
609 /* Source to swizzle the desired component into w */
610
611 const midgard_vector_alu_src alu_src = {
612 .swizzle = SWIZZLE(component, component, component, component),
613 };
614
615 /* There is no boolean move instruction. Instead, we simulate a move by
616 * ANDing the condition with itself to get it into r31.w */
617
618 midgard_instruction ins = {
619 .type = TAG_ALU_4,
620
621 /* We need to set the conditional as close as possible */
622 .precede_break = true,
623 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
624 .mask = 1 << COMPONENT_W,
625
626 .ssa_args = {
627 .src = { condition, condition, -1 },
628 .dest = SSA_FIXED_REGISTER(31),
629 },
630
631 .alu = {
632 .op = midgard_alu_op_iand,
633 .outmod = midgard_outmod_int_wrap,
634 .reg_mode = midgard_reg_mode_32,
635 .dest_override = midgard_dest_override_none,
636 .src1 = vector_alu_srco_unsigned(alu_src),
637 .src2 = vector_alu_srco_unsigned(alu_src)
638 },
639 };
640
641 emit_mir_instruction(ctx, ins);
642 }
643
644 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
645 * r31 instead */
646
647 static void
648 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
649 {
650 int condition = nir_src_index(ctx, &src->src);
651
652 /* Source to swizzle the desired component into w */
653
654 const midgard_vector_alu_src alu_src = {
655 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
656 };
657
658 /* There is no boolean move instruction. Instead, we simulate a move by
659 * ANDing the condition with itself to get it into r31.w */
660
661 midgard_instruction ins = {
662 .type = TAG_ALU_4,
663 .precede_break = true,
664 .mask = mask_of(nr_comp),
665 .ssa_args = {
666 .src = { condition, condition, -1 },
667 .dest = SSA_FIXED_REGISTER(31),
668 },
669 .alu = {
670 .op = midgard_alu_op_iand,
671 .outmod = midgard_outmod_int_wrap,
672 .reg_mode = midgard_reg_mode_32,
673 .dest_override = midgard_dest_override_none,
674 .src1 = vector_alu_srco_unsigned(alu_src),
675 .src2 = vector_alu_srco_unsigned(alu_src)
676 },
677 };
678
679 emit_mir_instruction(ctx, ins);
680 }
681
682 #define ALU_CASE(nir, _op) \
683 case nir_op_##nir: \
684 op = midgard_alu_op_##_op; \
685 assert(src_bitsize == dst_bitsize); \
686 break;
687
688 #define ALU_CASE_BCAST(nir, _op, count) \
689 case nir_op_##nir: \
690 op = midgard_alu_op_##_op; \
691 broadcast_swizzle = count; \
692 assert(src_bitsize == dst_bitsize); \
693 break;
694 static bool
695 nir_is_fzero_constant(nir_src src)
696 {
697 if (!nir_src_is_const(src))
698 return false;
699
700 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
701 if (nir_src_comp_as_float(src, c) != 0.0)
702 return false;
703 }
704
705 return true;
706 }
707
708 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
709 * special treatment override this anyway. */
710
711 static midgard_reg_mode
712 reg_mode_for_nir(nir_alu_instr *instr)
713 {
714 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
715
716 switch (src_bitsize) {
717 case 8:
718 return midgard_reg_mode_8;
719 case 16:
720 return midgard_reg_mode_16;
721 case 32:
722 return midgard_reg_mode_32;
723 case 64:
724 return midgard_reg_mode_64;
725 default:
726 unreachable("Invalid bit size");
727 }
728 }
729
730 static void
731 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
732 {
733 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
734 * is handled elsewhere */
735
736 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
737 midgard_emit_derivatives(ctx, instr);
738 return;
739 }
740
741 bool is_ssa = instr->dest.dest.is_ssa;
742
743 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
744 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
745 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
746
747 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
748 * supported. A few do not and are commented for now. Also, there are a
749 * number of NIR ops which Midgard does not support and need to be
750 * lowered, also TODO. This switch block emits the opcode and calling
751 * convention of the Midgard instruction; actual packing is done in
752 * emit_alu below */
753
754 unsigned op;
755
756 /* Number of components valid to check for the instruction (the rest
757 * will be forced to the last), or 0 to use as-is. Relevant as
758 * ball-type instructions have a channel count in NIR but are all vec4
759 * in Midgard */
760
761 unsigned broadcast_swizzle = 0;
762
763 /* What register mode should we operate in? */
764 midgard_reg_mode reg_mode =
765 reg_mode_for_nir(instr);
766
767 /* Do we need a destination override? Used for inline
768 * type conversion */
769
770 midgard_dest_override dest_override =
771 midgard_dest_override_none;
772
773 /* Should we use a smaller respective source and sign-extend? */
774
775 bool half_1 = false, sext_1 = false;
776 bool half_2 = false, sext_2 = false;
777
778 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
779 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
780
781 switch (instr->op) {
782 ALU_CASE(fadd, fadd);
783 ALU_CASE(fmul, fmul);
784 ALU_CASE(fmin, fmin);
785 ALU_CASE(fmax, fmax);
786 ALU_CASE(imin, imin);
787 ALU_CASE(imax, imax);
788 ALU_CASE(umin, umin);
789 ALU_CASE(umax, umax);
790 ALU_CASE(ffloor, ffloor);
791 ALU_CASE(fround_even, froundeven);
792 ALU_CASE(ftrunc, ftrunc);
793 ALU_CASE(fceil, fceil);
794 ALU_CASE(fdot3, fdot3);
795 ALU_CASE(fdot4, fdot4);
796 ALU_CASE(iadd, iadd);
797 ALU_CASE(isub, isub);
798 ALU_CASE(imul, imul);
799
800 /* Zero shoved as second-arg */
801 ALU_CASE(iabs, iabsdiff);
802
803 ALU_CASE(mov, imov);
804
805 ALU_CASE(feq32, feq);
806 ALU_CASE(fne32, fne);
807 ALU_CASE(flt32, flt);
808 ALU_CASE(ieq32, ieq);
809 ALU_CASE(ine32, ine);
810 ALU_CASE(ilt32, ilt);
811 ALU_CASE(ult32, ult);
812
813 /* We don't have a native b2f32 instruction. Instead, like many
814 * GPUs, we exploit booleans as 0/~0 for false/true, and
815 * correspondingly AND
816 * by 1.0 to do the type conversion. For the moment, prime us
817 * to emit:
818 *
819 * iand [whatever], #0
820 *
821 * At the end of emit_alu (as MIR), we'll fix-up the constant
822 */
823
824 ALU_CASE(b2f32, iand);
825 ALU_CASE(b2i32, iand);
826
827 /* Likewise, we don't have a dedicated f2b32 instruction, but
828 * we can do a "not equal to 0.0" test. */
829
830 ALU_CASE(f2b32, fne);
831 ALU_CASE(i2b32, ine);
832
833 ALU_CASE(frcp, frcp);
834 ALU_CASE(frsq, frsqrt);
835 ALU_CASE(fsqrt, fsqrt);
836 ALU_CASE(fexp2, fexp2);
837 ALU_CASE(flog2, flog2);
838
839 ALU_CASE(f2i32, f2i_rtz);
840 ALU_CASE(f2u32, f2u_rtz);
841 ALU_CASE(i2f32, i2f_rtz);
842 ALU_CASE(u2f32, u2f_rtz);
843
844 ALU_CASE(f2i16, f2i_rtz);
845 ALU_CASE(f2u16, f2u_rtz);
846 ALU_CASE(i2f16, i2f_rtz);
847 ALU_CASE(u2f16, u2f_rtz);
848
849 ALU_CASE(fsin, fsin);
850 ALU_CASE(fcos, fcos);
851
852 /* We'll set invert */
853 ALU_CASE(inot, imov);
854 ALU_CASE(iand, iand);
855 ALU_CASE(ior, ior);
856 ALU_CASE(ixor, ixor);
857 ALU_CASE(ishl, ishl);
858 ALU_CASE(ishr, iasr);
859 ALU_CASE(ushr, ilsr);
860
861 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
862 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
863 ALU_CASE(b32all_fequal4, fball_eq);
864
865 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
866 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
867 ALU_CASE(b32any_fnequal4, fbany_neq);
868
869 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
870 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
871 ALU_CASE(b32all_iequal4, iball_eq);
872
873 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
874 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
875 ALU_CASE(b32any_inequal4, ibany_neq);
876
877 /* Source mods will be shoved in later */
878 ALU_CASE(fabs, fmov);
879 ALU_CASE(fneg, fmov);
880 ALU_CASE(fsat, fmov);
881
882 /* For size conversion, we use a move. Ideally though we would squash
883 * these ops together; maybe that has to happen after in NIR as part of
884 * propagation...? An earlier algebraic pass ensured we step down by
885 * only / exactly one size. If stepping down, we use a dest override to
886 * reduce the size; if stepping up, we use a larger-sized move with a
887 * half source and a sign/zero-extension modifier */
888
889 case nir_op_i2i8:
890 case nir_op_i2i16:
891 case nir_op_i2i32:
892 /* If we end up upscale, we'll need a sign-extend on the
893 * operand (the second argument) */
894
895 sext_2 = true;
896 case nir_op_u2u8:
897 case nir_op_u2u16:
898 case nir_op_u2u32: {
899 op = midgard_alu_op_imov;
900
901 if (dst_bitsize == (src_bitsize * 2)) {
902 /* Converting up */
903 half_2 = true;
904
905 /* Use a greater register mode */
906 reg_mode++;
907 } else if (src_bitsize == (dst_bitsize * 2)) {
908 /* Converting down */
909 dest_override = midgard_dest_override_lower;
910 }
911
912 break;
913 }
914
915 case nir_op_f2f16: {
916 assert(src_bitsize == 32);
917
918 op = midgard_alu_op_fmov;
919 dest_override = midgard_dest_override_lower;
920 break;
921 }
922
923 case nir_op_f2f32: {
924 assert(src_bitsize == 16);
925
926 op = midgard_alu_op_fmov;
927 half_2 = true;
928 reg_mode++;
929 break;
930 }
931
932
933 /* For greater-or-equal, we lower to less-or-equal and flip the
934 * arguments */
935
936 case nir_op_fge:
937 case nir_op_fge32:
938 case nir_op_ige32:
939 case nir_op_uge32: {
940 op =
941 instr->op == nir_op_fge ? midgard_alu_op_fle :
942 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
943 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
944 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
945 0;
946
947 /* Swap via temporary */
948 nir_alu_src temp = instr->src[1];
949 instr->src[1] = instr->src[0];
950 instr->src[0] = temp;
951
952 break;
953 }
954
955 case nir_op_b32csel: {
956 /* Midgard features both fcsel and icsel, depending on
957 * the type of the arguments/output. However, as long
958 * as we're careful we can _always_ use icsel and
959 * _never_ need fcsel, since the latter does additional
960 * floating-point-specific processing whereas the
961 * former just moves bits on the wire. It's not obvious
962 * why these are separate opcodes, save for the ability
963 * to do things like sat/pos/abs/neg for free */
964
965 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
966 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
967
968 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
969 nr_inputs = 2;
970
971 /* Emit the condition into r31 */
972
973 if (mixed)
974 emit_condition_mixed(ctx, &instr->src[0], nr_components);
975 else
976 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
977
978 /* The condition is the first argument; move the other
979 * arguments up one to be a binary instruction for
980 * Midgard */
981
982 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
983 break;
984 }
985
986 default:
987 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
988 assert(0);
989 return;
990 }
991
992 /* Midgard can perform certain modifiers on output of an ALU op */
993 unsigned outmod;
994
995 if (midgard_is_integer_out_op(op)) {
996 outmod = midgard_outmod_int_wrap;
997 } else {
998 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
999 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1000 }
1001
1002 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1003
1004 if (instr->op == nir_op_fmax) {
1005 if (nir_is_fzero_constant(instr->src[0].src)) {
1006 op = midgard_alu_op_fmov;
1007 nr_inputs = 1;
1008 outmod = midgard_outmod_pos;
1009 instr->src[0] = instr->src[1];
1010 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1011 op = midgard_alu_op_fmov;
1012 nr_inputs = 1;
1013 outmod = midgard_outmod_pos;
1014 }
1015 }
1016
1017 /* Fetch unit, quirks, etc information */
1018 unsigned opcode_props = alu_opcode_props[op].props;
1019 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1020
1021 /* src0 will always exist afaik, but src1 will not for 1-argument
1022 * instructions. The latter can only be fetched if the instruction
1023 * needs it, or else we may segfault. */
1024
1025 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1026 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1027
1028 /* Rather than use the instruction generation helpers, we do it
1029 * ourselves here to avoid the mess */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .ssa_args = {
1034 .src = {
1035 quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1036 quirk_flipped_r24 ? src0 : src1,
1037 -1
1038 },
1039 .dest = dest,
1040 }
1041 };
1042
1043 nir_alu_src *nirmods[2] = { NULL };
1044
1045 if (nr_inputs == 2) {
1046 nirmods[0] = &instr->src[0];
1047 nirmods[1] = &instr->src[1];
1048 } else if (nr_inputs == 1) {
1049 nirmods[quirk_flipped_r24] = &instr->src[0];
1050 } else {
1051 assert(0);
1052 }
1053
1054 /* These were lowered to a move, so apply the corresponding mod */
1055
1056 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1057 nir_alu_src *s = nirmods[quirk_flipped_r24];
1058
1059 if (instr->op == nir_op_fneg)
1060 s->negate = !s->negate;
1061
1062 if (instr->op == nir_op_fabs)
1063 s->abs = !s->abs;
1064 }
1065
1066 bool is_int = midgard_is_integer_op(op);
1067
1068 ins.mask = mask_of(nr_components);
1069
1070 midgard_vector_alu alu = {
1071 .op = op,
1072 .reg_mode = reg_mode,
1073 .dest_override = dest_override,
1074 .outmod = outmod,
1075
1076 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1077 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1078 };
1079
1080 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1081
1082 if (!is_ssa)
1083 ins.mask &= instr->dest.write_mask;
1084
1085 ins.alu = alu;
1086
1087 /* Late fixup for emulated instructions */
1088
1089 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1090 /* Presently, our second argument is an inline #0 constant.
1091 * Switch over to an embedded 1.0 constant (that can't fit
1092 * inline, since we're 32-bit, not 16-bit like the inline
1093 * constants) */
1094
1095 ins.ssa_args.inline_constant = false;
1096 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1097 ins.has_constants = true;
1098
1099 if (instr->op == nir_op_b2f32) {
1100 ins.constants[0] = 1.0f;
1101 } else {
1102 /* Type pun it into place */
1103 uint32_t one = 0x1;
1104 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1105 }
1106
1107 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1108 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1109 /* Lots of instructions need a 0 plonked in */
1110 ins.ssa_args.inline_constant = false;
1111 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1112 ins.has_constants = true;
1113 ins.constants[0] = 0.0f;
1114 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1115 } else if (instr->op == nir_op_inot) {
1116 ins.invert = true;
1117 }
1118
1119 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1120 /* To avoid duplicating the lookup tables (probably), true LUT
1121 * instructions can only operate as if they were scalars. Lower
1122 * them here by changing the component. */
1123
1124 uint8_t original_swizzle[4];
1125 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1126 unsigned orig_mask = ins.mask;
1127
1128 for (int i = 0; i < nr_components; ++i) {
1129 /* Mask the associated component, dropping the
1130 * instruction if needed */
1131
1132 ins.mask = 1 << i;
1133 ins.mask &= orig_mask;
1134
1135 if (!ins.mask)
1136 continue;
1137
1138 for (int j = 0; j < 4; ++j)
1139 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1140
1141 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1142 emit_mir_instruction(ctx, ins);
1143 }
1144 } else {
1145 emit_mir_instruction(ctx, ins);
1146 }
1147 }
1148
1149 #undef ALU_CASE
1150
1151 static unsigned
1152 mir_mask_for_intr(nir_instr *instr, bool is_read)
1153 {
1154 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1155
1156 if (is_read)
1157 return mask_of(nir_intrinsic_dest_components(intr));
1158 else
1159 return nir_intrinsic_write_mask(intr);
1160 }
1161
1162 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1163 * optimized) versions of UBO #0 */
1164
1165 midgard_instruction *
1166 emit_ubo_read(
1167 compiler_context *ctx,
1168 nir_instr *instr,
1169 unsigned dest,
1170 unsigned offset,
1171 nir_src *indirect_offset,
1172 unsigned index)
1173 {
1174 /* TODO: half-floats */
1175
1176 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1177
1178 assert((offset & 0xF) == 0);
1179 offset /= 16;
1180
1181 /* TODO: Don't split */
1182 ins.load_store.varying_parameters = (offset & 7) << 7;
1183 ins.load_store.address = offset >> 3;
1184 ins.mask = mir_mask_for_intr(instr, true);
1185
1186 if (indirect_offset) {
1187 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1188 ins.load_store.arg_2 = 0x80;
1189 } else {
1190 ins.load_store.arg_2 = 0x1E;
1191 }
1192
1193 ins.load_store.arg_1 = index;
1194
1195 return emit_mir_instruction(ctx, ins);
1196 }
1197
1198 /* SSBO reads are like UBO reads if you squint */
1199
1200 static void
1201 emit_ssbo_access(
1202 compiler_context *ctx,
1203 nir_instr *instr,
1204 bool is_read,
1205 unsigned srcdest,
1206 unsigned offset,
1207 nir_src *indirect_offset,
1208 unsigned index)
1209 {
1210 /* TODO: types */
1211
1212 midgard_instruction ins;
1213
1214 if (is_read)
1215 ins = m_ld_int4(srcdest, offset);
1216 else
1217 ins = m_st_int4(srcdest, offset);
1218
1219 /* SSBO reads use a generic memory read interface, so we need the
1220 * address of the SSBO as the first argument. This is a sysval. */
1221
1222 unsigned addr = make_compiler_temp(ctx);
1223 emit_sysval_read(ctx, instr, addr, 2);
1224
1225 /* The source array is a bit of a leaky abstraction for SSBOs.
1226 * Nevertheless, for loads:
1227 *
1228 * src[0] = arg_1
1229 * src[1] = arg_2
1230 * src[2] = unused
1231 *
1232 * Whereas for stores:
1233 *
1234 * src[0] = value
1235 * src[1] = arg_1
1236 * src[2] = arg_2
1237 *
1238 * We would like arg_1 = the address and
1239 * arg_2 = the offset.
1240 */
1241
1242 ins.ssa_args.src[is_read ? 0 : 1] = addr;
1243
1244 /* TODO: What is this? It looks superficially like a shift << 5, but
1245 * arg_1 doesn't take a shift Should it be E0 or A0? */
1246 if (indirect_offset)
1247 ins.load_store.arg_1 |= 0xE0;
1248
1249 /* We also need to emit the indirect offset */
1250
1251 if (indirect_offset)
1252 ins.ssa_args.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1253 else
1254 ins.load_store.arg_2 = 0x7E;
1255
1256 /* TODO: Bounds check */
1257
1258 /* Finally, we emit the direct offset */
1259
1260 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1261 ins.load_store.address = (offset >> 9);
1262 ins.mask = mir_mask_for_intr(instr, is_read);
1263
1264 emit_mir_instruction(ctx, ins);
1265 }
1266
1267 static void
1268 emit_varying_read(
1269 compiler_context *ctx,
1270 unsigned dest, unsigned offset,
1271 unsigned nr_comp, unsigned component,
1272 nir_src *indirect_offset, nir_alu_type type)
1273 {
1274 /* XXX: Half-floats? */
1275 /* TODO: swizzle, mask */
1276
1277 midgard_instruction ins = m_ld_vary_32(dest, offset);
1278 ins.mask = mask_of(nr_comp);
1279 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1280
1281 midgard_varying_parameter p = {
1282 .is_varying = 1,
1283 .interpolation = midgard_interp_default,
1284 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1285 };
1286
1287 unsigned u;
1288 memcpy(&u, &p, sizeof(p));
1289 ins.load_store.varying_parameters = u;
1290
1291 if (indirect_offset)
1292 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1293 else
1294 ins.load_store.arg_2 = 0x1E;
1295
1296 ins.load_store.arg_1 = 0x9E;
1297
1298 /* Use the type appropriate load */
1299 switch (type) {
1300 case nir_type_uint:
1301 case nir_type_bool:
1302 ins.load_store.op = midgard_op_ld_vary_32u;
1303 break;
1304 case nir_type_int:
1305 ins.load_store.op = midgard_op_ld_vary_32i;
1306 break;
1307 case nir_type_float:
1308 ins.load_store.op = midgard_op_ld_vary_32;
1309 break;
1310 default:
1311 unreachable("Attempted to load unknown type");
1312 break;
1313 }
1314
1315 emit_mir_instruction(ctx, ins);
1316 }
1317
1318 void
1319 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1320 unsigned nr_components)
1321 {
1322 unsigned dest = 0;
1323
1324 /* Figure out which uniform this is */
1325 int sysval = sysval_for_instr(ctx, instr, &dest);
1326 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1327
1328 if (dest_override >= 0)
1329 dest = dest_override;
1330
1331 /* Sysvals are prefix uniforms */
1332 unsigned uniform = ((uintptr_t) val) - 1;
1333
1334 /* Emit the read itself -- this is never indirect */
1335 midgard_instruction *ins =
1336 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1337
1338 ins->mask = mask_of(nr_components);
1339 }
1340
1341 static unsigned
1342 compute_builtin_arg(nir_op op)
1343 {
1344 switch (op) {
1345 case nir_intrinsic_load_work_group_id:
1346 return 0x14;
1347 case nir_intrinsic_load_local_invocation_id:
1348 return 0x10;
1349 default:
1350 unreachable("Invalid compute paramater loaded");
1351 }
1352 }
1353
1354 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1355 * Handle MRT here */
1356
1357 static void
1358 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1359 {
1360 /* First, move in whatever we're outputting */
1361 midgard_instruction move = v_mov(src, blank_alu_src, SSA_FIXED_REGISTER(0));
1362 if (rt != 0) {
1363 /* Force a tight schedule. TODO: Make the scheduler MRT aware */
1364 move.unit = UNIT_VMUL;
1365 move.precede_break = true;
1366 move.dont_eliminate = true;
1367 }
1368
1369 emit_mir_instruction(ctx, move);
1370
1371 /* If we're doing MRT, we need to specify the render target */
1372
1373 midgard_instruction rt_move = {
1374 .ssa_args = {
1375 .dest = -1
1376 }
1377 };
1378
1379 if (rt != 0) {
1380 /* We'll write to r1.z */
1381 rt_move = v_mov(-1, blank_alu_src, SSA_FIXED_REGISTER(1));
1382 rt_move.mask = 1 << COMPONENT_Z;
1383 rt_move.unit = UNIT_SADD;
1384
1385 /* r1.z = (rt * 0x100) */
1386 rt_move.ssa_args.inline_constant = true;
1387 rt_move.inline_constant = (rt * 0x100);
1388
1389 /* r1 */
1390 ctx->work_registers = MAX2(ctx->work_registers, 1);
1391
1392 /* Do the write */
1393 emit_mir_instruction(ctx, rt_move);
1394 }
1395
1396 /* Next, generate the branch. For R render targets in the writeout, the
1397 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1398
1399 unsigned offset = (2 * (ctx->nir->num_outputs - 1)) + rt;
1400
1401 struct midgard_instruction ins =
1402 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1403
1404 /* Add dependencies */
1405 ins.ssa_args.src[0] = move.ssa_args.dest;
1406 ins.ssa_args.src[1] = rt_move.ssa_args.dest;
1407
1408 /* Emit the branch */
1409 emit_mir_instruction(ctx, ins);
1410 }
1411
1412 static void
1413 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1414 {
1415 unsigned reg = nir_dest_index(ctx, &instr->dest);
1416 midgard_instruction ins = m_ld_compute_id(reg, 0);
1417 ins.mask = mask_of(3);
1418 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1419 emit_mir_instruction(ctx, ins);
1420 }
1421 static void
1422 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1423 {
1424 unsigned offset = 0, reg;
1425
1426 switch (instr->intrinsic) {
1427 case nir_intrinsic_discard_if:
1428 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1429
1430 /* fallthrough */
1431
1432 case nir_intrinsic_discard: {
1433 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1434 struct midgard_instruction discard = v_branch(conditional, false);
1435 discard.branch.target_type = TARGET_DISCARD;
1436 emit_mir_instruction(ctx, discard);
1437 break;
1438 }
1439
1440 case nir_intrinsic_load_uniform:
1441 case nir_intrinsic_load_ubo:
1442 case nir_intrinsic_load_ssbo:
1443 case nir_intrinsic_load_input: {
1444 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1445 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1446 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1447
1448 /* Get the base type of the intrinsic */
1449 /* TODO: Infer type? Does it matter? */
1450 nir_alu_type t =
1451 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1452 t = nir_alu_type_get_base_type(t);
1453
1454 if (!(is_ubo || is_ssbo)) {
1455 offset = nir_intrinsic_base(instr);
1456 }
1457
1458 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1459
1460 nir_src *src_offset = nir_get_io_offset_src(instr);
1461
1462 bool direct = nir_src_is_const(*src_offset);
1463 nir_src *indirect_offset = direct ? NULL : src_offset;
1464
1465 if (direct)
1466 offset += nir_src_as_uint(*src_offset);
1467
1468 /* We may need to apply a fractional offset */
1469 int component = instr->intrinsic == nir_intrinsic_load_input ?
1470 nir_intrinsic_component(instr) : 0;
1471 reg = nir_dest_index(ctx, &instr->dest);
1472
1473 if (is_uniform && !ctx->is_blend) {
1474 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1475 } else if (is_ubo) {
1476 nir_src index = instr->src[0];
1477
1478 /* We don't yet support indirect UBOs. For indirect
1479 * block numbers (if that's possible), we don't know
1480 * enough about the hardware yet. For indirect sources,
1481 * we know what we need but we need to add some NIR
1482 * support for lowering correctly with respect to
1483 * 128-bit reads */
1484
1485 assert(nir_src_is_const(index));
1486 assert(nir_src_is_const(*src_offset));
1487
1488 uint32_t uindex = nir_src_as_uint(index) + 1;
1489 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1490 } else if (is_ssbo) {
1491 nir_src index = instr->src[0];
1492 assert(nir_src_is_const(index));
1493 uint32_t uindex = nir_src_as_uint(index);
1494
1495 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1496 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1497 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1498 } else if (ctx->is_blend) {
1499 /* For blend shaders, load the input color, which is
1500 * preloaded to r0 */
1501
1502 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1503 emit_mir_instruction(ctx, move);
1504 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1505 midgard_instruction ins = m_ld_attr_32(reg, offset);
1506 ins.load_store.arg_1 = 0x1E;
1507 ins.load_store.arg_2 = 0x1E;
1508 ins.mask = mask_of(nr_comp);
1509
1510 /* Use the type appropriate load */
1511 switch (t) {
1512 case nir_type_uint:
1513 case nir_type_bool:
1514 ins.load_store.op = midgard_op_ld_attr_32u;
1515 break;
1516 case nir_type_int:
1517 ins.load_store.op = midgard_op_ld_attr_32i;
1518 break;
1519 case nir_type_float:
1520 ins.load_store.op = midgard_op_ld_attr_32;
1521 break;
1522 default:
1523 unreachable("Attempted to load unknown type");
1524 break;
1525 }
1526
1527 emit_mir_instruction(ctx, ins);
1528 } else {
1529 DBG("Unknown load\n");
1530 assert(0);
1531 }
1532
1533 break;
1534 }
1535
1536 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1537
1538 case nir_intrinsic_load_raw_output_pan:
1539 reg = nir_dest_index(ctx, &instr->dest);
1540 assert(ctx->is_blend);
1541
1542 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1543 emit_mir_instruction(ctx, ins);
1544 break;
1545
1546 case nir_intrinsic_load_blend_const_color_rgba: {
1547 assert(ctx->is_blend);
1548 reg = nir_dest_index(ctx, &instr->dest);
1549
1550 /* Blend constants are embedded directly in the shader and
1551 * patched in, so we use some magic routing */
1552
1553 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1554 ins.has_constants = true;
1555 ins.has_blend_constant = true;
1556 emit_mir_instruction(ctx, ins);
1557 break;
1558 }
1559
1560 case nir_intrinsic_store_output:
1561 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1562
1563 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1564
1565 reg = nir_src_index(ctx, &instr->src[0]);
1566
1567 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1568 /* Determine number of render targets */
1569 emit_fragment_store(ctx, reg, offset);
1570 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1571 /* We should have been vectorized, though we don't
1572 * currently check that st_vary is emitted only once
1573 * per slot (this is relevant, since there's not a mask
1574 * parameter available on the store [set to 0 by the
1575 * blob]). We do respect the component by adjusting the
1576 * swizzle. If this is a constant source, we'll need to
1577 * emit that explicitly. */
1578
1579 emit_explicit_constant(ctx, reg, reg);
1580
1581 unsigned component = nir_intrinsic_component(instr);
1582
1583 midgard_instruction st = m_st_vary_32(reg, offset);
1584 st.load_store.arg_1 = 0x9E;
1585 st.load_store.arg_2 = 0x1E;
1586 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1587 emit_mir_instruction(ctx, st);
1588 } else {
1589 DBG("Unknown store\n");
1590 assert(0);
1591 }
1592
1593 break;
1594
1595 /* Special case of store_output for lowered blend shaders */
1596 case nir_intrinsic_store_raw_output_pan:
1597 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1598 reg = nir_src_index(ctx, &instr->src[0]);
1599 emit_fragment_store(ctx, reg, 0);
1600
1601 break;
1602
1603 case nir_intrinsic_store_ssbo:
1604 assert(nir_src_is_const(instr->src[1]));
1605
1606 bool direct_offset = nir_src_is_const(instr->src[2]);
1607 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1608 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1609 reg = nir_src_index(ctx, &instr->src[0]);
1610
1611 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1612
1613 emit_explicit_constant(ctx, reg, reg);
1614 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1615 break;
1616
1617 case nir_intrinsic_load_alpha_ref_float:
1618 assert(instr->dest.is_ssa);
1619
1620 float ref_value = ctx->alpha_ref;
1621
1622 /* See emit_load_const */
1623 float *v = ralloc_array(NULL, float, 4);
1624 memcpy(v, &ref_value, sizeof(float));
1625 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1626 break;
1627
1628 case nir_intrinsic_load_viewport_scale:
1629 case nir_intrinsic_load_viewport_offset:
1630 case nir_intrinsic_load_num_work_groups:
1631 emit_sysval_read(ctx, &instr->instr, -1, 3);
1632 break;
1633
1634 case nir_intrinsic_load_work_group_id:
1635 case nir_intrinsic_load_local_invocation_id:
1636 emit_compute_builtin(ctx, instr);
1637 break;
1638
1639 default:
1640 printf ("Unhandled intrinsic\n");
1641 assert(0);
1642 break;
1643 }
1644 }
1645
1646 static unsigned
1647 midgard_tex_format(enum glsl_sampler_dim dim)
1648 {
1649 switch (dim) {
1650 case GLSL_SAMPLER_DIM_1D:
1651 case GLSL_SAMPLER_DIM_BUF:
1652 return MALI_TEX_1D;
1653
1654 case GLSL_SAMPLER_DIM_2D:
1655 case GLSL_SAMPLER_DIM_EXTERNAL:
1656 return MALI_TEX_2D;
1657
1658 case GLSL_SAMPLER_DIM_3D:
1659 return MALI_TEX_3D;
1660
1661 case GLSL_SAMPLER_DIM_CUBE:
1662 return MALI_TEX_CUBE;
1663
1664 default:
1665 DBG("Unknown sampler dim type\n");
1666 assert(0);
1667 return 0;
1668 }
1669 }
1670
1671 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1672 * was successful */
1673
1674 static bool
1675 pan_attach_constant_bias(
1676 compiler_context *ctx,
1677 nir_src lod,
1678 midgard_texture_word *word)
1679 {
1680 /* To attach as constant, it has to *be* constant */
1681
1682 if (!nir_src_is_const(lod))
1683 return false;
1684
1685 float f = nir_src_as_float(lod);
1686
1687 /* Break into fixed-point */
1688 signed lod_int = f;
1689 float lod_frac = f - lod_int;
1690
1691 /* Carry over negative fractions */
1692 if (lod_frac < 0.0) {
1693 lod_int--;
1694 lod_frac += 1.0;
1695 }
1696
1697 /* Encode */
1698 word->bias = float_to_ubyte(lod_frac);
1699 word->bias_int = lod_int;
1700
1701 return true;
1702 }
1703
1704 static enum mali_sampler_type
1705 midgard_sampler_type(nir_alu_type t) {
1706 switch (nir_alu_type_get_base_type(t))
1707 {
1708 case nir_type_float:
1709 return MALI_SAMPLER_FLOAT;
1710 case nir_type_int:
1711 return MALI_SAMPLER_SIGNED;
1712 case nir_type_uint:
1713 return MALI_SAMPLER_UNSIGNED;
1714 default:
1715 unreachable("Unknown sampler type");
1716 }
1717 }
1718
1719 static void
1720 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1721 unsigned midgard_texop)
1722 {
1723 /* TODO */
1724 //assert (!instr->sampler);
1725 //assert (!instr->texture_array_size);
1726
1727 int texture_index = instr->texture_index;
1728 int sampler_index = texture_index;
1729
1730 /* No helper to build texture words -- we do it all here */
1731 midgard_instruction ins = {
1732 .type = TAG_TEXTURE_4,
1733 .mask = 0xF,
1734 .ssa_args = {
1735 .dest = nir_dest_index(ctx, &instr->dest),
1736 .src = { -1, -1, -1 },
1737 },
1738 .texture = {
1739 .op = midgard_texop,
1740 .format = midgard_tex_format(instr->sampler_dim),
1741 .texture_handle = texture_index,
1742 .sampler_handle = sampler_index,
1743 .swizzle = SWIZZLE_XYZW,
1744 .in_reg_swizzle = SWIZZLE_XYZW,
1745
1746 /* TODO: half */
1747 .in_reg_full = 1,
1748 .out_full = 1,
1749
1750 .sampler_type = midgard_sampler_type(instr->dest_type),
1751 }
1752 };
1753
1754 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1755 int index = nir_src_index(ctx, &instr->src[i].src);
1756 midgard_vector_alu_src alu_src = blank_alu_src;
1757
1758 switch (instr->src[i].src_type) {
1759 case nir_tex_src_coord: {
1760 emit_explicit_constant(ctx, index, index);
1761
1762 /* Texelfetch coordinates uses all four elements
1763 * (xyz/index) regardless of texture dimensionality,
1764 * which means it's necessary to zero the unused
1765 * components to keep everything happy */
1766
1767 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1768 unsigned old_index = index;
1769
1770 index = make_compiler_temp(ctx);
1771
1772 /* mov index, old_index */
1773 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1774 mov.mask = 0x3;
1775 emit_mir_instruction(ctx, mov);
1776
1777 /* mov index.zw, #0 */
1778 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1779 blank_alu_src, index);
1780 mov.has_constants = true;
1781 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1782 emit_mir_instruction(ctx, mov);
1783 }
1784
1785 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1786 /* texelFetch is undefined on samplerCube */
1787 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1788
1789 /* For cubemaps, we use a special ld/st op to
1790 * select the face and copy the xy into the
1791 * texture register */
1792
1793 unsigned temp = make_compiler_temp(ctx);
1794 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1795 st.ssa_args.src[0] = index;
1796 st.mask = 0x3; /* xy */
1797 st.load_store.arg_1 = 0x20;
1798 st.load_store.swizzle = alu_src.swizzle;
1799 emit_mir_instruction(ctx, st);
1800
1801 ins.ssa_args.src[0] = temp;
1802 } else {
1803 ins.ssa_args.src[0] = index;
1804 }
1805
1806 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1807 /* Array component in w but NIR wants it in z */
1808 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1809 }
1810
1811 break;
1812 }
1813
1814 case nir_tex_src_bias:
1815 case nir_tex_src_lod: {
1816 /* Try as a constant if we can */
1817
1818 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1819 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1820 break;
1821
1822 ins.texture.lod_register = true;
1823 ins.ssa_args.src[1] = index;
1824 emit_explicit_constant(ctx, index, index);
1825
1826 break;
1827 };
1828
1829 default:
1830 unreachable("Unknown texture source type\n");
1831 }
1832 }
1833
1834 emit_mir_instruction(ctx, ins);
1835
1836 /* Used for .cont and .last hinting */
1837 ctx->texture_op_count++;
1838 }
1839
1840 static void
1841 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1842 {
1843 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1844 * generic tex in some cases (which confuses the hardware) */
1845
1846 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1847
1848 if (is_vertex && instr->op == nir_texop_tex)
1849 instr->op = nir_texop_txl;
1850
1851 switch (instr->op) {
1852 case nir_texop_tex:
1853 case nir_texop_txb:
1854 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1855 break;
1856 case nir_texop_txl:
1857 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1858 break;
1859 case nir_texop_txf:
1860 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1861 break;
1862 case nir_texop_txs:
1863 emit_sysval_read(ctx, &instr->instr, -1, 4);
1864 break;
1865 default:
1866 unreachable("Unhanlded texture op");
1867 }
1868 }
1869
1870 static void
1871 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1872 {
1873 switch (instr->type) {
1874 case nir_jump_break: {
1875 /* Emit a branch out of the loop */
1876 struct midgard_instruction br = v_branch(false, false);
1877 br.branch.target_type = TARGET_BREAK;
1878 br.branch.target_break = ctx->current_loop_depth;
1879 emit_mir_instruction(ctx, br);
1880 break;
1881 }
1882
1883 default:
1884 DBG("Unknown jump type %d\n", instr->type);
1885 break;
1886 }
1887 }
1888
1889 static void
1890 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1891 {
1892 switch (instr->type) {
1893 case nir_instr_type_load_const:
1894 emit_load_const(ctx, nir_instr_as_load_const(instr));
1895 break;
1896
1897 case nir_instr_type_intrinsic:
1898 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1899 break;
1900
1901 case nir_instr_type_alu:
1902 emit_alu(ctx, nir_instr_as_alu(instr));
1903 break;
1904
1905 case nir_instr_type_tex:
1906 emit_tex(ctx, nir_instr_as_tex(instr));
1907 break;
1908
1909 case nir_instr_type_jump:
1910 emit_jump(ctx, nir_instr_as_jump(instr));
1911 break;
1912
1913 case nir_instr_type_ssa_undef:
1914 /* Spurious */
1915 break;
1916
1917 default:
1918 DBG("Unhandled instruction type\n");
1919 break;
1920 }
1921 }
1922
1923
1924 /* ALU instructions can inline or embed constants, which decreases register
1925 * pressure and saves space. */
1926
1927 #define CONDITIONAL_ATTACH(src) { \
1928 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1929 \
1930 if (entry) { \
1931 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1932 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1933 } \
1934 }
1935
1936 static void
1937 inline_alu_constants(compiler_context *ctx)
1938 {
1939 mir_foreach_instr(ctx, alu) {
1940 /* Other instructions cannot inline constants */
1941 if (alu->type != TAG_ALU_4) continue;
1942
1943 /* If there is already a constant here, we can do nothing */
1944 if (alu->has_constants) continue;
1945
1946 CONDITIONAL_ATTACH(src[0]);
1947
1948 if (!alu->has_constants) {
1949 CONDITIONAL_ATTACH(src[1])
1950 } else if (!alu->inline_constant) {
1951 /* Corner case: _two_ vec4 constants, for instance with a
1952 * csel. For this case, we can only use a constant
1953 * register for one, we'll have to emit a move for the
1954 * other. Note, if both arguments are constants, then
1955 * necessarily neither argument depends on the value of
1956 * any particular register. As the destination register
1957 * will be wiped, that means we can spill the constant
1958 * to the destination register.
1959 */
1960
1961 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src[1] + 1);
1962 unsigned scratch = alu->ssa_args.dest;
1963
1964 if (entry) {
1965 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1966 attach_constants(ctx, &ins, entry, alu->ssa_args.src[1] + 1);
1967
1968 /* Force a break XXX Defer r31 writes */
1969 ins.unit = UNIT_VLUT;
1970
1971 /* Set the source */
1972 alu->ssa_args.src[1] = scratch;
1973
1974 /* Inject us -before- the last instruction which set r31 */
1975 mir_insert_instruction_before(mir_prev_op(alu), ins);
1976 }
1977 }
1978 }
1979 }
1980
1981 /* Being a little silly with the names, but returns the op that is the bitwise
1982 * inverse of the op with the argument switched. I.e. (f and g are
1983 * contrapositives):
1984 *
1985 * f(a, b) = ~g(b, a)
1986 *
1987 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1988 *
1989 * f(a, b) = ~g(b, a)
1990 * ~f(a, b) = g(b, a)
1991 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1992 * f(a, b) = h(a, b)
1993 *
1994 * Thus we define this function in pairs.
1995 */
1996
1997 static inline midgard_alu_op
1998 mir_contrapositive(midgard_alu_op op)
1999 {
2000 switch (op) {
2001 case midgard_alu_op_flt:
2002 return midgard_alu_op_fle;
2003 case midgard_alu_op_fle:
2004 return midgard_alu_op_flt;
2005
2006 case midgard_alu_op_ilt:
2007 return midgard_alu_op_ile;
2008 case midgard_alu_op_ile:
2009 return midgard_alu_op_ilt;
2010
2011 default:
2012 unreachable("No known contrapositive");
2013 }
2014 }
2015
2016 /* Midgard supports two types of constants, embedded constants (128-bit) and
2017 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2018 * constants can be demoted to inline constants, for space savings and
2019 * sometimes a performance boost */
2020
2021 static void
2022 embedded_to_inline_constant(compiler_context *ctx)
2023 {
2024 mir_foreach_instr(ctx, ins) {
2025 if (!ins->has_constants) continue;
2026
2027 if (ins->ssa_args.inline_constant) continue;
2028
2029 /* Blend constants must not be inlined by definition */
2030 if (ins->has_blend_constant) continue;
2031
2032 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2033 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2034 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2035
2036 if (!(is_16 || is_32))
2037 continue;
2038
2039 /* src1 cannot be an inline constant due to encoding
2040 * restrictions. So, if possible we try to flip the arguments
2041 * in that case */
2042
2043 int op = ins->alu.op;
2044
2045 if (ins->ssa_args.src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2046 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2047
2048 switch (op) {
2049 /* Conditionals can be inverted */
2050 case midgard_alu_op_flt:
2051 case midgard_alu_op_ilt:
2052 case midgard_alu_op_fle:
2053 case midgard_alu_op_ile:
2054 ins->alu.op = mir_contrapositive(ins->alu.op);
2055 ins->invert = true;
2056 flip = true;
2057 break;
2058
2059 case midgard_alu_op_fcsel:
2060 case midgard_alu_op_icsel:
2061 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2062 default:
2063 break;
2064 }
2065
2066 if (flip) {
2067 /* Flip the SSA numbers */
2068 ins->ssa_args.src[0] = ins->ssa_args.src[1];
2069 ins->ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2070
2071 /* And flip the modifiers */
2072
2073 unsigned src_temp;
2074
2075 src_temp = ins->alu.src2;
2076 ins->alu.src2 = ins->alu.src1;
2077 ins->alu.src1 = src_temp;
2078 }
2079 }
2080
2081 if (ins->ssa_args.src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2082 /* Extract the source information */
2083
2084 midgard_vector_alu_src *src;
2085 int q = ins->alu.src2;
2086 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2087 src = m;
2088
2089 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2090 int component = src->swizzle & 3;
2091
2092 /* Scale constant appropriately, if we can legally */
2093 uint16_t scaled_constant = 0;
2094
2095 if (midgard_is_integer_op(op) || is_16) {
2096 unsigned int *iconstants = (unsigned int *) ins->constants;
2097 scaled_constant = (uint16_t) iconstants[component];
2098
2099 /* Constant overflow after resize */
2100 if (scaled_constant != iconstants[component])
2101 continue;
2102 } else {
2103 float original = (float) ins->constants[component];
2104 scaled_constant = _mesa_float_to_half(original);
2105
2106 /* Check for loss of precision. If this is
2107 * mediump, we don't care, but for a highp
2108 * shader, we need to pay attention. NIR
2109 * doesn't yet tell us which mode we're in!
2110 * Practically this prevents most constants
2111 * from being inlined, sadly. */
2112
2113 float fp32 = _mesa_half_to_float(scaled_constant);
2114
2115 if (fp32 != original)
2116 continue;
2117 }
2118
2119 /* We don't know how to handle these with a constant */
2120
2121 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2122 DBG("Bailing inline constant...\n");
2123 continue;
2124 }
2125
2126 /* Make sure that the constant is not itself a
2127 * vector by checking if all accessed values
2128 * (by the swizzle) are the same. */
2129
2130 uint32_t *cons = (uint32_t *) ins->constants;
2131 uint32_t value = cons[component];
2132
2133 bool is_vector = false;
2134 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2135
2136 for (int c = 1; c < 4; ++c) {
2137 /* We only care if this component is actually used */
2138 if (!(mask & (1 << c)))
2139 continue;
2140
2141 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2142
2143 if (test != value) {
2144 is_vector = true;
2145 break;
2146 }
2147 }
2148
2149 if (is_vector)
2150 continue;
2151
2152 /* Get rid of the embedded constant */
2153 ins->has_constants = false;
2154 ins->ssa_args.src[1] = -1;
2155 ins->ssa_args.inline_constant = true;
2156 ins->inline_constant = scaled_constant;
2157 }
2158 }
2159 }
2160
2161 /* Dead code elimination for branches at the end of a block - only one branch
2162 * per block is legal semantically */
2163
2164 static void
2165 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2166 {
2167 bool branched = false;
2168
2169 mir_foreach_instr_in_block_safe(block, ins) {
2170 if (!midgard_is_branch_unit(ins->unit)) continue;
2171
2172 /* We ignore prepacked branches since the fragment epilogue is
2173 * just generally special */
2174 if (ins->prepacked_branch) continue;
2175
2176 /* Discards are similarly special and may not correspond to the
2177 * end of a block */
2178
2179 if (ins->branch.target_type == TARGET_DISCARD) continue;
2180
2181 if (branched) {
2182 /* We already branched, so this is dead */
2183 mir_remove_instruction(ins);
2184 }
2185
2186 branched = true;
2187 }
2188 }
2189
2190 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2191 * the move can be propagated away entirely */
2192
2193 static bool
2194 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2195 {
2196 /* Nothing to do */
2197 if (comp == midgard_outmod_none)
2198 return true;
2199
2200 if (*outmod == midgard_outmod_none) {
2201 *outmod = comp;
2202 return true;
2203 }
2204
2205 /* TODO: Compose rules */
2206 return false;
2207 }
2208
2209 static bool
2210 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2211 {
2212 bool progress = false;
2213
2214 mir_foreach_instr_in_block_safe(block, ins) {
2215 if (ins->type != TAG_ALU_4) continue;
2216 if (ins->alu.op != midgard_alu_op_fmov) continue;
2217 if (ins->alu.outmod != midgard_outmod_pos) continue;
2218
2219 /* TODO: Registers? */
2220 unsigned src = ins->ssa_args.src[1];
2221 if (src & IS_REG) continue;
2222 assert(!mir_has_multiple_writes(ctx, src));
2223
2224 /* There might be a source modifier, too */
2225 if (mir_nontrivial_source2_mod(ins)) continue;
2226
2227 /* Backpropagate the modifier */
2228 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2229 if (v->type != TAG_ALU_4) continue;
2230 if (v->ssa_args.dest != src) continue;
2231
2232 /* Can we even take a float outmod? */
2233 if (midgard_is_integer_out_op(v->alu.op)) continue;
2234
2235 midgard_outmod_float temp = v->alu.outmod;
2236 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2237
2238 /* Throw in the towel.. */
2239 if (!progress) break;
2240
2241 /* Otherwise, transfer the modifier */
2242 v->alu.outmod = temp;
2243 ins->alu.outmod = midgard_outmod_none;
2244
2245 break;
2246 }
2247 }
2248
2249 return progress;
2250 }
2251
2252 static void
2253 emit_fragment_epilogue(compiler_context *ctx)
2254 {
2255 /* Just emit the last chunk with the branch */
2256 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2257 }
2258
2259 static midgard_block *
2260 emit_block(compiler_context *ctx, nir_block *block)
2261 {
2262 midgard_block *this_block = ctx->after_block;
2263 ctx->after_block = NULL;
2264
2265 if (!this_block)
2266 this_block = calloc(sizeof(midgard_block), 1);
2267
2268 list_addtail(&this_block->link, &ctx->blocks);
2269
2270 this_block->is_scheduled = false;
2271 ++ctx->block_count;
2272
2273 ctx->texture_index[0] = -1;
2274 ctx->texture_index[1] = -1;
2275
2276 /* Set up current block */
2277 list_inithead(&this_block->instructions);
2278 ctx->current_block = this_block;
2279
2280 nir_foreach_instr(instr, block) {
2281 emit_instr(ctx, instr);
2282 ++ctx->instruction_count;
2283 }
2284
2285 inline_alu_constants(ctx);
2286 embedded_to_inline_constant(ctx);
2287
2288 /* Append fragment shader epilogue (value writeout) */
2289 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2290 if (block == nir_impl_last_block(ctx->func->impl)) {
2291 emit_fragment_epilogue(ctx);
2292 }
2293 }
2294
2295 /* Allow the next control flow to access us retroactively, for
2296 * branching etc */
2297 ctx->current_block = this_block;
2298
2299 return this_block;
2300 }
2301
2302 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2303
2304 static void
2305 emit_if(struct compiler_context *ctx, nir_if *nif)
2306 {
2307 midgard_block *before_block = ctx->current_block;
2308
2309 /* Conditional branches expect the condition in r31.w; emit a move for
2310 * that in the _previous_ block (which is the current block). */
2311 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2312
2313 /* Speculatively emit the branch, but we can't fill it in until later */
2314 EMIT(branch, true, true);
2315 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2316
2317 /* Emit the two subblocks. */
2318 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2319 midgard_block *end_then_block = ctx->current_block;
2320
2321 /* Emit a jump from the end of the then block to the end of the else */
2322 EMIT(branch, false, false);
2323 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2324
2325 /* Emit second block, and check if it's empty */
2326
2327 int else_idx = ctx->block_count;
2328 int count_in = ctx->instruction_count;
2329 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2330 midgard_block *end_else_block = ctx->current_block;
2331 int after_else_idx = ctx->block_count;
2332
2333 /* Now that we have the subblocks emitted, fix up the branches */
2334
2335 assert(then_block);
2336 assert(else_block);
2337
2338 if (ctx->instruction_count == count_in) {
2339 /* The else block is empty, so don't emit an exit jump */
2340 mir_remove_instruction(then_exit);
2341 then_branch->branch.target_block = after_else_idx;
2342 } else {
2343 then_branch->branch.target_block = else_idx;
2344 then_exit->branch.target_block = after_else_idx;
2345 }
2346
2347 /* Wire up the successors */
2348
2349 ctx->after_block = calloc(sizeof(midgard_block), 1);
2350
2351 midgard_block_add_successor(before_block, then_block);
2352 midgard_block_add_successor(before_block, else_block);
2353
2354 midgard_block_add_successor(end_then_block, ctx->after_block);
2355 midgard_block_add_successor(end_else_block, ctx->after_block);
2356 }
2357
2358 static void
2359 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2360 {
2361 /* Remember where we are */
2362 midgard_block *start_block = ctx->current_block;
2363
2364 /* Allocate a loop number, growing the current inner loop depth */
2365 int loop_idx = ++ctx->current_loop_depth;
2366
2367 /* Get index from before the body so we can loop back later */
2368 int start_idx = ctx->block_count;
2369
2370 /* Emit the body itself */
2371 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2372
2373 /* Branch back to loop back */
2374 struct midgard_instruction br_back = v_branch(false, false);
2375 br_back.branch.target_block = start_idx;
2376 emit_mir_instruction(ctx, br_back);
2377
2378 /* Mark down that branch in the graph. */
2379 midgard_block_add_successor(start_block, loop_block);
2380 midgard_block_add_successor(ctx->current_block, loop_block);
2381
2382 /* Find the index of the block about to follow us (note: we don't add
2383 * one; blocks are 0-indexed so we get a fencepost problem) */
2384 int break_block_idx = ctx->block_count;
2385
2386 /* Fix up the break statements we emitted to point to the right place,
2387 * now that we can allocate a block number for them */
2388 ctx->after_block = calloc(sizeof(midgard_block), 1);
2389
2390 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2391 mir_foreach_instr_in_block(block, ins) {
2392 if (ins->type != TAG_ALU_4) continue;
2393 if (!ins->compact_branch) continue;
2394 if (ins->prepacked_branch) continue;
2395
2396 /* We found a branch -- check the type to see if we need to do anything */
2397 if (ins->branch.target_type != TARGET_BREAK) continue;
2398
2399 /* It's a break! Check if it's our break */
2400 if (ins->branch.target_break != loop_idx) continue;
2401
2402 /* Okay, cool, we're breaking out of this loop.
2403 * Rewrite from a break to a goto */
2404
2405 ins->branch.target_type = TARGET_GOTO;
2406 ins->branch.target_block = break_block_idx;
2407
2408 midgard_block_add_successor(block, ctx->after_block);
2409 }
2410 }
2411
2412 /* Now that we've finished emitting the loop, free up the depth again
2413 * so we play nice with recursion amid nested loops */
2414 --ctx->current_loop_depth;
2415
2416 /* Dump loop stats */
2417 ++ctx->loop_count;
2418 }
2419
2420 static midgard_block *
2421 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2422 {
2423 midgard_block *start_block = NULL;
2424
2425 foreach_list_typed(nir_cf_node, node, node, list) {
2426 switch (node->type) {
2427 case nir_cf_node_block: {
2428 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2429
2430 if (!start_block)
2431 start_block = block;
2432
2433 break;
2434 }
2435
2436 case nir_cf_node_if:
2437 emit_if(ctx, nir_cf_node_as_if(node));
2438 break;
2439
2440 case nir_cf_node_loop:
2441 emit_loop(ctx, nir_cf_node_as_loop(node));
2442 break;
2443
2444 case nir_cf_node_function:
2445 assert(0);
2446 break;
2447 }
2448 }
2449
2450 return start_block;
2451 }
2452
2453 /* Due to lookahead, we need to report the first tag executed in the command
2454 * stream and in branch targets. An initial block might be empty, so iterate
2455 * until we find one that 'works' */
2456
2457 static unsigned
2458 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2459 {
2460 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2461
2462 unsigned first_tag = 0;
2463
2464 mir_foreach_block_from(ctx, initial_block, v) {
2465 midgard_bundle *initial_bundle =
2466 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2467
2468 if (initial_bundle) {
2469 first_tag = initial_bundle->tag;
2470 break;
2471 }
2472 }
2473
2474 return first_tag;
2475 }
2476
2477 int
2478 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2479 {
2480 struct util_dynarray *compiled = &program->compiled;
2481
2482 midgard_debug = debug_get_option_midgard_debug();
2483
2484 compiler_context ictx = {
2485 .nir = nir,
2486 .screen = screen,
2487 .stage = nir->info.stage,
2488 .temp_alloc = 0,
2489
2490 .is_blend = is_blend,
2491 .blend_constant_offset = 0,
2492
2493 .alpha_ref = program->alpha_ref
2494 };
2495
2496 compiler_context *ctx = &ictx;
2497
2498 /* Start off with a safe cutoff, allowing usage of all 16 work
2499 * registers. Later, we'll promote uniform reads to uniform registers
2500 * if we determine it is beneficial to do so */
2501 ctx->uniform_cutoff = 8;
2502
2503 /* Initialize at a global (not block) level hash tables */
2504
2505 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2506 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2507 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2508
2509 /* Record the varying mapping for the command stream's bookkeeping */
2510
2511 struct exec_list *varyings =
2512 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2513
2514 unsigned max_varying = 0;
2515 nir_foreach_variable(var, varyings) {
2516 unsigned loc = var->data.driver_location;
2517 unsigned sz = glsl_type_size(var->type, FALSE);
2518
2519 for (int c = 0; c < sz; ++c) {
2520 program->varyings[loc + c] = var->data.location + c;
2521 max_varying = MAX2(max_varying, loc + c);
2522 }
2523 }
2524
2525 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2526 * (so we don't accidentally duplicate the epilogue since mesa/st has
2527 * messed with our I/O quite a bit already) */
2528
2529 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2530
2531 if (ctx->stage == MESA_SHADER_VERTEX) {
2532 NIR_PASS_V(nir, nir_lower_viewport_transform);
2533 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2534 }
2535
2536 NIR_PASS_V(nir, nir_lower_var_copies);
2537 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2538 NIR_PASS_V(nir, nir_split_var_copies);
2539 NIR_PASS_V(nir, nir_lower_var_copies);
2540 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2541 NIR_PASS_V(nir, nir_lower_var_copies);
2542 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2543
2544 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2545
2546 /* Optimisation passes */
2547
2548 optimise_nir(nir);
2549
2550 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2551 nir_print_shader(nir, stdout);
2552 }
2553
2554 /* Assign sysvals and counts, now that we're sure
2555 * (post-optimisation) */
2556
2557 midgard_nir_assign_sysvals(ctx, nir);
2558
2559 program->uniform_count = nir->num_uniforms;
2560 program->sysval_count = ctx->sysval_count;
2561 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2562
2563 nir_foreach_function(func, nir) {
2564 if (!func->impl)
2565 continue;
2566
2567 list_inithead(&ctx->blocks);
2568 ctx->block_count = 0;
2569 ctx->func = func;
2570
2571 emit_cf_list(ctx, &func->impl->body);
2572 emit_block(ctx, func->impl->end_block);
2573
2574 break; /* TODO: Multi-function shaders */
2575 }
2576
2577 util_dynarray_init(compiled, NULL);
2578
2579 /* MIR-level optimizations */
2580
2581 bool progress = false;
2582
2583 do {
2584 progress = false;
2585
2586 mir_foreach_block(ctx, block) {
2587 progress |= midgard_opt_pos_propagate(ctx, block);
2588 progress |= midgard_opt_copy_prop(ctx, block);
2589 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2590 progress |= midgard_opt_combine_projection(ctx, block);
2591 progress |= midgard_opt_varying_projection(ctx, block);
2592 progress |= midgard_opt_not_propagate(ctx, block);
2593 progress |= midgard_opt_fuse_src_invert(ctx, block);
2594 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2595 }
2596 } while (progress);
2597
2598 mir_foreach_block(ctx, block) {
2599 midgard_lower_invert(ctx, block);
2600 midgard_lower_derivatives(ctx, block);
2601 }
2602
2603 /* Nested control-flow can result in dead branches at the end of the
2604 * block. This messes with our analysis and is just dead code, so cull
2605 * them */
2606 mir_foreach_block(ctx, block) {
2607 midgard_opt_cull_dead_branch(ctx, block);
2608 }
2609
2610 /* Ensure we were lowered */
2611 mir_foreach_instr_global(ctx, ins) {
2612 assert(!ins->invert);
2613 }
2614
2615 /* Schedule! */
2616 schedule_program(ctx);
2617
2618 /* Now that all the bundles are scheduled and we can calculate block
2619 * sizes, emit actual branch instructions rather than placeholders */
2620
2621 int br_block_idx = 0;
2622
2623 mir_foreach_block(ctx, block) {
2624 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2625 for (int c = 0; c < bundle->instruction_count; ++c) {
2626 midgard_instruction *ins = bundle->instructions[c];
2627
2628 if (!midgard_is_branch_unit(ins->unit)) continue;
2629
2630 if (ins->prepacked_branch) continue;
2631
2632 /* Parse some basic branch info */
2633 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2634 bool is_conditional = ins->branch.conditional;
2635 bool is_inverted = ins->branch.invert_conditional;
2636 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2637
2638 /* Determine the block we're jumping to */
2639 int target_number = ins->branch.target_block;
2640
2641 /* Report the destination tag */
2642 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2643
2644 /* Count up the number of quadwords we're
2645 * jumping over = number of quadwords until
2646 * (br_block_idx, target_number) */
2647
2648 int quadword_offset = 0;
2649
2650 if (is_discard) {
2651 /* Ignored */
2652 } else if (target_number > br_block_idx) {
2653 /* Jump forward */
2654
2655 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2656 midgard_block *blk = mir_get_block(ctx, idx);
2657 assert(blk);
2658
2659 quadword_offset += blk->quadword_count;
2660 }
2661 } else {
2662 /* Jump backwards */
2663
2664 for (int idx = br_block_idx; idx >= target_number; --idx) {
2665 midgard_block *blk = mir_get_block(ctx, idx);
2666 assert(blk);
2667
2668 quadword_offset -= blk->quadword_count;
2669 }
2670 }
2671
2672 /* Unconditional extended branches (far jumps)
2673 * have issues, so we always use a conditional
2674 * branch, setting the condition to always for
2675 * unconditional. For compact unconditional
2676 * branches, cond isn't used so it doesn't
2677 * matter what we pick. */
2678
2679 midgard_condition cond =
2680 !is_conditional ? midgard_condition_always :
2681 is_inverted ? midgard_condition_false :
2682 midgard_condition_true;
2683
2684 midgard_jmp_writeout_op op =
2685 is_discard ? midgard_jmp_writeout_op_discard :
2686 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2687 midgard_jmp_writeout_op_branch_cond;
2688
2689 if (!is_compact) {
2690 midgard_branch_extended branch =
2691 midgard_create_branch_extended(
2692 cond, op,
2693 dest_tag,
2694 quadword_offset);
2695
2696 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2697 } else if (is_conditional || is_discard) {
2698 midgard_branch_cond branch = {
2699 .op = op,
2700 .dest_tag = dest_tag,
2701 .offset = quadword_offset,
2702 .cond = cond
2703 };
2704
2705 assert(branch.offset == quadword_offset);
2706
2707 memcpy(&ins->br_compact, &branch, sizeof(branch));
2708 } else {
2709 assert(op == midgard_jmp_writeout_op_branch_uncond);
2710
2711 midgard_branch_uncond branch = {
2712 .op = op,
2713 .dest_tag = dest_tag,
2714 .offset = quadword_offset,
2715 .unknown = 1
2716 };
2717
2718 assert(branch.offset == quadword_offset);
2719
2720 memcpy(&ins->br_compact, &branch, sizeof(branch));
2721 }
2722 }
2723 }
2724
2725 ++br_block_idx;
2726 }
2727
2728 /* Emit flat binary from the instruction arrays. Iterate each block in
2729 * sequence. Save instruction boundaries such that lookahead tags can
2730 * be assigned easily */
2731
2732 /* Cache _all_ bundles in source order for lookahead across failed branches */
2733
2734 int bundle_count = 0;
2735 mir_foreach_block(ctx, block) {
2736 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2737 }
2738 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2739 int bundle_idx = 0;
2740 mir_foreach_block(ctx, block) {
2741 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2742 source_order_bundles[bundle_idx++] = bundle;
2743 }
2744 }
2745
2746 int current_bundle = 0;
2747
2748 /* Midgard prefetches instruction types, so during emission we
2749 * need to lookahead. Unless this is the last instruction, in
2750 * which we return 1. Or if this is the second to last and the
2751 * last is an ALU, then it's also 1... */
2752
2753 mir_foreach_block(ctx, block) {
2754 mir_foreach_bundle_in_block(block, bundle) {
2755 int lookahead = 1;
2756
2757 if (current_bundle + 1 < bundle_count) {
2758 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2759
2760 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2761 lookahead = 1;
2762 } else {
2763 lookahead = next;
2764 }
2765 }
2766
2767 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2768 ++current_bundle;
2769 }
2770
2771 /* TODO: Free deeper */
2772 //util_dynarray_fini(&block->instructions);
2773 }
2774
2775 free(source_order_bundles);
2776
2777 /* Report the very first tag executed */
2778 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2779
2780 /* Deal with off-by-one related to the fencepost problem */
2781 program->work_register_count = ctx->work_registers + 1;
2782 program->uniform_cutoff = ctx->uniform_cutoff;
2783
2784 program->blend_patch_offset = ctx->blend_constant_offset;
2785 program->tls_size = ctx->tls_size;
2786
2787 if (midgard_debug & MIDGARD_DBG_SHADERS)
2788 disassemble_midgard(program->compiled.data, program->compiled.size, false, 0, "");
2789
2790 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2791 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2792
2793 /* Count instructions and bundles */
2794
2795 mir_foreach_instr_global(ctx, ins) {
2796 nr_ins++;
2797 }
2798
2799 mir_foreach_block(ctx, block) {
2800 nr_bundles += util_dynarray_num_elements(
2801 &block->bundles, midgard_bundle);
2802
2803 nr_quadwords += block->quadword_count;
2804 }
2805
2806 /* Calculate thread count. There are certain cutoffs by
2807 * register count for thread count */
2808
2809 unsigned nr_registers = program->work_register_count;
2810
2811 unsigned nr_threads =
2812 (nr_registers <= 4) ? 4 :
2813 (nr_registers <= 8) ? 2 :
2814 1;
2815
2816 /* Dump stats */
2817
2818 fprintf(stderr, "shader%d - %s shader: "
2819 "%u inst, %u bundles, %u quadwords, "
2820 "%u registers, %u threads, %u loops, "
2821 "%d:%d spills:fills\n",
2822 SHADER_DB_COUNT++,
2823 gl_shader_stage_name(ctx->stage),
2824 nr_ins, nr_bundles, nr_quadwords,
2825 nr_registers, nr_threads,
2826 ctx->loop_count,
2827 ctx->spills, ctx->fills);
2828 }
2829
2830
2831 return 0;
2832 }