pan/mdg: Emit fcsel when beneficial
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71 static midgard_block *
72 create_empty_block(compiler_context *ctx)
73 {
74 midgard_block *blk = rzalloc(ctx, midgard_block);
75
76 blk->base.predecessors = _mesa_set_create(blk,
77 _mesa_hash_pointer,
78 _mesa_key_pointer_equal);
79
80 blk->base.name = ctx->block_source_count++;
81
82 return blk;
83 }
84
85 static void
86 schedule_barrier(compiler_context *ctx)
87 {
88 midgard_block *temp = ctx->after_block;
89 ctx->after_block = create_empty_block(ctx);
90 ctx->block_count++;
91 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
92 list_inithead(&ctx->after_block->base.instructions);
93 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
94 ctx->current_block = ctx->after_block;
95 ctx->after_block = temp;
96 }
97
98 /* Helpers to generate midgard_instruction's using macro magic, since every
99 * driver seems to do it that way */
100
101 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
102
103 #define M_LOAD_STORE(name, store, T) \
104 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
105 midgard_instruction i = { \
106 .type = TAG_LOAD_STORE_4, \
107 .mask = 0xF, \
108 .dest = ~0, \
109 .src = { ~0, ~0, ~0, ~0 }, \
110 .swizzle = SWIZZLE_IDENTITY_4, \
111 .load_store = { \
112 .op = midgard_op_##name, \
113 .address = address \
114 } \
115 }; \
116 \
117 if (store) { \
118 i.src[0] = ssa; \
119 i.src_types[0] = T; \
120 } else { \
121 i.dest = ssa; \
122 i.dest_type = T; \
123 } \
124 return i; \
125 }
126
127 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
128 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
129
130 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
131 * the corresponding Midgard source */
132
133 static midgard_vector_alu_src
134 vector_alu_modifiers(bool abs, bool neg, bool is_int,
135 bool half, bool sext)
136 {
137 /* Figure out how many components there are so we can adjust.
138 * Specifically we want to broadcast the last channel so things like
139 * ball2/3 work.
140 */
141
142 midgard_vector_alu_src alu_src = {
143 .rep_low = 0,
144 .rep_high = 0,
145 .half = half
146 };
147
148 if (is_int) {
149 alu_src.mod = midgard_int_normal;
150
151 /* Sign/zero-extend if needed */
152
153 if (half) {
154 alu_src.mod = sext ?
155 midgard_int_sign_extend
156 : midgard_int_zero_extend;
157 }
158
159 /* These should have been lowered away */
160 assert(!(abs || neg));
161 } else {
162 alu_src.mod = (abs << 0) | (neg << 1);
163 }
164
165 return alu_src;
166 }
167
168 M_LOAD(ld_attr_32, nir_type_uint32);
169 M_LOAD(ld_vary_32, nir_type_uint32);
170 M_LOAD(ld_ubo_int4, nir_type_uint32);
171 M_LOAD(ld_int4, nir_type_uint32);
172 M_STORE(st_int4, nir_type_uint32);
173 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
174 M_STORE(st_vary_32, nir_type_uint32);
175 M_LOAD(ld_cubemap_coords, nir_type_uint32);
176 M_LOAD(ld_compute_id, nir_type_uint32);
177
178 static midgard_instruction
179 v_branch(bool conditional, bool invert)
180 {
181 midgard_instruction ins = {
182 .type = TAG_ALU_4,
183 .unit = ALU_ENAB_BRANCH,
184 .compact_branch = true,
185 .branch = {
186 .conditional = conditional,
187 .invert_conditional = invert
188 },
189 .dest = ~0,
190 .src = { ~0, ~0, ~0, ~0 },
191 };
192
193 return ins;
194 }
195
196 static midgard_branch_extended
197 midgard_create_branch_extended( midgard_condition cond,
198 midgard_jmp_writeout_op op,
199 unsigned dest_tag,
200 signed quadword_offset)
201 {
202 /* The condition code is actually a LUT describing a function to
203 * combine multiple condition codes. However, we only support a single
204 * condition code at the moment, so we just duplicate over a bunch of
205 * times. */
206
207 uint16_t duplicated_cond =
208 (cond << 14) |
209 (cond << 12) |
210 (cond << 10) |
211 (cond << 8) |
212 (cond << 6) |
213 (cond << 4) |
214 (cond << 2) |
215 (cond << 0);
216
217 midgard_branch_extended branch = {
218 .op = op,
219 .dest_tag = dest_tag,
220 .offset = quadword_offset,
221 .cond = duplicated_cond
222 };
223
224 return branch;
225 }
226
227 static void
228 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
229 {
230 ins->has_constants = true;
231 memcpy(&ins->constants, constants, 16);
232 }
233
234 static int
235 glsl_type_size(const struct glsl_type *type, bool bindless)
236 {
237 return glsl_count_attribute_slots(type, false);
238 }
239
240 /* Lower fdot2 to a vector multiplication followed by channel addition */
241 static void
242 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
243 {
244 if (alu->op != nir_op_fdot2)
245 return;
246
247 b->cursor = nir_before_instr(&alu->instr);
248
249 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
250 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
251
252 nir_ssa_def *product = nir_fmul(b, src0, src1);
253
254 nir_ssa_def *sum = nir_fadd(b,
255 nir_channel(b, product, 0),
256 nir_channel(b, product, 1));
257
258 /* Replace the fdot2 with this sum */
259 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
260 }
261
262 static bool
263 midgard_nir_lower_fdot2(nir_shader *shader)
264 {
265 bool progress = false;
266
267 nir_foreach_function(function, shader) {
268 if (!function->impl) continue;
269
270 nir_builder _b;
271 nir_builder *b = &_b;
272 nir_builder_init(b, function->impl);
273
274 nir_foreach_block(block, function->impl) {
275 nir_foreach_instr_safe(instr, block) {
276 if (instr->type != nir_instr_type_alu) continue;
277
278 nir_alu_instr *alu = nir_instr_as_alu(instr);
279 midgard_nir_lower_fdot2_body(b, alu);
280
281 progress |= true;
282 }
283 }
284
285 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
286
287 }
288
289 return progress;
290 }
291
292 /* Midgard can't write depth and stencil separately. It has to happen in a
293 * single store operation containing both. Let's add a panfrost specific
294 * intrinsic and turn all depth/stencil stores into a packed depth+stencil
295 * one.
296 */
297 static bool
298 midgard_nir_lower_zs_store(nir_shader *nir)
299 {
300 if (nir->info.stage != MESA_SHADER_FRAGMENT)
301 return false;
302
303 nir_variable *z_var = NULL, *s_var = NULL;
304
305 nir_foreach_variable(var, &nir->outputs) {
306 if (var->data.location == FRAG_RESULT_DEPTH)
307 z_var = var;
308 else if (var->data.location == FRAG_RESULT_STENCIL)
309 s_var = var;
310 }
311
312 if (!z_var && !s_var)
313 return false;
314
315 bool progress = false;
316
317 nir_foreach_function(function, nir) {
318 if (!function->impl) continue;
319
320 nir_intrinsic_instr *z_store = NULL, *s_store = NULL, *last_store = NULL;
321
322 nir_foreach_block(block, function->impl) {
323 nir_foreach_instr_safe(instr, block) {
324 if (instr->type != nir_instr_type_intrinsic)
325 continue;
326
327 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
328 if (intr->intrinsic != nir_intrinsic_store_output)
329 continue;
330
331 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
332 assert(!z_store);
333 z_store = intr;
334 last_store = intr;
335 }
336
337 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
338 assert(!s_store);
339 s_store = intr;
340 last_store = intr;
341 }
342 }
343 }
344
345 if (!z_store && !s_store) continue;
346
347 nir_builder b;
348 nir_builder_init(&b, function->impl);
349
350 b.cursor = nir_before_instr(&last_store->instr);
351
352 nir_ssa_def *zs_store_src;
353
354 if (z_store && s_store) {
355 nir_ssa_def *srcs[2] = {
356 nir_ssa_for_src(&b, z_store->src[0], 1),
357 nir_ssa_for_src(&b, s_store->src[0], 1),
358 };
359
360 zs_store_src = nir_vec(&b, srcs, 2);
361 } else {
362 zs_store_src = nir_ssa_for_src(&b, last_store->src[0], 1);
363 }
364
365 nir_intrinsic_instr *zs_store;
366
367 zs_store = nir_intrinsic_instr_create(b.shader,
368 nir_intrinsic_store_zs_output_pan);
369 zs_store->src[0] = nir_src_for_ssa(zs_store_src);
370 zs_store->num_components = z_store && s_store ? 2 : 1;
371 nir_intrinsic_set_component(zs_store, z_store ? 0 : 1);
372
373 /* Replace the Z and S store by a ZS store */
374 nir_builder_instr_insert(&b, &zs_store->instr);
375
376 if (z_store)
377 nir_instr_remove(&z_store->instr);
378
379 if (s_store)
380 nir_instr_remove(&s_store->instr);
381
382 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
383 progress = true;
384 }
385
386 return progress;
387 }
388
389 /* Flushes undefined values to zero */
390
391 static void
392 optimise_nir(nir_shader *nir, unsigned quirks)
393 {
394 bool progress;
395 unsigned lower_flrp =
396 (nir->options->lower_flrp16 ? 16 : 0) |
397 (nir->options->lower_flrp32 ? 32 : 0) |
398 (nir->options->lower_flrp64 ? 64 : 0);
399
400 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
401 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
402
403 nir_lower_tex_options lower_tex_options = {
404 .lower_txs_lod = true,
405 .lower_txp = ~0,
406 .lower_tex_without_implicit_lod =
407 (quirks & MIDGARD_EXPLICIT_LOD),
408
409 /* TODO: we have native gradient.. */
410 .lower_txd = true,
411 };
412
413 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
414
415 /* Must lower fdot2 after tex is lowered */
416 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
417
418 /* T720 is broken. */
419
420 if (quirks & MIDGARD_BROKEN_LOD)
421 NIR_PASS_V(nir, midgard_nir_lod_errata);
422
423 do {
424 progress = false;
425
426 NIR_PASS(progress, nir, nir_lower_var_copies);
427 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
428
429 NIR_PASS(progress, nir, nir_copy_prop);
430 NIR_PASS(progress, nir, nir_opt_remove_phis);
431 NIR_PASS(progress, nir, nir_opt_dce);
432 NIR_PASS(progress, nir, nir_opt_dead_cf);
433 NIR_PASS(progress, nir, nir_opt_cse);
434 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
435 NIR_PASS(progress, nir, nir_opt_algebraic);
436 NIR_PASS(progress, nir, nir_opt_constant_folding);
437
438 if (lower_flrp != 0) {
439 bool lower_flrp_progress = false;
440 NIR_PASS(lower_flrp_progress,
441 nir,
442 nir_lower_flrp,
443 lower_flrp,
444 false /* always_precise */,
445 nir->options->lower_ffma);
446 if (lower_flrp_progress) {
447 NIR_PASS(progress, nir,
448 nir_opt_constant_folding);
449 progress = true;
450 }
451
452 /* Nothing should rematerialize any flrps, so we only
453 * need to do this lowering once.
454 */
455 lower_flrp = 0;
456 }
457
458 NIR_PASS(progress, nir, nir_opt_undef);
459 NIR_PASS(progress, nir, nir_undef_to_zero);
460
461 NIR_PASS(progress, nir, nir_opt_loop_unroll,
462 nir_var_shader_in |
463 nir_var_shader_out |
464 nir_var_function_temp);
465
466 NIR_PASS(progress, nir, nir_opt_vectorize);
467 } while (progress);
468
469 /* Must be run at the end to prevent creation of fsin/fcos ops */
470 NIR_PASS(progress, nir, midgard_nir_scale_trig);
471
472 do {
473 progress = false;
474
475 NIR_PASS(progress, nir, nir_opt_dce);
476 NIR_PASS(progress, nir, nir_opt_algebraic);
477 NIR_PASS(progress, nir, nir_opt_constant_folding);
478 NIR_PASS(progress, nir, nir_copy_prop);
479 } while (progress);
480
481 NIR_PASS(progress, nir, nir_opt_algebraic_late);
482 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
483
484 /* We implement booleans as 32-bit 0/~0 */
485 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
486
487 /* Now that booleans are lowered, we can run out late opts */
488 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
489 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
490
491 NIR_PASS(progress, nir, nir_copy_prop);
492 NIR_PASS(progress, nir, nir_opt_dce);
493
494 /* Take us out of SSA */
495 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
496 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
497
498 /* We are a vector architecture; write combine where possible */
499 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
500 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
501
502 NIR_PASS(progress, nir, nir_opt_dce);
503 }
504
505 /* Do not actually emit a load; instead, cache the constant for inlining */
506
507 static void
508 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
509 {
510 nir_ssa_def def = instr->def;
511
512 midgard_constants *consts = rzalloc(NULL, midgard_constants);
513
514 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
515
516 #define RAW_CONST_COPY(bits) \
517 nir_const_value_to_array(consts->u##bits, instr->value, \
518 instr->def.num_components, u##bits)
519
520 switch (instr->def.bit_size) {
521 case 64:
522 RAW_CONST_COPY(64);
523 break;
524 case 32:
525 RAW_CONST_COPY(32);
526 break;
527 case 16:
528 RAW_CONST_COPY(16);
529 break;
530 case 8:
531 RAW_CONST_COPY(8);
532 break;
533 default:
534 unreachable("Invalid bit_size for load_const instruction\n");
535 }
536
537 /* Shifted for SSA, +1 for off-by-one */
538 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
539 }
540
541 /* Normally constants are embedded implicitly, but for I/O and such we have to
542 * explicitly emit a move with the constant source */
543
544 static void
545 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
546 {
547 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
548
549 if (constant_value) {
550 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
551 attach_constants(ctx, &ins, constant_value, node + 1);
552 emit_mir_instruction(ctx, ins);
553 }
554 }
555
556 static bool
557 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
558 {
559 unsigned comp = src->swizzle[0];
560
561 for (unsigned c = 1; c < nr_components; ++c) {
562 if (src->swizzle[c] != comp)
563 return true;
564 }
565
566 return false;
567 }
568
569 #define ALU_CASE(nir, _op) \
570 case nir_op_##nir: \
571 op = midgard_alu_op_##_op; \
572 assert(src_bitsize == dst_bitsize); \
573 break;
574
575 #define ALU_CASE_BCAST(nir, _op, count) \
576 case nir_op_##nir: \
577 op = midgard_alu_op_##_op; \
578 broadcast_swizzle = count; \
579 assert(src_bitsize == dst_bitsize); \
580 break;
581 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
582 * special treatment override this anyway. */
583
584 static midgard_reg_mode
585 reg_mode_for_nir(nir_alu_instr *instr)
586 {
587 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
588
589 switch (src_bitsize) {
590 case 8:
591 return midgard_reg_mode_8;
592 case 16:
593 return midgard_reg_mode_16;
594 case 32:
595 return midgard_reg_mode_32;
596 case 64:
597 return midgard_reg_mode_64;
598 default:
599 unreachable("Invalid bit size");
600 }
601 }
602
603 /* Compare mir_lower_invert */
604 static bool
605 nir_accepts_inot(nir_op op, unsigned src)
606 {
607 switch (op) {
608 case nir_op_ior:
609 case nir_op_iand:
610 case nir_op_ixor:
611 return true;
612 case nir_op_b32csel:
613 /* Only the condition */
614 return (src == 0);
615 default:
616 return false;
617 }
618 }
619
620 static bool
621 mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
622 {
623 if (pan_has_dest_mod(dest, op)) {
624 assert((*dest)->is_ssa);
625 BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
626 return true;
627 }
628
629 return false;
630 }
631
632 static void
633 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, bool is_int, unsigned bcast_count)
634 {
635 nir_alu_src src = instr->src[i];
636
637 if (!is_int) {
638 if (pan_has_source_mod(&src, nir_op_fneg))
639 *neg = !(*neg);
640
641 if (pan_has_source_mod(&src, nir_op_fabs))
642 *abs = true;
643 }
644
645 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
646 *not = true;
647
648 unsigned bits = nir_src_bit_size(src.src);
649
650 ins->src[to] = nir_src_index(NULL, &src.src);
651 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
652
653 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
654 ins->swizzle[to][c] = src.swizzle[
655 (!bcast_count || c < bcast_count) ? c :
656 (bcast_count - 1)];
657 }
658 }
659
660 /* Midgard features both fcsel and icsel, depending on whether you want int or
661 * float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
662 * we should emit an int or float csel depending on what modifiers could be
663 * placed. In the absense of modifiers, this is probably arbitrary. */
664
665 static bool
666 mir_is_bcsel_float(nir_alu_instr *instr)
667 {
668 nir_op intmods[] = {
669 nir_op_i2i8, nir_op_i2i16,
670 nir_op_i2i32, nir_op_i2i64
671 };
672
673 nir_op floatmods[] = {
674 nir_op_fabs, nir_op_fneg,
675 nir_op_f2f16, nir_op_f2f32,
676 nir_op_f2f64
677 };
678
679 nir_op floatdestmods[] = {
680 nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
681 nir_op_f2f16, nir_op_f2f32
682 };
683
684 signed score = 0;
685
686 for (unsigned i = 1; i < 3; ++i) {
687 nir_alu_src s = instr->src[i];
688 for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
689 if (pan_has_source_mod(&s, intmods[q]))
690 score--;
691 }
692 }
693
694 for (unsigned i = 1; i < 3; ++i) {
695 nir_alu_src s = instr->src[i];
696 for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
697 if (pan_has_source_mod(&s, floatmods[q]))
698 score++;
699 }
700 }
701
702 for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
703 nir_dest *dest = &instr->dest.dest;
704 if (pan_has_dest_mod(&dest, floatdestmods[q]))
705 score++;
706 }
707
708 return (score > 0);
709 }
710
711 static void
712 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
713 {
714 nir_dest *dest = &instr->dest.dest;
715
716 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
717 return;
718
719 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
720 * is handled elsewhere */
721
722 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
723 midgard_emit_derivatives(ctx, instr);
724 return;
725 }
726
727 bool is_ssa = dest->is_ssa;
728
729 unsigned nr_components = nir_dest_num_components(*dest);
730 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
731 unsigned op = 0;
732
733 /* Number of components valid to check for the instruction (the rest
734 * will be forced to the last), or 0 to use as-is. Relevant as
735 * ball-type instructions have a channel count in NIR but are all vec4
736 * in Midgard */
737
738 unsigned broadcast_swizzle = 0;
739
740 /* What register mode should we operate in? */
741 midgard_reg_mode reg_mode =
742 reg_mode_for_nir(instr);
743
744 /* Do we need a destination override? Used for inline
745 * type conversion */
746
747 midgard_dest_override dest_override =
748 midgard_dest_override_none;
749
750 /* Should we use a smaller respective source and sign-extend? */
751
752 bool half_1 = false, sext_1 = false;
753 bool half_2 = false, sext_2 = false;
754
755 /* Should we swap arguments? */
756 bool flip_src12 = false;
757
758 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
759 unsigned dst_bitsize = nir_dest_bit_size(*dest);
760
761 switch (instr->op) {
762 ALU_CASE(fadd, fadd);
763 ALU_CASE(fmul, fmul);
764 ALU_CASE(fmin, fmin);
765 ALU_CASE(fmax, fmax);
766 ALU_CASE(imin, imin);
767 ALU_CASE(imax, imax);
768 ALU_CASE(umin, umin);
769 ALU_CASE(umax, umax);
770 ALU_CASE(ffloor, ffloor);
771 ALU_CASE(fround_even, froundeven);
772 ALU_CASE(ftrunc, ftrunc);
773 ALU_CASE(fceil, fceil);
774 ALU_CASE(fdot3, fdot3);
775 ALU_CASE(fdot4, fdot4);
776 ALU_CASE(iadd, iadd);
777 ALU_CASE(isub, isub);
778 ALU_CASE(imul, imul);
779
780 /* Zero shoved as second-arg */
781 ALU_CASE(iabs, iabsdiff);
782
783 ALU_CASE(mov, imov);
784
785 ALU_CASE(feq32, feq);
786 ALU_CASE(fne32, fne);
787 ALU_CASE(flt32, flt);
788 ALU_CASE(ieq32, ieq);
789 ALU_CASE(ine32, ine);
790 ALU_CASE(ilt32, ilt);
791 ALU_CASE(ult32, ult);
792
793 /* We don't have a native b2f32 instruction. Instead, like many
794 * GPUs, we exploit booleans as 0/~0 for false/true, and
795 * correspondingly AND
796 * by 1.0 to do the type conversion. For the moment, prime us
797 * to emit:
798 *
799 * iand [whatever], #0
800 *
801 * At the end of emit_alu (as MIR), we'll fix-up the constant
802 */
803
804 ALU_CASE(b2f32, iand);
805 ALU_CASE(b2i32, iand);
806
807 /* Likewise, we don't have a dedicated f2b32 instruction, but
808 * we can do a "not equal to 0.0" test. */
809
810 ALU_CASE(f2b32, fne);
811 ALU_CASE(i2b32, ine);
812
813 ALU_CASE(frcp, frcp);
814 ALU_CASE(frsq, frsqrt);
815 ALU_CASE(fsqrt, fsqrt);
816 ALU_CASE(fexp2, fexp2);
817 ALU_CASE(flog2, flog2);
818
819 ALU_CASE(f2i64, f2i_rtz);
820 ALU_CASE(f2u64, f2u_rtz);
821 ALU_CASE(i2f64, i2f_rtz);
822 ALU_CASE(u2f64, u2f_rtz);
823
824 ALU_CASE(f2i32, f2i_rtz);
825 ALU_CASE(f2u32, f2u_rtz);
826 ALU_CASE(i2f32, i2f_rtz);
827 ALU_CASE(u2f32, u2f_rtz);
828
829 ALU_CASE(f2i16, f2i_rtz);
830 ALU_CASE(f2u16, f2u_rtz);
831 ALU_CASE(i2f16, i2f_rtz);
832 ALU_CASE(u2f16, u2f_rtz);
833
834 ALU_CASE(fsin, fsin);
835 ALU_CASE(fcos, fcos);
836
837 /* We'll get 0 in the second arg, so:
838 * ~a = ~(a | 0) = nor(a, 0) */
839 ALU_CASE(inot, inor);
840 ALU_CASE(iand, iand);
841 ALU_CASE(ior, ior);
842 ALU_CASE(ixor, ixor);
843 ALU_CASE(ishl, ishl);
844 ALU_CASE(ishr, iasr);
845 ALU_CASE(ushr, ilsr);
846
847 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
848 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
849 ALU_CASE(b32all_fequal4, fball_eq);
850
851 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
852 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
853 ALU_CASE(b32any_fnequal4, fbany_neq);
854
855 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
856 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
857 ALU_CASE(b32all_iequal4, iball_eq);
858
859 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
860 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
861 ALU_CASE(b32any_inequal4, ibany_neq);
862
863 /* Source mods will be shoved in later */
864 ALU_CASE(fabs, fmov);
865 ALU_CASE(fneg, fmov);
866 ALU_CASE(fsat, fmov);
867 ALU_CASE(fsat_signed, fmov);
868 ALU_CASE(fclamp_pos, fmov);
869
870 /* For size conversion, we use a move. Ideally though we would squash
871 * these ops together; maybe that has to happen after in NIR as part of
872 * propagation...? An earlier algebraic pass ensured we step down by
873 * only / exactly one size. If stepping down, we use a dest override to
874 * reduce the size; if stepping up, we use a larger-sized move with a
875 * half source and a sign/zero-extension modifier */
876
877 case nir_op_i2i8:
878 case nir_op_i2i16:
879 case nir_op_i2i32:
880 case nir_op_i2i64:
881 /* If we end up upscale, we'll need a sign-extend on the
882 * operand (the second argument) */
883
884 sext_2 = true;
885 /* fallthrough */
886 case nir_op_u2u8:
887 case nir_op_u2u16:
888 case nir_op_u2u32:
889 case nir_op_u2u64:
890 case nir_op_f2f16:
891 case nir_op_f2f32:
892 case nir_op_f2f64: {
893 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
894 instr->op == nir_op_f2f64)
895 op = midgard_alu_op_fmov;
896 else
897 op = midgard_alu_op_imov;
898
899 if (dst_bitsize == (src_bitsize * 2)) {
900 /* Converting up */
901 half_2 = true;
902
903 /* Use a greater register mode */
904 reg_mode++;
905 } else if (src_bitsize == (dst_bitsize * 2)) {
906 /* Converting down */
907 dest_override = midgard_dest_override_lower;
908 }
909
910 break;
911 }
912
913 /* For greater-or-equal, we lower to less-or-equal and flip the
914 * arguments */
915
916 case nir_op_fge:
917 case nir_op_fge32:
918 case nir_op_ige32:
919 case nir_op_uge32: {
920 op =
921 instr->op == nir_op_fge ? midgard_alu_op_fle :
922 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
923 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
924 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
925 0;
926
927 flip_src12 = true;
928 break;
929 }
930
931 case nir_op_b32csel: {
932 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
933 bool is_float = mir_is_bcsel_float(instr);
934 op = is_float ?
935 (mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
936 (mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
937
938 break;
939 }
940
941 default:
942 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
943 assert(0);
944 return;
945 }
946
947 /* Midgard can perform certain modifiers on output of an ALU op */
948
949 unsigned outmod = 0;
950
951 bool abs[4] = { false };
952 bool neg[4] = { false };
953 bool is_int = midgard_is_integer_op(op);
954
955 if (midgard_is_integer_out_op(op)) {
956 outmod = midgard_outmod_int_wrap;
957 } else if (instr->op == nir_op_fsat) {
958 outmod = midgard_outmod_sat;
959 } else if (instr->op == nir_op_fsat_signed) {
960 outmod = midgard_outmod_sat_signed;
961 } else if (instr->op == nir_op_fclamp_pos) {
962 outmod = midgard_outmod_pos;
963 }
964
965 /* Fetch unit, quirks, etc information */
966 unsigned opcode_props = alu_opcode_props[op].props;
967 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
968
969 /* Look for floating point mods. We have the mods fsat, fsat_signed,
970 * and fpos. We also have the relations (note 3 * 2 = 6 cases):
971 *
972 * fsat_signed(fpos(x)) = fsat(x)
973 * fsat_signed(fsat(x)) = fsat(x)
974 * fpos(fsat_signed(x)) = fsat(x)
975 * fpos(fsat(x)) = fsat(x)
976 * fsat(fsat_signed(x)) = fsat(x)
977 * fsat(fpos(x)) = fsat(x)
978 *
979 * So by cases any composition of output modifiers is equivalent to
980 * fsat alone.
981 */
982
983 if (!is_int && !(opcode_props & OP_TYPE_CONVERT)) {
984 bool fpos = mir_accept_dest_mod(ctx, &dest, nir_op_fclamp_pos);
985 bool fsat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat);
986 bool ssat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat_signed);
987 bool prior = (outmod != midgard_outmod_none);
988 int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
989
990 outmod = ((count > 1) || fsat) ? midgard_outmod_sat :
991 fpos ? midgard_outmod_pos :
992 ssat ? midgard_outmod_sat_signed :
993 outmod;
994 }
995
996 midgard_instruction ins = {
997 .type = TAG_ALU_4,
998 .dest = nir_dest_index(dest),
999 .dest_type = nir_op_infos[instr->op].output_type
1000 | nir_dest_bit_size(*dest),
1001 };
1002
1003 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
1004 ins.src[i] = ~0;
1005
1006 if (quirk_flipped_r24) {
1007 ins.src[0] = ~0;
1008 mir_copy_src(&ins, instr, 0, 1, &abs[1], &neg[1], &ins.src_invert[1], is_int, broadcast_swizzle);
1009 } else {
1010 for (unsigned i = 0; i < nr_inputs; ++i) {
1011 unsigned to = i;
1012
1013 if (instr->op == nir_op_b32csel) {
1014 /* The condition is the first argument; move
1015 * the other arguments up one to be a binary
1016 * instruction for Midgard with the condition
1017 * last */
1018
1019 if (i == 0)
1020 to = 2;
1021 else if (flip_src12)
1022 to = 2 - i;
1023 else
1024 to = i - 1;
1025 } else if (flip_src12) {
1026 to = 1 - to;
1027 }
1028
1029 mir_copy_src(&ins, instr, i, to, &abs[to], &neg[to], &ins.src_invert[to], is_int, broadcast_swizzle);
1030
1031 /* (!c) ? a : b = c ? b : a */
1032 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
1033 ins.src_invert[2] = false;
1034 flip_src12 ^= true;
1035 }
1036 }
1037 }
1038
1039 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1040 /* Lowered to move */
1041 if (instr->op == nir_op_fneg)
1042 neg[1] = !neg[1];
1043
1044 if (instr->op == nir_op_fabs)
1045 abs[1] = true;
1046 }
1047
1048 ins.mask = mask_of(nr_components);
1049
1050 midgard_vector_alu alu = {
1051 .op = op,
1052 .reg_mode = reg_mode,
1053 .dest_override = dest_override,
1054 .outmod = outmod,
1055
1056 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(abs[0], neg[0], is_int, half_1, sext_1)),
1057 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(abs[1], neg[1], is_int, half_2, sext_2)),
1058 };
1059
1060 /* Apply writemask if non-SSA, keeping in mind that we can't write to
1061 * components that don't exist. Note modifier => SSA => !reg => no
1062 * writemask, so we don't have to worry about writemasks here.*/
1063
1064 if (!is_ssa)
1065 ins.mask &= instr->dest.write_mask;
1066
1067 ins.alu = alu;
1068
1069 /* Arrange for creation of iandnot/iornot */
1070 if (ins.src_invert[0] && !ins.src_invert[1]) {
1071 mir_flip(&ins);
1072 ins.src_invert[0] = false;
1073 ins.src_invert[1] = true;
1074 }
1075
1076 /* Late fixup for emulated instructions */
1077
1078 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1079 /* Presently, our second argument is an inline #0 constant.
1080 * Switch over to an embedded 1.0 constant (that can't fit
1081 * inline, since we're 32-bit, not 16-bit like the inline
1082 * constants) */
1083
1084 ins.has_inline_constant = false;
1085 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1086 ins.src_types[1] = nir_type_float32;
1087 ins.has_constants = true;
1088
1089 if (instr->op == nir_op_b2f32)
1090 ins.constants.f32[0] = 1.0f;
1091 else
1092 ins.constants.i32[0] = 1;
1093
1094 for (unsigned c = 0; c < 16; ++c)
1095 ins.swizzle[1][c] = 0;
1096 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1097 /* Lots of instructions need a 0 plonked in */
1098 ins.has_inline_constant = false;
1099 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1100 ins.src_types[1] = nir_type_uint32;
1101 ins.has_constants = true;
1102 ins.constants.u32[0] = 0;
1103
1104 for (unsigned c = 0; c < 16; ++c)
1105 ins.swizzle[1][c] = 0;
1106 }
1107
1108 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1109 /* To avoid duplicating the lookup tables (probably), true LUT
1110 * instructions can only operate as if they were scalars. Lower
1111 * them here by changing the component. */
1112
1113 unsigned orig_mask = ins.mask;
1114
1115 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1116 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1117
1118 for (int i = 0; i < nr_components; ++i) {
1119 /* Mask the associated component, dropping the
1120 * instruction if needed */
1121
1122 ins.mask = 1 << i;
1123 ins.mask &= orig_mask;
1124
1125 if (!ins.mask)
1126 continue;
1127
1128 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1129 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1130
1131 emit_mir_instruction(ctx, ins);
1132 }
1133 } else {
1134 emit_mir_instruction(ctx, ins);
1135 }
1136 }
1137
1138 #undef ALU_CASE
1139
1140 static void
1141 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1142 {
1143 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1144 unsigned nir_mask = 0;
1145 unsigned dsize = 0;
1146
1147 if (is_read) {
1148 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1149 dsize = nir_dest_bit_size(intr->dest);
1150 } else {
1151 nir_mask = nir_intrinsic_write_mask(intr);
1152 dsize = 32;
1153 }
1154
1155 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1156 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1157 mir_set_bytemask(ins, bytemask);
1158
1159 if (dsize == 64)
1160 ins->load_64 = true;
1161 }
1162
1163 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1164 * optimized) versions of UBO #0 */
1165
1166 static midgard_instruction *
1167 emit_ubo_read(
1168 compiler_context *ctx,
1169 nir_instr *instr,
1170 unsigned dest,
1171 unsigned offset,
1172 nir_src *indirect_offset,
1173 unsigned indirect_shift,
1174 unsigned index)
1175 {
1176 /* TODO: half-floats */
1177
1178 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1179 ins.constants.u32[0] = offset;
1180
1181 if (instr->type == nir_instr_type_intrinsic)
1182 mir_set_intr_mask(instr, &ins, true);
1183
1184 if (indirect_offset) {
1185 ins.src[2] = nir_src_index(ctx, indirect_offset);
1186 ins.src_types[2] = nir_type_uint32;
1187 ins.load_store.arg_2 = (indirect_shift << 5);
1188 } else {
1189 ins.load_store.arg_2 = 0x1E;
1190 }
1191
1192 ins.load_store.arg_1 = index;
1193
1194 return emit_mir_instruction(ctx, ins);
1195 }
1196
1197 /* Globals are like UBOs if you squint. And shared memory is like globals if
1198 * you squint even harder */
1199
1200 static void
1201 emit_global(
1202 compiler_context *ctx,
1203 nir_instr *instr,
1204 bool is_read,
1205 unsigned srcdest,
1206 nir_src *offset,
1207 bool is_shared)
1208 {
1209 /* TODO: types */
1210
1211 midgard_instruction ins;
1212
1213 if (is_read)
1214 ins = m_ld_int4(srcdest, 0);
1215 else
1216 ins = m_st_int4(srcdest, 0);
1217
1218 mir_set_offset(ctx, &ins, offset, is_shared);
1219 mir_set_intr_mask(instr, &ins, is_read);
1220
1221 emit_mir_instruction(ctx, ins);
1222 }
1223
1224 static void
1225 emit_varying_read(
1226 compiler_context *ctx,
1227 unsigned dest, unsigned offset,
1228 unsigned nr_comp, unsigned component,
1229 nir_src *indirect_offset, nir_alu_type type, bool flat)
1230 {
1231 /* XXX: Half-floats? */
1232 /* TODO: swizzle, mask */
1233
1234 midgard_instruction ins = m_ld_vary_32(dest, offset);
1235 ins.mask = mask_of(nr_comp);
1236
1237 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1238 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1239
1240 midgard_varying_parameter p = {
1241 .is_varying = 1,
1242 .interpolation = midgard_interp_default,
1243 .flat = flat,
1244 };
1245
1246 unsigned u;
1247 memcpy(&u, &p, sizeof(p));
1248 ins.load_store.varying_parameters = u;
1249
1250 if (indirect_offset) {
1251 ins.src[2] = nir_src_index(ctx, indirect_offset);
1252 ins.src_types[2] = nir_type_uint32;
1253 } else
1254 ins.load_store.arg_2 = 0x1E;
1255
1256 ins.load_store.arg_1 = 0x9E;
1257
1258 /* Use the type appropriate load */
1259 switch (type) {
1260 case nir_type_uint:
1261 case nir_type_bool:
1262 ins.load_store.op = midgard_op_ld_vary_32u;
1263 break;
1264 case nir_type_int:
1265 ins.load_store.op = midgard_op_ld_vary_32i;
1266 break;
1267 case nir_type_float:
1268 ins.load_store.op = midgard_op_ld_vary_32;
1269 break;
1270 default:
1271 unreachable("Attempted to load unknown type");
1272 break;
1273 }
1274
1275 emit_mir_instruction(ctx, ins);
1276 }
1277
1278 static void
1279 emit_attr_read(
1280 compiler_context *ctx,
1281 unsigned dest, unsigned offset,
1282 unsigned nr_comp, nir_alu_type t)
1283 {
1284 midgard_instruction ins = m_ld_attr_32(dest, offset);
1285 ins.load_store.arg_1 = 0x1E;
1286 ins.load_store.arg_2 = 0x1E;
1287 ins.mask = mask_of(nr_comp);
1288
1289 /* Use the type appropriate load */
1290 switch (t) {
1291 case nir_type_uint:
1292 case nir_type_bool:
1293 ins.load_store.op = midgard_op_ld_attr_32u;
1294 break;
1295 case nir_type_int:
1296 ins.load_store.op = midgard_op_ld_attr_32i;
1297 break;
1298 case nir_type_float:
1299 ins.load_store.op = midgard_op_ld_attr_32;
1300 break;
1301 default:
1302 unreachable("Attempted to load unknown type");
1303 break;
1304 }
1305
1306 emit_mir_instruction(ctx, ins);
1307 }
1308
1309 static void
1310 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1311 unsigned nr_components, unsigned offset)
1312 {
1313 nir_dest nir_dest;
1314
1315 /* Figure out which uniform this is */
1316 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1317 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1318
1319 unsigned dest = nir_dest_index(&nir_dest);
1320
1321 /* Sysvals are prefix uniforms */
1322 unsigned uniform = ((uintptr_t) val) - 1;
1323
1324 /* Emit the read itself -- this is never indirect */
1325 midgard_instruction *ins =
1326 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1327
1328 ins->mask = mask_of(nr_components);
1329 }
1330
1331 static unsigned
1332 compute_builtin_arg(nir_op op)
1333 {
1334 switch (op) {
1335 case nir_intrinsic_load_work_group_id:
1336 return 0x14;
1337 case nir_intrinsic_load_local_invocation_id:
1338 return 0x10;
1339 default:
1340 unreachable("Invalid compute paramater loaded");
1341 }
1342 }
1343
1344 static void
1345 emit_fragment_store(compiler_context *ctx, unsigned src, enum midgard_rt_id rt)
1346 {
1347 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1348
1349 midgard_instruction *br = ctx->writeout_branch[rt];
1350
1351 assert(!br);
1352
1353 emit_explicit_constant(ctx, src, src);
1354
1355 struct midgard_instruction ins =
1356 v_branch(false, false);
1357
1358 ins.writeout = true;
1359
1360 /* Add dependencies */
1361 ins.src[0] = src;
1362 ins.src_types[0] = nir_type_uint32;
1363 ins.constants.u32[0] = rt == MIDGARD_ZS_RT ?
1364 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1365
1366 /* Emit the branch */
1367 br = emit_mir_instruction(ctx, ins);
1368 schedule_barrier(ctx);
1369 ctx->writeout_branch[rt] = br;
1370
1371 /* Push our current location = current block count - 1 = where we'll
1372 * jump to. Maybe a bit too clever for my own good */
1373
1374 br->branch.target_block = ctx->block_count - 1;
1375 }
1376
1377 static void
1378 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1379 {
1380 unsigned reg = nir_dest_index(&instr->dest);
1381 midgard_instruction ins = m_ld_compute_id(reg, 0);
1382 ins.mask = mask_of(3);
1383 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1384 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1385 emit_mir_instruction(ctx, ins);
1386 }
1387
1388 static unsigned
1389 vertex_builtin_arg(nir_op op)
1390 {
1391 switch (op) {
1392 case nir_intrinsic_load_vertex_id:
1393 return PAN_VERTEX_ID;
1394 case nir_intrinsic_load_instance_id:
1395 return PAN_INSTANCE_ID;
1396 default:
1397 unreachable("Invalid vertex builtin");
1398 }
1399 }
1400
1401 static void
1402 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1403 {
1404 unsigned reg = nir_dest_index(&instr->dest);
1405 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1406 }
1407
1408 static void
1409 emit_control_barrier(compiler_context *ctx)
1410 {
1411 midgard_instruction ins = {
1412 .type = TAG_TEXTURE_4,
1413 .src = { ~0, ~0, ~0, ~0 },
1414 .texture = {
1415 .op = TEXTURE_OP_BARRIER,
1416
1417 /* TODO: optimize */
1418 .barrier_buffer = 1,
1419 .barrier_shared = 1
1420 }
1421 };
1422
1423 emit_mir_instruction(ctx, ins);
1424 }
1425
1426 static const nir_variable *
1427 search_var(struct exec_list *vars, unsigned driver_loc)
1428 {
1429 nir_foreach_variable(var, vars) {
1430 if (var->data.driver_location == driver_loc)
1431 return var;
1432 }
1433
1434 return NULL;
1435 }
1436
1437 static unsigned
1438 mir_get_branch_cond(nir_src *src, bool *invert)
1439 {
1440 /* Wrap it. No swizzle since it's a scalar */
1441
1442 nir_alu_src alu = {
1443 .src = *src
1444 };
1445
1446 *invert = pan_has_source_mod(&alu, nir_op_inot);
1447 return nir_src_index(NULL, &alu.src);
1448 }
1449
1450 static void
1451 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1452 {
1453 unsigned offset = 0, reg;
1454
1455 switch (instr->intrinsic) {
1456 case nir_intrinsic_discard_if:
1457 case nir_intrinsic_discard: {
1458 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1459 struct midgard_instruction discard = v_branch(conditional, false);
1460 discard.branch.target_type = TARGET_DISCARD;
1461
1462 if (conditional) {
1463 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1464 &discard.branch.invert_conditional);
1465 discard.src_types[0] = nir_type_uint32;
1466 }
1467
1468 emit_mir_instruction(ctx, discard);
1469 schedule_barrier(ctx);
1470
1471 break;
1472 }
1473
1474 case nir_intrinsic_load_uniform:
1475 case nir_intrinsic_load_ubo:
1476 case nir_intrinsic_load_global:
1477 case nir_intrinsic_load_shared:
1478 case nir_intrinsic_load_input:
1479 case nir_intrinsic_load_interpolated_input: {
1480 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1481 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1482 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1483 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1484 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1485 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1486
1487 /* Get the base type of the intrinsic */
1488 /* TODO: Infer type? Does it matter? */
1489 nir_alu_type t =
1490 (is_ubo || is_global || is_shared) ? nir_type_uint :
1491 (is_interp) ? nir_type_float :
1492 nir_intrinsic_type(instr);
1493
1494 t = nir_alu_type_get_base_type(t);
1495
1496 if (!(is_ubo || is_global)) {
1497 offset = nir_intrinsic_base(instr);
1498 }
1499
1500 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1501
1502 nir_src *src_offset = nir_get_io_offset_src(instr);
1503
1504 bool direct = nir_src_is_const(*src_offset);
1505 nir_src *indirect_offset = direct ? NULL : src_offset;
1506
1507 if (direct)
1508 offset += nir_src_as_uint(*src_offset);
1509
1510 /* We may need to apply a fractional offset */
1511 int component = (is_flat || is_interp) ?
1512 nir_intrinsic_component(instr) : 0;
1513 reg = nir_dest_index(&instr->dest);
1514
1515 if (is_uniform && !ctx->is_blend) {
1516 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1517 } else if (is_ubo) {
1518 nir_src index = instr->src[0];
1519
1520 /* TODO: Is indirect block number possible? */
1521 assert(nir_src_is_const(index));
1522
1523 uint32_t uindex = nir_src_as_uint(index) + 1;
1524 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1525 } else if (is_global || is_shared) {
1526 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1527 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1528 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1529 } else if (ctx->is_blend) {
1530 /* For blend shaders, load the input color, which is
1531 * preloaded to r0 */
1532
1533 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1534 emit_mir_instruction(ctx, move);
1535 schedule_barrier(ctx);
1536 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1537 emit_attr_read(ctx, reg, offset, nr_comp, t);
1538 } else {
1539 DBG("Unknown load\n");
1540 assert(0);
1541 }
1542
1543 break;
1544 }
1545
1546 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1547 case nir_intrinsic_load_barycentric_pixel:
1548 case nir_intrinsic_load_barycentric_centroid:
1549 break;
1550
1551 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1552
1553 case nir_intrinsic_load_raw_output_pan:
1554 case nir_intrinsic_load_output_u8_as_fp16_pan:
1555 reg = nir_dest_index(&instr->dest);
1556 assert(ctx->is_blend);
1557
1558 /* T720 and below use different blend opcodes with slightly
1559 * different semantics than T760 and up */
1560
1561 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1562 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1563
1564 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1565 ld.load_store.op = old_blend ?
1566 midgard_op_ld_color_buffer_u8_as_fp16_old :
1567 midgard_op_ld_color_buffer_u8_as_fp16;
1568
1569 if (old_blend) {
1570 ld.load_store.address = 1;
1571 ld.load_store.arg_2 = 0x1E;
1572 }
1573
1574 for (unsigned c = 2; c < 16; ++c)
1575 ld.swizzle[0][c] = 0;
1576 }
1577
1578 emit_mir_instruction(ctx, ld);
1579 break;
1580
1581 case nir_intrinsic_load_blend_const_color_rgba: {
1582 assert(ctx->is_blend);
1583 reg = nir_dest_index(&instr->dest);
1584
1585 /* Blend constants are embedded directly in the shader and
1586 * patched in, so we use some magic routing */
1587
1588 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1589 ins.has_constants = true;
1590 ins.has_blend_constant = true;
1591 emit_mir_instruction(ctx, ins);
1592 break;
1593 }
1594
1595 case nir_intrinsic_store_zs_output_pan: {
1596 assert(ctx->stage == MESA_SHADER_FRAGMENT);
1597 emit_fragment_store(ctx, nir_src_index(ctx, &instr->src[0]),
1598 MIDGARD_ZS_RT);
1599
1600 midgard_instruction *br = ctx->writeout_branch[MIDGARD_ZS_RT];
1601
1602 if (!nir_intrinsic_component(instr))
1603 br->writeout_depth = true;
1604 if (nir_intrinsic_component(instr) ||
1605 instr->num_components)
1606 br->writeout_stencil = true;
1607 assert(br->writeout_depth | br->writeout_stencil);
1608 break;
1609 }
1610
1611 case nir_intrinsic_store_output:
1612 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1613
1614 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1615
1616 reg = nir_src_index(ctx, &instr->src[0]);
1617
1618 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1619 const nir_variable *var;
1620 enum midgard_rt_id rt;
1621
1622 var = search_var(&ctx->nir->outputs,
1623 nir_intrinsic_base(instr));
1624 assert(var);
1625 if (var->data.location == FRAG_RESULT_COLOR)
1626 rt = MIDGARD_COLOR_RT0;
1627 else if (var->data.location >= FRAG_RESULT_DATA0)
1628 rt = MIDGARD_COLOR_RT0 + var->data.location -
1629 FRAG_RESULT_DATA0;
1630 else
1631 assert(0);
1632
1633 emit_fragment_store(ctx, reg, rt);
1634 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1635 /* We should have been vectorized, though we don't
1636 * currently check that st_vary is emitted only once
1637 * per slot (this is relevant, since there's not a mask
1638 * parameter available on the store [set to 0 by the
1639 * blob]). We do respect the component by adjusting the
1640 * swizzle. If this is a constant source, we'll need to
1641 * emit that explicitly. */
1642
1643 emit_explicit_constant(ctx, reg, reg);
1644
1645 unsigned dst_component = nir_intrinsic_component(instr);
1646 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1647
1648 midgard_instruction st = m_st_vary_32(reg, offset);
1649 st.load_store.arg_1 = 0x9E;
1650 st.load_store.arg_2 = 0x1E;
1651
1652 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1653 case nir_type_uint:
1654 case nir_type_bool:
1655 st.load_store.op = midgard_op_st_vary_32u;
1656 break;
1657 case nir_type_int:
1658 st.load_store.op = midgard_op_st_vary_32i;
1659 break;
1660 case nir_type_float:
1661 st.load_store.op = midgard_op_st_vary_32;
1662 break;
1663 default:
1664 unreachable("Attempted to store unknown type");
1665 break;
1666 }
1667
1668 /* nir_intrinsic_component(store_intr) encodes the
1669 * destination component start. Source component offset
1670 * adjustment is taken care of in
1671 * install_registers_instr(), when offset_swizzle() is
1672 * called.
1673 */
1674 unsigned src_component = COMPONENT_X;
1675
1676 assert(nr_comp > 0);
1677 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1678 st.swizzle[0][i] = src_component;
1679 if (i >= dst_component && i < dst_component + nr_comp - 1)
1680 src_component++;
1681 }
1682
1683 emit_mir_instruction(ctx, st);
1684 } else {
1685 DBG("Unknown store\n");
1686 assert(0);
1687 }
1688
1689 break;
1690
1691 /* Special case of store_output for lowered blend shaders */
1692 case nir_intrinsic_store_raw_output_pan:
1693 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1694 reg = nir_src_index(ctx, &instr->src[0]);
1695
1696 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1697 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1698 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1699 * of:
1700 *
1701 * imov r0.xyzw, r0.xxxx
1702 */
1703
1704 unsigned expanded = make_compiler_temp(ctx);
1705
1706 midgard_instruction splatter = v_mov(reg, expanded);
1707
1708 for (unsigned c = 0; c < 16; ++c)
1709 splatter.swizzle[1][c] = 0;
1710
1711 emit_mir_instruction(ctx, splatter);
1712 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1713 } else
1714 emit_fragment_store(ctx, reg, ctx->blend_rt);
1715
1716 break;
1717
1718 case nir_intrinsic_store_global:
1719 case nir_intrinsic_store_shared:
1720 reg = nir_src_index(ctx, &instr->src[0]);
1721 emit_explicit_constant(ctx, reg, reg);
1722
1723 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1724 break;
1725
1726 case nir_intrinsic_load_ssbo_address:
1727 emit_sysval_read(ctx, &instr->instr, 1, 0);
1728 break;
1729
1730 case nir_intrinsic_get_buffer_size:
1731 emit_sysval_read(ctx, &instr->instr, 1, 8);
1732 break;
1733
1734 case nir_intrinsic_load_viewport_scale:
1735 case nir_intrinsic_load_viewport_offset:
1736 case nir_intrinsic_load_num_work_groups:
1737 case nir_intrinsic_load_sampler_lod_parameters_pan:
1738 emit_sysval_read(ctx, &instr->instr, 3, 0);
1739 break;
1740
1741 case nir_intrinsic_load_work_group_id:
1742 case nir_intrinsic_load_local_invocation_id:
1743 emit_compute_builtin(ctx, instr);
1744 break;
1745
1746 case nir_intrinsic_load_vertex_id:
1747 case nir_intrinsic_load_instance_id:
1748 emit_vertex_builtin(ctx, instr);
1749 break;
1750
1751 case nir_intrinsic_memory_barrier_buffer:
1752 case nir_intrinsic_memory_barrier_shared:
1753 break;
1754
1755 case nir_intrinsic_control_barrier:
1756 schedule_barrier(ctx);
1757 emit_control_barrier(ctx);
1758 schedule_barrier(ctx);
1759 break;
1760
1761 default:
1762 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1763 assert(0);
1764 break;
1765 }
1766 }
1767
1768 static unsigned
1769 midgard_tex_format(enum glsl_sampler_dim dim)
1770 {
1771 switch (dim) {
1772 case GLSL_SAMPLER_DIM_1D:
1773 case GLSL_SAMPLER_DIM_BUF:
1774 return MALI_TEX_1D;
1775
1776 case GLSL_SAMPLER_DIM_2D:
1777 case GLSL_SAMPLER_DIM_EXTERNAL:
1778 case GLSL_SAMPLER_DIM_RECT:
1779 return MALI_TEX_2D;
1780
1781 case GLSL_SAMPLER_DIM_3D:
1782 return MALI_TEX_3D;
1783
1784 case GLSL_SAMPLER_DIM_CUBE:
1785 return MALI_TEX_CUBE;
1786
1787 default:
1788 DBG("Unknown sampler dim type\n");
1789 assert(0);
1790 return 0;
1791 }
1792 }
1793
1794 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1795 * was successful */
1796
1797 static bool
1798 pan_attach_constant_bias(
1799 compiler_context *ctx,
1800 nir_src lod,
1801 midgard_texture_word *word)
1802 {
1803 /* To attach as constant, it has to *be* constant */
1804
1805 if (!nir_src_is_const(lod))
1806 return false;
1807
1808 float f = nir_src_as_float(lod);
1809
1810 /* Break into fixed-point */
1811 signed lod_int = f;
1812 float lod_frac = f - lod_int;
1813
1814 /* Carry over negative fractions */
1815 if (lod_frac < 0.0) {
1816 lod_int--;
1817 lod_frac += 1.0;
1818 }
1819
1820 /* Encode */
1821 word->bias = float_to_ubyte(lod_frac);
1822 word->bias_int = lod_int;
1823
1824 return true;
1825 }
1826
1827 static void
1828 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1829 unsigned midgard_texop)
1830 {
1831 /* TODO */
1832 //assert (!instr->sampler);
1833
1834 int texture_index = instr->texture_index;
1835 int sampler_index = texture_index;
1836
1837 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
1838 nir_alu_type dest_type = dest_base | nir_dest_bit_size(instr->dest);
1839
1840 midgard_instruction ins = {
1841 .type = TAG_TEXTURE_4,
1842 .mask = 0xF,
1843 .dest = nir_dest_index(&instr->dest),
1844 .src = { ~0, ~0, ~0, ~0 },
1845 .dest_type = dest_type,
1846 .swizzle = SWIZZLE_IDENTITY_4,
1847 .texture = {
1848 .op = midgard_texop,
1849 .format = midgard_tex_format(instr->sampler_dim),
1850 .texture_handle = texture_index,
1851 .sampler_handle = sampler_index,
1852 .shadow = instr->is_shadow,
1853 }
1854 };
1855
1856 if (instr->is_shadow && !instr->is_new_style_shadow)
1857 for (int i = 0; i < 4; ++i)
1858 ins.swizzle[0][i] = COMPONENT_X;
1859
1860 /* We may need a temporary for the coordinate */
1861
1862 bool needs_temp_coord =
1863 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1864 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1865 (instr->is_shadow);
1866
1867 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1868
1869 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1870 int index = nir_src_index(ctx, &instr->src[i].src);
1871 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1872 unsigned sz = nir_src_bit_size(instr->src[i].src);
1873 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
1874
1875 switch (instr->src[i].src_type) {
1876 case nir_tex_src_coord: {
1877 emit_explicit_constant(ctx, index, index);
1878
1879 unsigned coord_mask = mask_of(instr->coord_components);
1880
1881 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1882
1883 if (flip_zw)
1884 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1885
1886 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1887 /* texelFetch is undefined on samplerCube */
1888 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1889
1890 /* For cubemaps, we use a special ld/st op to
1891 * select the face and copy the xy into the
1892 * texture register */
1893
1894 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1895 ld.src[1] = index;
1896 ld.src_types[1] = T;
1897 ld.mask = 0x3; /* xy */
1898 ld.load_store.arg_1 = 0x20;
1899 ld.swizzle[1][3] = COMPONENT_X;
1900 emit_mir_instruction(ctx, ld);
1901
1902 /* xyzw -> xyxx */
1903 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1904 ins.swizzle[1][3] = COMPONENT_X;
1905 } else if (needs_temp_coord) {
1906 /* mov coord_temp, coords */
1907 midgard_instruction mov = v_mov(index, coords);
1908 mov.mask = coord_mask;
1909
1910 if (flip_zw)
1911 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1912
1913 emit_mir_instruction(ctx, mov);
1914 } else {
1915 coords = index;
1916 }
1917
1918 ins.src[1] = coords;
1919 ins.src_types[1] = T;
1920
1921 /* Texelfetch coordinates uses all four elements
1922 * (xyz/index) regardless of texture dimensionality,
1923 * which means it's necessary to zero the unused
1924 * components to keep everything happy */
1925
1926 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1927 /* mov index.zw, #0, or generalized */
1928 midgard_instruction mov =
1929 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1930 mov.has_constants = true;
1931 mov.mask = coord_mask ^ 0xF;
1932 emit_mir_instruction(ctx, mov);
1933 }
1934
1935 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1936 /* Array component in w but NIR wants it in z,
1937 * but if we have a temp coord we already fixed
1938 * that up */
1939
1940 if (nr_components == 3) {
1941 ins.swizzle[1][2] = COMPONENT_Z;
1942 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1943 } else if (nr_components == 2) {
1944 ins.swizzle[1][2] =
1945 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1946 ins.swizzle[1][3] = COMPONENT_X;
1947 } else
1948 unreachable("Invalid texture 2D components");
1949 }
1950
1951 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1952 /* We zeroed */
1953 ins.swizzle[1][2] = COMPONENT_Z;
1954 ins.swizzle[1][3] = COMPONENT_W;
1955 }
1956
1957 break;
1958 }
1959
1960 case nir_tex_src_bias:
1961 case nir_tex_src_lod: {
1962 /* Try as a constant if we can */
1963
1964 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1965 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1966 break;
1967
1968 ins.texture.lod_register = true;
1969 ins.src[2] = index;
1970 ins.src_types[2] = T;
1971
1972 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1973 ins.swizzle[2][c] = COMPONENT_X;
1974
1975 emit_explicit_constant(ctx, index, index);
1976
1977 break;
1978 };
1979
1980 case nir_tex_src_offset: {
1981 ins.texture.offset_register = true;
1982 ins.src[3] = index;
1983 ins.src_types[3] = T;
1984
1985 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1986 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1987
1988 emit_explicit_constant(ctx, index, index);
1989 break;
1990 };
1991
1992 case nir_tex_src_comparator: {
1993 unsigned comp = COMPONENT_Z;
1994
1995 /* mov coord_temp.foo, coords */
1996 midgard_instruction mov = v_mov(index, coords);
1997 mov.mask = 1 << comp;
1998
1999 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
2000 mov.swizzle[1][i] = COMPONENT_X;
2001
2002 emit_mir_instruction(ctx, mov);
2003 break;
2004 }
2005
2006 default: {
2007 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
2008 assert(0);
2009 }
2010 }
2011 }
2012
2013 emit_mir_instruction(ctx, ins);
2014 }
2015
2016 static void
2017 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
2018 {
2019 switch (instr->op) {
2020 case nir_texop_tex:
2021 case nir_texop_txb:
2022 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
2023 break;
2024 case nir_texop_txl:
2025 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
2026 break;
2027 case nir_texop_txf:
2028 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
2029 break;
2030 case nir_texop_txs:
2031 emit_sysval_read(ctx, &instr->instr, 4, 0);
2032 break;
2033 default: {
2034 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
2035 assert(0);
2036 }
2037 }
2038 }
2039
2040 static void
2041 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
2042 {
2043 switch (instr->type) {
2044 case nir_jump_break: {
2045 /* Emit a branch out of the loop */
2046 struct midgard_instruction br = v_branch(false, false);
2047 br.branch.target_type = TARGET_BREAK;
2048 br.branch.target_break = ctx->current_loop_depth;
2049 emit_mir_instruction(ctx, br);
2050 break;
2051 }
2052
2053 default:
2054 DBG("Unknown jump type %d\n", instr->type);
2055 break;
2056 }
2057 }
2058
2059 static void
2060 emit_instr(compiler_context *ctx, struct nir_instr *instr)
2061 {
2062 switch (instr->type) {
2063 case nir_instr_type_load_const:
2064 emit_load_const(ctx, nir_instr_as_load_const(instr));
2065 break;
2066
2067 case nir_instr_type_intrinsic:
2068 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2069 break;
2070
2071 case nir_instr_type_alu:
2072 emit_alu(ctx, nir_instr_as_alu(instr));
2073 break;
2074
2075 case nir_instr_type_tex:
2076 emit_tex(ctx, nir_instr_as_tex(instr));
2077 break;
2078
2079 case nir_instr_type_jump:
2080 emit_jump(ctx, nir_instr_as_jump(instr));
2081 break;
2082
2083 case nir_instr_type_ssa_undef:
2084 /* Spurious */
2085 break;
2086
2087 default:
2088 DBG("Unhandled instruction type\n");
2089 break;
2090 }
2091 }
2092
2093
2094 /* ALU instructions can inline or embed constants, which decreases register
2095 * pressure and saves space. */
2096
2097 #define CONDITIONAL_ATTACH(idx) { \
2098 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2099 \
2100 if (entry) { \
2101 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2102 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2103 } \
2104 }
2105
2106 static void
2107 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2108 {
2109 mir_foreach_instr_in_block(block, alu) {
2110 /* Other instructions cannot inline constants */
2111 if (alu->type != TAG_ALU_4) continue;
2112 if (alu->compact_branch) continue;
2113
2114 /* If there is already a constant here, we can do nothing */
2115 if (alu->has_constants) continue;
2116
2117 CONDITIONAL_ATTACH(0);
2118
2119 if (!alu->has_constants) {
2120 CONDITIONAL_ATTACH(1)
2121 } else if (!alu->inline_constant) {
2122 /* Corner case: _two_ vec4 constants, for instance with a
2123 * csel. For this case, we can only use a constant
2124 * register for one, we'll have to emit a move for the
2125 * other. */
2126
2127 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2128 unsigned scratch = make_compiler_temp(ctx);
2129
2130 if (entry) {
2131 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2132 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2133
2134 /* Set the source */
2135 alu->src[1] = scratch;
2136
2137 /* Inject us -before- the last instruction which set r31 */
2138 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2139 }
2140 }
2141 }
2142 }
2143
2144 /* Midgard supports two types of constants, embedded constants (128-bit) and
2145 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2146 * constants can be demoted to inline constants, for space savings and
2147 * sometimes a performance boost */
2148
2149 static void
2150 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2151 {
2152 mir_foreach_instr_in_block(block, ins) {
2153 if (!ins->has_constants) continue;
2154 if (ins->has_inline_constant) continue;
2155
2156 /* Blend constants must not be inlined by definition */
2157 if (ins->has_blend_constant) continue;
2158
2159 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2160 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2161 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2162
2163 if (!(is_16 || is_32))
2164 continue;
2165
2166 /* src1 cannot be an inline constant due to encoding
2167 * restrictions. So, if possible we try to flip the arguments
2168 * in that case */
2169
2170 int op = ins->alu.op;
2171
2172 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2173 alu_opcode_props[op].props & OP_COMMUTES) {
2174 mir_flip(ins);
2175 }
2176
2177 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2178 /* Extract the source information */
2179
2180 midgard_vector_alu_src *src;
2181 int q = ins->alu.src2;
2182 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2183 src = m;
2184
2185 /* Component is from the swizzle. Take a nonzero component */
2186 assert(ins->mask);
2187 unsigned first_comp = ffs(ins->mask) - 1;
2188 unsigned component = ins->swizzle[1][first_comp];
2189
2190 /* Scale constant appropriately, if we can legally */
2191 uint16_t scaled_constant = 0;
2192
2193 if (is_16) {
2194 scaled_constant = ins->constants.u16[component];
2195 } else if (midgard_is_integer_op(op)) {
2196 scaled_constant = ins->constants.u32[component];
2197
2198 /* Constant overflow after resize */
2199 if (scaled_constant != ins->constants.u32[component])
2200 continue;
2201 } else {
2202 float original = ins->constants.f32[component];
2203 scaled_constant = _mesa_float_to_half(original);
2204
2205 /* Check for loss of precision. If this is
2206 * mediump, we don't care, but for a highp
2207 * shader, we need to pay attention. NIR
2208 * doesn't yet tell us which mode we're in!
2209 * Practically this prevents most constants
2210 * from being inlined, sadly. */
2211
2212 float fp32 = _mesa_half_to_float(scaled_constant);
2213
2214 if (fp32 != original)
2215 continue;
2216 }
2217
2218 /* We don't know how to handle these with a constant */
2219
2220 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2221 DBG("Bailing inline constant...\n");
2222 continue;
2223 }
2224
2225 /* Make sure that the constant is not itself a vector
2226 * by checking if all accessed values are the same. */
2227
2228 const midgard_constants *cons = &ins->constants;
2229 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2230
2231 bool is_vector = false;
2232 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2233
2234 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2235 /* We only care if this component is actually used */
2236 if (!(mask & (1 << c)))
2237 continue;
2238
2239 uint32_t test = is_16 ?
2240 cons->u16[ins->swizzle[1][c]] :
2241 cons->u32[ins->swizzle[1][c]];
2242
2243 if (test != value) {
2244 is_vector = true;
2245 break;
2246 }
2247 }
2248
2249 if (is_vector)
2250 continue;
2251
2252 /* Get rid of the embedded constant */
2253 ins->has_constants = false;
2254 ins->src[1] = ~0;
2255 ins->has_inline_constant = true;
2256 ins->inline_constant = scaled_constant;
2257 }
2258 }
2259 }
2260
2261 /* Dead code elimination for branches at the end of a block - only one branch
2262 * per block is legal semantically */
2263
2264 static void
2265 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2266 {
2267 bool branched = false;
2268
2269 mir_foreach_instr_in_block_safe(block, ins) {
2270 if (!midgard_is_branch_unit(ins->unit)) continue;
2271
2272 if (branched)
2273 mir_remove_instruction(ins);
2274
2275 branched = true;
2276 }
2277 }
2278
2279 static unsigned
2280 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2281 {
2282 /* Loop to ourselves */
2283 midgard_instruction *br = ctx->writeout_branch[rt];
2284 struct midgard_instruction ins = v_branch(false, false);
2285 ins.writeout = true;
2286 ins.writeout_depth = br->writeout_depth;
2287 ins.writeout_stencil = br->writeout_stencil;
2288 ins.branch.target_block = ctx->block_count - 1;
2289 ins.constants.u32[0] = br->constants.u32[0];
2290 emit_mir_instruction(ctx, ins);
2291
2292 ctx->current_block->epilogue = true;
2293 schedule_barrier(ctx);
2294 return ins.branch.target_block;
2295 }
2296
2297 static midgard_block *
2298 emit_block(compiler_context *ctx, nir_block *block)
2299 {
2300 midgard_block *this_block = ctx->after_block;
2301 ctx->after_block = NULL;
2302
2303 if (!this_block)
2304 this_block = create_empty_block(ctx);
2305
2306 list_addtail(&this_block->base.link, &ctx->blocks);
2307
2308 this_block->scheduled = false;
2309 ++ctx->block_count;
2310
2311 /* Set up current block */
2312 list_inithead(&this_block->base.instructions);
2313 ctx->current_block = this_block;
2314
2315 nir_foreach_instr(instr, block) {
2316 emit_instr(ctx, instr);
2317 ++ctx->instruction_count;
2318 }
2319
2320 return this_block;
2321 }
2322
2323 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2324
2325 static void
2326 emit_if(struct compiler_context *ctx, nir_if *nif)
2327 {
2328 midgard_block *before_block = ctx->current_block;
2329
2330 /* Speculatively emit the branch, but we can't fill it in until later */
2331 bool inv = false;
2332 EMIT(branch, true, true);
2333 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2334 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2335 then_branch->src_types[0] = nir_type_uint32;
2336 then_branch->branch.invert_conditional = !inv;
2337
2338 /* Emit the two subblocks. */
2339 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2340 midgard_block *end_then_block = ctx->current_block;
2341
2342 /* Emit a jump from the end of the then block to the end of the else */
2343 EMIT(branch, false, false);
2344 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2345
2346 /* Emit second block, and check if it's empty */
2347
2348 int else_idx = ctx->block_count;
2349 int count_in = ctx->instruction_count;
2350 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2351 midgard_block *end_else_block = ctx->current_block;
2352 int after_else_idx = ctx->block_count;
2353
2354 /* Now that we have the subblocks emitted, fix up the branches */
2355
2356 assert(then_block);
2357 assert(else_block);
2358
2359 if (ctx->instruction_count == count_in) {
2360 /* The else block is empty, so don't emit an exit jump */
2361 mir_remove_instruction(then_exit);
2362 then_branch->branch.target_block = after_else_idx;
2363 } else {
2364 then_branch->branch.target_block = else_idx;
2365 then_exit->branch.target_block = after_else_idx;
2366 }
2367
2368 /* Wire up the successors */
2369
2370 ctx->after_block = create_empty_block(ctx);
2371
2372 pan_block_add_successor(&before_block->base, &then_block->base);
2373 pan_block_add_successor(&before_block->base, &else_block->base);
2374
2375 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2376 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2377 }
2378
2379 static void
2380 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2381 {
2382 /* Remember where we are */
2383 midgard_block *start_block = ctx->current_block;
2384
2385 /* Allocate a loop number, growing the current inner loop depth */
2386 int loop_idx = ++ctx->current_loop_depth;
2387
2388 /* Get index from before the body so we can loop back later */
2389 int start_idx = ctx->block_count;
2390
2391 /* Emit the body itself */
2392 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2393
2394 /* Branch back to loop back */
2395 struct midgard_instruction br_back = v_branch(false, false);
2396 br_back.branch.target_block = start_idx;
2397 emit_mir_instruction(ctx, br_back);
2398
2399 /* Mark down that branch in the graph. */
2400 pan_block_add_successor(&start_block->base, &loop_block->base);
2401 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2402
2403 /* Find the index of the block about to follow us (note: we don't add
2404 * one; blocks are 0-indexed so we get a fencepost problem) */
2405 int break_block_idx = ctx->block_count;
2406
2407 /* Fix up the break statements we emitted to point to the right place,
2408 * now that we can allocate a block number for them */
2409 ctx->after_block = create_empty_block(ctx);
2410
2411 mir_foreach_block_from(ctx, start_block, _block) {
2412 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2413 if (ins->type != TAG_ALU_4) continue;
2414 if (!ins->compact_branch) continue;
2415
2416 /* We found a branch -- check the type to see if we need to do anything */
2417 if (ins->branch.target_type != TARGET_BREAK) continue;
2418
2419 /* It's a break! Check if it's our break */
2420 if (ins->branch.target_break != loop_idx) continue;
2421
2422 /* Okay, cool, we're breaking out of this loop.
2423 * Rewrite from a break to a goto */
2424
2425 ins->branch.target_type = TARGET_GOTO;
2426 ins->branch.target_block = break_block_idx;
2427
2428 pan_block_add_successor(_block, &ctx->after_block->base);
2429 }
2430 }
2431
2432 /* Now that we've finished emitting the loop, free up the depth again
2433 * so we play nice with recursion amid nested loops */
2434 --ctx->current_loop_depth;
2435
2436 /* Dump loop stats */
2437 ++ctx->loop_count;
2438 }
2439
2440 static midgard_block *
2441 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2442 {
2443 midgard_block *start_block = NULL;
2444
2445 foreach_list_typed(nir_cf_node, node, node, list) {
2446 switch (node->type) {
2447 case nir_cf_node_block: {
2448 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2449
2450 if (!start_block)
2451 start_block = block;
2452
2453 break;
2454 }
2455
2456 case nir_cf_node_if:
2457 emit_if(ctx, nir_cf_node_as_if(node));
2458 break;
2459
2460 case nir_cf_node_loop:
2461 emit_loop(ctx, nir_cf_node_as_loop(node));
2462 break;
2463
2464 case nir_cf_node_function:
2465 assert(0);
2466 break;
2467 }
2468 }
2469
2470 return start_block;
2471 }
2472
2473 /* Due to lookahead, we need to report the first tag executed in the command
2474 * stream and in branch targets. An initial block might be empty, so iterate
2475 * until we find one that 'works' */
2476
2477 static unsigned
2478 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2479 {
2480 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2481
2482 mir_foreach_block_from(ctx, initial_block, _v) {
2483 midgard_block *v = (midgard_block *) _v;
2484 if (v->quadword_count) {
2485 midgard_bundle *initial_bundle =
2486 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2487
2488 return initial_bundle->tag;
2489 }
2490 }
2491
2492 /* Default to a tag 1 which will break from the shader, in case we jump
2493 * to the exit block (i.e. `return` in a compute shader) */
2494
2495 return 1;
2496 }
2497
2498 /* For each fragment writeout instruction, generate a writeout loop to
2499 * associate with it */
2500
2501 static void
2502 mir_add_writeout_loops(compiler_context *ctx)
2503 {
2504 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2505 midgard_instruction *br = ctx->writeout_branch[rt];
2506 if (!br) continue;
2507
2508 unsigned popped = br->branch.target_block;
2509 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2510 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2511 br->branch.target_type = TARGET_GOTO;
2512
2513 /* If we have more RTs, we'll need to restore back after our
2514 * loop terminates */
2515
2516 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2517 midgard_instruction uncond = v_branch(false, false);
2518 uncond.branch.target_block = popped;
2519 uncond.branch.target_type = TARGET_GOTO;
2520 emit_mir_instruction(ctx, uncond);
2521 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2522 schedule_barrier(ctx);
2523 } else {
2524 /* We're last, so we can terminate here */
2525 br->last_writeout = true;
2526 }
2527 }
2528 }
2529
2530 int
2531 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2532 {
2533 struct util_dynarray *compiled = &program->compiled;
2534
2535 midgard_debug = debug_get_option_midgard_debug();
2536
2537 /* TODO: Bound against what? */
2538 compiler_context *ctx = rzalloc(NULL, compiler_context);
2539
2540 ctx->nir = nir;
2541 ctx->stage = nir->info.stage;
2542 ctx->is_blend = is_blend;
2543 ctx->alpha_ref = program->alpha_ref;
2544 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2545 ctx->quirks = midgard_get_quirks(gpu_id);
2546
2547 /* Start off with a safe cutoff, allowing usage of all 16 work
2548 * registers. Later, we'll promote uniform reads to uniform registers
2549 * if we determine it is beneficial to do so */
2550 ctx->uniform_cutoff = 8;
2551
2552 /* Initialize at a global (not block) level hash tables */
2553
2554 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2555 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2556
2557 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2558 * (so we don't accidentally duplicate the epilogue since mesa/st has
2559 * messed with our I/O quite a bit already) */
2560
2561 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2562
2563 if (ctx->stage == MESA_SHADER_VERTEX) {
2564 NIR_PASS_V(nir, nir_lower_viewport_transform);
2565 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2566 }
2567
2568 NIR_PASS_V(nir, nir_lower_var_copies);
2569 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2570 NIR_PASS_V(nir, nir_split_var_copies);
2571 NIR_PASS_V(nir, nir_lower_var_copies);
2572 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2573 NIR_PASS_V(nir, nir_lower_var_copies);
2574 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2575
2576 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2577 NIR_PASS_V(nir, nir_lower_ssbo);
2578 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2579
2580 /* Optimisation passes */
2581
2582 optimise_nir(nir, ctx->quirks);
2583
2584 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2585 nir_print_shader(nir, stdout);
2586 }
2587
2588 /* Assign sysvals and counts, now that we're sure
2589 * (post-optimisation) */
2590
2591 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2592 program->sysval_count = ctx->sysvals.sysval_count;
2593 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2594
2595 nir_foreach_function(func, nir) {
2596 if (!func->impl)
2597 continue;
2598
2599 list_inithead(&ctx->blocks);
2600 ctx->block_count = 0;
2601 ctx->func = func;
2602 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
2603
2604 emit_cf_list(ctx, &func->impl->body);
2605 free(ctx->already_emitted);
2606 break; /* TODO: Multi-function shaders */
2607 }
2608
2609 util_dynarray_init(compiled, NULL);
2610
2611 /* Per-block lowering before opts */
2612
2613 mir_foreach_block(ctx, _block) {
2614 midgard_block *block = (midgard_block *) _block;
2615 inline_alu_constants(ctx, block);
2616 midgard_opt_promote_fmov(ctx, block);
2617 embedded_to_inline_constant(ctx, block);
2618 }
2619 /* MIR-level optimizations */
2620
2621 bool progress = false;
2622
2623 do {
2624 progress = false;
2625
2626 mir_foreach_block(ctx, _block) {
2627 midgard_block *block = (midgard_block *) _block;
2628 progress |= midgard_opt_copy_prop(ctx, block);
2629 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2630 progress |= midgard_opt_combine_projection(ctx, block);
2631 progress |= midgard_opt_varying_projection(ctx, block);
2632 }
2633 } while (progress);
2634
2635 mir_foreach_block(ctx, _block) {
2636 midgard_block *block = (midgard_block *) _block;
2637 midgard_lower_derivatives(ctx, block);
2638 midgard_cull_dead_branch(ctx, block);
2639 }
2640
2641 if (ctx->stage == MESA_SHADER_FRAGMENT)
2642 mir_add_writeout_loops(ctx);
2643
2644 /* Analyze now that the code is known but before scheduling creates
2645 * pipeline registers which are harder to track */
2646 mir_analyze_helper_terminate(ctx);
2647 mir_analyze_helper_requirements(ctx);
2648
2649 /* Schedule! */
2650 midgard_schedule_program(ctx);
2651 mir_ra(ctx);
2652
2653 /* Now that all the bundles are scheduled and we can calculate block
2654 * sizes, emit actual branch instructions rather than placeholders */
2655
2656 int br_block_idx = 0;
2657
2658 mir_foreach_block(ctx, _block) {
2659 midgard_block *block = (midgard_block *) _block;
2660 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2661 for (int c = 0; c < bundle->instruction_count; ++c) {
2662 midgard_instruction *ins = bundle->instructions[c];
2663
2664 if (!midgard_is_branch_unit(ins->unit)) continue;
2665
2666 /* Parse some basic branch info */
2667 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2668 bool is_conditional = ins->branch.conditional;
2669 bool is_inverted = ins->branch.invert_conditional;
2670 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2671 bool is_writeout = ins->writeout;
2672
2673 /* Determine the block we're jumping to */
2674 int target_number = ins->branch.target_block;
2675
2676 /* Report the destination tag */
2677 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2678
2679 /* Count up the number of quadwords we're
2680 * jumping over = number of quadwords until
2681 * (br_block_idx, target_number) */
2682
2683 int quadword_offset = 0;
2684
2685 if (is_discard) {
2686 /* Ignored */
2687 } else if (target_number > br_block_idx) {
2688 /* Jump forward */
2689
2690 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2691 midgard_block *blk = mir_get_block(ctx, idx);
2692 assert(blk);
2693
2694 quadword_offset += blk->quadword_count;
2695 }
2696 } else {
2697 /* Jump backwards */
2698
2699 for (int idx = br_block_idx; idx >= target_number; --idx) {
2700 midgard_block *blk = mir_get_block(ctx, idx);
2701 assert(blk);
2702
2703 quadword_offset -= blk->quadword_count;
2704 }
2705 }
2706
2707 /* Unconditional extended branches (far jumps)
2708 * have issues, so we always use a conditional
2709 * branch, setting the condition to always for
2710 * unconditional. For compact unconditional
2711 * branches, cond isn't used so it doesn't
2712 * matter what we pick. */
2713
2714 midgard_condition cond =
2715 !is_conditional ? midgard_condition_always :
2716 is_inverted ? midgard_condition_false :
2717 midgard_condition_true;
2718
2719 midgard_jmp_writeout_op op =
2720 is_discard ? midgard_jmp_writeout_op_discard :
2721 is_writeout ? midgard_jmp_writeout_op_writeout :
2722 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2723 midgard_jmp_writeout_op_branch_cond;
2724
2725 if (!is_compact) {
2726 midgard_branch_extended branch =
2727 midgard_create_branch_extended(
2728 cond, op,
2729 dest_tag,
2730 quadword_offset);
2731
2732 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2733 } else if (is_conditional || is_discard) {
2734 midgard_branch_cond branch = {
2735 .op = op,
2736 .dest_tag = dest_tag,
2737 .offset = quadword_offset,
2738 .cond = cond
2739 };
2740
2741 assert(branch.offset == quadword_offset);
2742
2743 memcpy(&ins->br_compact, &branch, sizeof(branch));
2744 } else {
2745 assert(op == midgard_jmp_writeout_op_branch_uncond);
2746
2747 midgard_branch_uncond branch = {
2748 .op = op,
2749 .dest_tag = dest_tag,
2750 .offset = quadword_offset,
2751 .unknown = 1
2752 };
2753
2754 assert(branch.offset == quadword_offset);
2755
2756 memcpy(&ins->br_compact, &branch, sizeof(branch));
2757 }
2758 }
2759 }
2760
2761 ++br_block_idx;
2762 }
2763
2764 /* Emit flat binary from the instruction arrays. Iterate each block in
2765 * sequence. Save instruction boundaries such that lookahead tags can
2766 * be assigned easily */
2767
2768 /* Cache _all_ bundles in source order for lookahead across failed branches */
2769
2770 int bundle_count = 0;
2771 mir_foreach_block(ctx, _block) {
2772 midgard_block *block = (midgard_block *) _block;
2773 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2774 }
2775 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2776 int bundle_idx = 0;
2777 mir_foreach_block(ctx, _block) {
2778 midgard_block *block = (midgard_block *) _block;
2779 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2780 source_order_bundles[bundle_idx++] = bundle;
2781 }
2782 }
2783
2784 int current_bundle = 0;
2785
2786 /* Midgard prefetches instruction types, so during emission we
2787 * need to lookahead. Unless this is the last instruction, in
2788 * which we return 1. */
2789
2790 mir_foreach_block(ctx, _block) {
2791 midgard_block *block = (midgard_block *) _block;
2792 mir_foreach_bundle_in_block(block, bundle) {
2793 int lookahead = 1;
2794
2795 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2796 lookahead = source_order_bundles[current_bundle + 1]->tag;
2797
2798 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2799 ++current_bundle;
2800 }
2801
2802 /* TODO: Free deeper */
2803 //util_dynarray_fini(&block->instructions);
2804 }
2805
2806 free(source_order_bundles);
2807
2808 /* Report the very first tag executed */
2809 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2810
2811 /* Deal with off-by-one related to the fencepost problem */
2812 program->work_register_count = ctx->work_registers + 1;
2813 program->uniform_cutoff = ctx->uniform_cutoff;
2814
2815 program->blend_patch_offset = ctx->blend_constant_offset;
2816 program->tls_size = ctx->tls_size;
2817
2818 if (midgard_debug & MIDGARD_DBG_SHADERS)
2819 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2820
2821 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2822 unsigned nr_bundles = 0, nr_ins = 0;
2823
2824 /* Count instructions and bundles */
2825
2826 mir_foreach_block(ctx, _block) {
2827 midgard_block *block = (midgard_block *) _block;
2828 nr_bundles += util_dynarray_num_elements(
2829 &block->bundles, midgard_bundle);
2830
2831 mir_foreach_bundle_in_block(block, bun)
2832 nr_ins += bun->instruction_count;
2833 }
2834
2835 /* Calculate thread count. There are certain cutoffs by
2836 * register count for thread count */
2837
2838 unsigned nr_registers = program->work_register_count;
2839
2840 unsigned nr_threads =
2841 (nr_registers <= 4) ? 4 :
2842 (nr_registers <= 8) ? 2 :
2843 1;
2844
2845 /* Dump stats */
2846
2847 fprintf(stderr, "shader%d - %s shader: "
2848 "%u inst, %u bundles, %u quadwords, "
2849 "%u registers, %u threads, %u loops, "
2850 "%u:%u spills:fills\n",
2851 SHADER_DB_COUNT++,
2852 gl_shader_stage_name(ctx->stage),
2853 nr_ins, nr_bundles, ctx->quadword_count,
2854 nr_registers, nr_threads,
2855 ctx->loop_count,
2856 ctx->spills, ctx->fills);
2857 }
2858
2859 ralloc_free(ctx);
2860
2861 return 0;
2862 }