pan/midgard: Report spills:fills to shader-db
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_STORE(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* For unclear reasons, the condition code is repeated 8 times */
228 uint16_t duplicated_cond =
229 (cond << 14) |
230 (cond << 12) |
231 (cond << 10) |
232 (cond << 8) |
233 (cond << 6) |
234 (cond << 4) |
235 (cond << 2) |
236 (cond << 0);
237
238 midgard_branch_extended branch = {
239 .op = op,
240 .dest_tag = dest_tag,
241 .offset = quadword_offset,
242 .cond = duplicated_cond
243 };
244
245 return branch;
246 }
247
248 static void
249 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
250 {
251 ins->has_constants = true;
252 memcpy(&ins->constants, constants, 16);
253 }
254
255 static int
256 glsl_type_size(const struct glsl_type *type, bool bindless)
257 {
258 return glsl_count_attribute_slots(type, false);
259 }
260
261 /* Lower fdot2 to a vector multiplication followed by channel addition */
262 static void
263 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
264 {
265 if (alu->op != nir_op_fdot2)
266 return;
267
268 b->cursor = nir_before_instr(&alu->instr);
269
270 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
271 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
272
273 nir_ssa_def *product = nir_fmul(b, src0, src1);
274
275 nir_ssa_def *sum = nir_fadd(b,
276 nir_channel(b, product, 0),
277 nir_channel(b, product, 1));
278
279 /* Replace the fdot2 with this sum */
280 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
281 }
282
283 static int
284 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
285 {
286 switch (instr->intrinsic) {
287 case nir_intrinsic_load_viewport_scale:
288 return PAN_SYSVAL_VIEWPORT_SCALE;
289 case nir_intrinsic_load_viewport_offset:
290 return PAN_SYSVAL_VIEWPORT_OFFSET;
291 default:
292 return -1;
293 }
294 }
295
296 static unsigned
297 nir_dest_index(compiler_context *ctx, nir_dest *dst)
298 {
299 if (dst->is_ssa)
300 return dst->ssa.index;
301 else {
302 assert(!dst->reg.indirect);
303 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
304 }
305 }
306
307 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
308 unsigned *dest)
309 {
310 nir_intrinsic_instr *intr;
311 nir_dest *dst = NULL;
312 nir_tex_instr *tex;
313 int sysval = -1;
314
315 switch (instr->type) {
316 case nir_instr_type_intrinsic:
317 intr = nir_instr_as_intrinsic(instr);
318 sysval = midgard_nir_sysval_for_intrinsic(intr);
319 dst = &intr->dest;
320 break;
321 case nir_instr_type_tex:
322 tex = nir_instr_as_tex(instr);
323 if (tex->op != nir_texop_txs)
324 break;
325
326 sysval = PAN_SYSVAL(TEXTURE_SIZE,
327 PAN_TXS_SYSVAL_ID(tex->texture_index,
328 nir_tex_instr_dest_size(tex) -
329 (tex->is_array ? 1 : 0),
330 tex->is_array));
331 dst = &tex->dest;
332 break;
333 default:
334 break;
335 }
336
337 if (dest && dst)
338 *dest = nir_dest_index(ctx, dst);
339
340 return sysval;
341 }
342
343 static void
344 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
345 {
346 int sysval;
347
348 sysval = sysval_for_instr(ctx, instr, NULL);
349 if (sysval < 0)
350 return;
351
352 /* We have a sysval load; check if it's already been assigned */
353
354 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
355 return;
356
357 /* It hasn't -- so assign it now! */
358
359 unsigned id = ctx->sysval_count++;
360 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
361 ctx->sysvals[id] = sysval;
362 }
363
364 static void
365 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
366 {
367 ctx->sysval_count = 0;
368
369 nir_foreach_function(function, shader) {
370 if (!function->impl) continue;
371
372 nir_foreach_block(block, function->impl) {
373 nir_foreach_instr_safe(instr, block) {
374 midgard_nir_assign_sysval_body(ctx, instr);
375 }
376 }
377 }
378 }
379
380 static bool
381 midgard_nir_lower_fdot2(nir_shader *shader)
382 {
383 bool progress = false;
384
385 nir_foreach_function(function, shader) {
386 if (!function->impl) continue;
387
388 nir_builder _b;
389 nir_builder *b = &_b;
390 nir_builder_init(b, function->impl);
391
392 nir_foreach_block(block, function->impl) {
393 nir_foreach_instr_safe(instr, block) {
394 if (instr->type != nir_instr_type_alu) continue;
395
396 nir_alu_instr *alu = nir_instr_as_alu(instr);
397 midgard_nir_lower_fdot2_body(b, alu);
398
399 progress |= true;
400 }
401 }
402
403 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
404
405 }
406
407 return progress;
408 }
409
410 /* Flushes undefined values to zero */
411
412 static void
413 optimise_nir(nir_shader *nir)
414 {
415 bool progress;
416 unsigned lower_flrp =
417 (nir->options->lower_flrp16 ? 16 : 0) |
418 (nir->options->lower_flrp32 ? 32 : 0) |
419 (nir->options->lower_flrp64 ? 64 : 0);
420
421 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
422 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
423 NIR_PASS(progress, nir, nir_lower_idiv);
424
425 nir_lower_tex_options lower_tex_1st_pass_options = {
426 .lower_rect = true,
427 .lower_txp = ~0
428 };
429
430 nir_lower_tex_options lower_tex_2nd_pass_options = {
431 .lower_txs_lod = true,
432 };
433
434 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
435 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
436
437 do {
438 progress = false;
439
440 NIR_PASS(progress, nir, nir_lower_var_copies);
441 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
442
443 NIR_PASS(progress, nir, nir_copy_prop);
444 NIR_PASS(progress, nir, nir_opt_dce);
445 NIR_PASS(progress, nir, nir_opt_dead_cf);
446 NIR_PASS(progress, nir, nir_opt_cse);
447 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
448 NIR_PASS(progress, nir, nir_opt_algebraic);
449 NIR_PASS(progress, nir, nir_opt_constant_folding);
450
451 if (lower_flrp != 0) {
452 bool lower_flrp_progress = false;
453 NIR_PASS(lower_flrp_progress,
454 nir,
455 nir_lower_flrp,
456 lower_flrp,
457 false /* always_precise */,
458 nir->options->lower_ffma);
459 if (lower_flrp_progress) {
460 NIR_PASS(progress, nir,
461 nir_opt_constant_folding);
462 progress = true;
463 }
464
465 /* Nothing should rematerialize any flrps, so we only
466 * need to do this lowering once.
467 */
468 lower_flrp = 0;
469 }
470
471 NIR_PASS(progress, nir, nir_opt_undef);
472 NIR_PASS(progress, nir, nir_undef_to_zero);
473
474 NIR_PASS(progress, nir, nir_opt_loop_unroll,
475 nir_var_shader_in |
476 nir_var_shader_out |
477 nir_var_function_temp);
478
479 NIR_PASS(progress, nir, nir_opt_vectorize);
480 } while (progress);
481
482 /* Must be run at the end to prevent creation of fsin/fcos ops */
483 NIR_PASS(progress, nir, midgard_nir_scale_trig);
484
485 do {
486 progress = false;
487
488 NIR_PASS(progress, nir, nir_opt_dce);
489 NIR_PASS(progress, nir, nir_opt_algebraic);
490 NIR_PASS(progress, nir, nir_opt_constant_folding);
491 NIR_PASS(progress, nir, nir_copy_prop);
492 } while (progress);
493
494 NIR_PASS(progress, nir, nir_opt_algebraic_late);
495
496 /* We implement booleans as 32-bit 0/~0 */
497 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
498
499 /* Now that booleans are lowered, we can run out late opts */
500 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
501
502 /* Lower mods for float ops only. Integer ops don't support modifiers
503 * (saturate doesn't make sense on integers, neg/abs require dedicated
504 * instructions) */
505
506 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
507 NIR_PASS(progress, nir, nir_copy_prop);
508 NIR_PASS(progress, nir, nir_opt_dce);
509
510 /* Take us out of SSA */
511 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
512 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
513
514 /* We are a vector architecture; write combine where possible */
515 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
516 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 }
520
521 /* Do not actually emit a load; instead, cache the constant for inlining */
522
523 static void
524 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
525 {
526 nir_ssa_def def = instr->def;
527
528 float *v = rzalloc_array(NULL, float, 4);
529 nir_const_load_to_arr(v, instr, f32);
530 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
531 }
532
533 static unsigned
534 nir_src_index(compiler_context *ctx, nir_src *src)
535 {
536 if (src->is_ssa)
537 return src->ssa->index;
538 else {
539 assert(!src->reg.indirect);
540 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
541 }
542 }
543
544 static unsigned
545 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
546 {
547 return nir_src_index(ctx, &src->src);
548 }
549
550 static bool
551 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
552 {
553 unsigned comp = src->swizzle[0];
554
555 for (unsigned c = 1; c < nr_components; ++c) {
556 if (src->swizzle[c] != comp)
557 return true;
558 }
559
560 return false;
561 }
562
563 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
564 * output of a conditional test) into that register */
565
566 static void
567 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
568 {
569 int condition = nir_src_index(ctx, src);
570
571 /* Source to swizzle the desired component into w */
572
573 const midgard_vector_alu_src alu_src = {
574 .swizzle = SWIZZLE(component, component, component, component),
575 };
576
577 /* There is no boolean move instruction. Instead, we simulate a move by
578 * ANDing the condition with itself to get it into r31.w */
579
580 midgard_instruction ins = {
581 .type = TAG_ALU_4,
582
583 /* We need to set the conditional as close as possible */
584 .precede_break = true,
585 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
586 .mask = 1 << COMPONENT_W,
587
588 .ssa_args = {
589 .src0 = condition,
590 .src1 = condition,
591 .dest = SSA_FIXED_REGISTER(31),
592 },
593
594 .alu = {
595 .op = midgard_alu_op_iand,
596 .outmod = midgard_outmod_int_wrap,
597 .reg_mode = midgard_reg_mode_32,
598 .dest_override = midgard_dest_override_none,
599 .src1 = vector_alu_srco_unsigned(alu_src),
600 .src2 = vector_alu_srco_unsigned(alu_src)
601 },
602 };
603
604 emit_mir_instruction(ctx, ins);
605 }
606
607 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
608 * r31 instead */
609
610 static void
611 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
612 {
613 int condition = nir_src_index(ctx, &src->src);
614
615 /* Source to swizzle the desired component into w */
616
617 const midgard_vector_alu_src alu_src = {
618 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
619 };
620
621 /* There is no boolean move instruction. Instead, we simulate a move by
622 * ANDing the condition with itself to get it into r31.w */
623
624 midgard_instruction ins = {
625 .type = TAG_ALU_4,
626 .precede_break = true,
627 .mask = mask_of(nr_comp),
628 .ssa_args = {
629 .src0 = condition,
630 .src1 = condition,
631 .dest = SSA_FIXED_REGISTER(31),
632 },
633 .alu = {
634 .op = midgard_alu_op_iand,
635 .outmod = midgard_outmod_int_wrap,
636 .reg_mode = midgard_reg_mode_32,
637 .dest_override = midgard_dest_override_none,
638 .src1 = vector_alu_srco_unsigned(alu_src),
639 .src2 = vector_alu_srco_unsigned(alu_src)
640 },
641 };
642
643 emit_mir_instruction(ctx, ins);
644 }
645
646
647
648 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
649 * pinning to eliminate this move in all known cases */
650
651 static void
652 emit_indirect_offset(compiler_context *ctx, nir_src *src)
653 {
654 int offset = nir_src_index(ctx, src);
655
656 midgard_instruction ins = {
657 .type = TAG_ALU_4,
658 .mask = 1 << COMPONENT_W,
659 .ssa_args = {
660 .src0 = SSA_UNUSED_1,
661 .src1 = offset,
662 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
663 },
664 .alu = {
665 .op = midgard_alu_op_imov,
666 .outmod = midgard_outmod_int_wrap,
667 .reg_mode = midgard_reg_mode_32,
668 .dest_override = midgard_dest_override_none,
669 .src1 = vector_alu_srco_unsigned(zero_alu_src),
670 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
671 },
672 };
673
674 emit_mir_instruction(ctx, ins);
675 }
676
677 #define ALU_CASE(nir, _op) \
678 case nir_op_##nir: \
679 op = midgard_alu_op_##_op; \
680 assert(src_bitsize == dst_bitsize); \
681 break;
682
683 #define ALU_CASE_BCAST(nir, _op, count) \
684 case nir_op_##nir: \
685 op = midgard_alu_op_##_op; \
686 broadcast_swizzle = count; \
687 assert(src_bitsize == dst_bitsize); \
688 break;
689 static bool
690 nir_is_fzero_constant(nir_src src)
691 {
692 if (!nir_src_is_const(src))
693 return false;
694
695 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
696 if (nir_src_comp_as_float(src, c) != 0.0)
697 return false;
698 }
699
700 return true;
701 }
702
703 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
704 * special treatment override this anyway. */
705
706 static midgard_reg_mode
707 reg_mode_for_nir(nir_alu_instr *instr)
708 {
709 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
710
711 switch (src_bitsize) {
712 case 8:
713 return midgard_reg_mode_8;
714 case 16:
715 return midgard_reg_mode_16;
716 case 32:
717 return midgard_reg_mode_32;
718 case 64:
719 return midgard_reg_mode_64;
720 default:
721 unreachable("Invalid bit size");
722 }
723 }
724
725 static void
726 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
727 {
728 bool is_ssa = instr->dest.dest.is_ssa;
729
730 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
731 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
732 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
733
734 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
735 * supported. A few do not and are commented for now. Also, there are a
736 * number of NIR ops which Midgard does not support and need to be
737 * lowered, also TODO. This switch block emits the opcode and calling
738 * convention of the Midgard instruction; actual packing is done in
739 * emit_alu below */
740
741 unsigned op;
742
743 /* Number of components valid to check for the instruction (the rest
744 * will be forced to the last), or 0 to use as-is. Relevant as
745 * ball-type instructions have a channel count in NIR but are all vec4
746 * in Midgard */
747
748 unsigned broadcast_swizzle = 0;
749
750 /* What register mode should we operate in? */
751 midgard_reg_mode reg_mode =
752 reg_mode_for_nir(instr);
753
754 /* Do we need a destination override? Used for inline
755 * type conversion */
756
757 midgard_dest_override dest_override =
758 midgard_dest_override_none;
759
760 /* Should we use a smaller respective source and sign-extend? */
761
762 bool half_1 = false, sext_1 = false;
763 bool half_2 = false, sext_2 = false;
764
765 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
766 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
767
768 switch (instr->op) {
769 ALU_CASE(fadd, fadd);
770 ALU_CASE(fmul, fmul);
771 ALU_CASE(fmin, fmin);
772 ALU_CASE(fmax, fmax);
773 ALU_CASE(imin, imin);
774 ALU_CASE(imax, imax);
775 ALU_CASE(umin, umin);
776 ALU_CASE(umax, umax);
777 ALU_CASE(ffloor, ffloor);
778 ALU_CASE(fround_even, froundeven);
779 ALU_CASE(ftrunc, ftrunc);
780 ALU_CASE(fceil, fceil);
781 ALU_CASE(fdot3, fdot3);
782 ALU_CASE(fdot4, fdot4);
783 ALU_CASE(iadd, iadd);
784 ALU_CASE(isub, isub);
785 ALU_CASE(imul, imul);
786
787 /* Zero shoved as second-arg */
788 ALU_CASE(iabs, iabsdiff);
789
790 ALU_CASE(mov, imov);
791
792 ALU_CASE(feq32, feq);
793 ALU_CASE(fne32, fne);
794 ALU_CASE(flt32, flt);
795 ALU_CASE(ieq32, ieq);
796 ALU_CASE(ine32, ine);
797 ALU_CASE(ilt32, ilt);
798 ALU_CASE(ult32, ult);
799
800 /* We don't have a native b2f32 instruction. Instead, like many
801 * GPUs, we exploit booleans as 0/~0 for false/true, and
802 * correspondingly AND
803 * by 1.0 to do the type conversion. For the moment, prime us
804 * to emit:
805 *
806 * iand [whatever], #0
807 *
808 * At the end of emit_alu (as MIR), we'll fix-up the constant
809 */
810
811 ALU_CASE(b2f32, iand);
812 ALU_CASE(b2i32, iand);
813
814 /* Likewise, we don't have a dedicated f2b32 instruction, but
815 * we can do a "not equal to 0.0" test. */
816
817 ALU_CASE(f2b32, fne);
818 ALU_CASE(i2b32, ine);
819
820 ALU_CASE(frcp, frcp);
821 ALU_CASE(frsq, frsqrt);
822 ALU_CASE(fsqrt, fsqrt);
823 ALU_CASE(fexp2, fexp2);
824 ALU_CASE(flog2, flog2);
825
826 ALU_CASE(f2i32, f2i_rtz);
827 ALU_CASE(f2u32, f2u_rtz);
828 ALU_CASE(i2f32, i2f_rtz);
829 ALU_CASE(u2f32, u2f_rtz);
830
831 ALU_CASE(f2i16, f2i_rtz);
832 ALU_CASE(f2u16, f2u_rtz);
833 ALU_CASE(i2f16, i2f_rtz);
834 ALU_CASE(u2f16, u2f_rtz);
835
836 ALU_CASE(fsin, fsin);
837 ALU_CASE(fcos, fcos);
838
839 /* Second op implicit #0 */
840 ALU_CASE(inot, inor);
841 ALU_CASE(iand, iand);
842 ALU_CASE(ior, ior);
843 ALU_CASE(ixor, ixor);
844 ALU_CASE(ishl, ishl);
845 ALU_CASE(ishr, iasr);
846 ALU_CASE(ushr, ilsr);
847
848 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
849 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
850 ALU_CASE(b32all_fequal4, fball_eq);
851
852 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
853 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
854 ALU_CASE(b32any_fnequal4, fbany_neq);
855
856 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
857 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
858 ALU_CASE(b32all_iequal4, iball_eq);
859
860 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
861 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
862 ALU_CASE(b32any_inequal4, ibany_neq);
863
864 /* Source mods will be shoved in later */
865 ALU_CASE(fabs, fmov);
866 ALU_CASE(fneg, fmov);
867 ALU_CASE(fsat, fmov);
868
869 /* For size conversion, we use a move. Ideally though we would squash
870 * these ops together; maybe that has to happen after in NIR as part of
871 * propagation...? An earlier algebraic pass ensured we step down by
872 * only / exactly one size. If stepping down, we use a dest override to
873 * reduce the size; if stepping up, we use a larger-sized move with a
874 * half source and a sign/zero-extension modifier */
875
876 case nir_op_i2i8:
877 case nir_op_i2i16:
878 case nir_op_i2i32:
879 /* If we end up upscale, we'll need a sign-extend on the
880 * operand (the second argument) */
881
882 sext_2 = true;
883 case nir_op_u2u8:
884 case nir_op_u2u16:
885 case nir_op_u2u32: {
886 op = midgard_alu_op_imov;
887
888 if (dst_bitsize == (src_bitsize * 2)) {
889 /* Converting up */
890 half_2 = true;
891
892 /* Use a greater register mode */
893 reg_mode++;
894 } else if (src_bitsize == (dst_bitsize * 2)) {
895 /* Converting down */
896 dest_override = midgard_dest_override_lower;
897 }
898
899 break;
900 }
901
902 case nir_op_f2f16: {
903 assert(src_bitsize == 32);
904
905 op = midgard_alu_op_fmov;
906 dest_override = midgard_dest_override_lower;
907 break;
908 }
909
910 case nir_op_f2f32: {
911 assert(src_bitsize == 16);
912
913 op = midgard_alu_op_fmov;
914 half_2 = true;
915 reg_mode++;
916 break;
917 }
918
919
920 /* For greater-or-equal, we lower to less-or-equal and flip the
921 * arguments */
922
923 case nir_op_fge:
924 case nir_op_fge32:
925 case nir_op_ige32:
926 case nir_op_uge32: {
927 op =
928 instr->op == nir_op_fge ? midgard_alu_op_fle :
929 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
930 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
931 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
932 0;
933
934 /* Swap via temporary */
935 nir_alu_src temp = instr->src[1];
936 instr->src[1] = instr->src[0];
937 instr->src[0] = temp;
938
939 break;
940 }
941
942 case nir_op_b32csel: {
943 /* Midgard features both fcsel and icsel, depending on
944 * the type of the arguments/output. However, as long
945 * as we're careful we can _always_ use icsel and
946 * _never_ need fcsel, since the latter does additional
947 * floating-point-specific processing whereas the
948 * former just moves bits on the wire. It's not obvious
949 * why these are separate opcodes, save for the ability
950 * to do things like sat/pos/abs/neg for free */
951
952 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
953 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
954
955 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
956 nr_inputs = 2;
957
958 /* Emit the condition into r31 */
959
960 if (mixed)
961 emit_condition_mixed(ctx, &instr->src[0], nr_components);
962 else
963 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
964
965 /* The condition is the first argument; move the other
966 * arguments up one to be a binary instruction for
967 * Midgard */
968
969 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
970 break;
971 }
972
973 default:
974 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
975 assert(0);
976 return;
977 }
978
979 /* Midgard can perform certain modifiers on output of an ALU op */
980 unsigned outmod;
981
982 if (midgard_is_integer_out_op(op)) {
983 outmod = midgard_outmod_int_wrap;
984 } else {
985 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
986 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
987 }
988
989 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
990
991 if (instr->op == nir_op_fmax) {
992 if (nir_is_fzero_constant(instr->src[0].src)) {
993 op = midgard_alu_op_fmov;
994 nr_inputs = 1;
995 outmod = midgard_outmod_pos;
996 instr->src[0] = instr->src[1];
997 } else if (nir_is_fzero_constant(instr->src[1].src)) {
998 op = midgard_alu_op_fmov;
999 nr_inputs = 1;
1000 outmod = midgard_outmod_pos;
1001 }
1002 }
1003
1004 /* Fetch unit, quirks, etc information */
1005 unsigned opcode_props = alu_opcode_props[op].props;
1006 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1007
1008 /* src0 will always exist afaik, but src1 will not for 1-argument
1009 * instructions. The latter can only be fetched if the instruction
1010 * needs it, or else we may segfault. */
1011
1012 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1013 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1014
1015 /* Rather than use the instruction generation helpers, we do it
1016 * ourselves here to avoid the mess */
1017
1018 midgard_instruction ins = {
1019 .type = TAG_ALU_4,
1020 .ssa_args = {
1021 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1022 .src1 = quirk_flipped_r24 ? src0 : src1,
1023 .dest = dest,
1024 }
1025 };
1026
1027 nir_alu_src *nirmods[2] = { NULL };
1028
1029 if (nr_inputs == 2) {
1030 nirmods[0] = &instr->src[0];
1031 nirmods[1] = &instr->src[1];
1032 } else if (nr_inputs == 1) {
1033 nirmods[quirk_flipped_r24] = &instr->src[0];
1034 } else {
1035 assert(0);
1036 }
1037
1038 /* These were lowered to a move, so apply the corresponding mod */
1039
1040 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1041 nir_alu_src *s = nirmods[quirk_flipped_r24];
1042
1043 if (instr->op == nir_op_fneg)
1044 s->negate = !s->negate;
1045
1046 if (instr->op == nir_op_fabs)
1047 s->abs = !s->abs;
1048 }
1049
1050 bool is_int = midgard_is_integer_op(op);
1051
1052 ins.mask = mask_of(nr_components);
1053
1054 midgard_vector_alu alu = {
1055 .op = op,
1056 .reg_mode = reg_mode,
1057 .dest_override = dest_override,
1058 .outmod = outmod,
1059
1060 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1061 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1062 };
1063
1064 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1065
1066 if (!is_ssa)
1067 ins.mask &= instr->dest.write_mask;
1068
1069 ins.alu = alu;
1070
1071 /* Late fixup for emulated instructions */
1072
1073 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1074 /* Presently, our second argument is an inline #0 constant.
1075 * Switch over to an embedded 1.0 constant (that can't fit
1076 * inline, since we're 32-bit, not 16-bit like the inline
1077 * constants) */
1078
1079 ins.ssa_args.inline_constant = false;
1080 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1081 ins.has_constants = true;
1082
1083 if (instr->op == nir_op_b2f32) {
1084 ins.constants[0] = 1.0f;
1085 } else {
1086 /* Type pun it into place */
1087 uint32_t one = 0x1;
1088 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1089 }
1090
1091 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1092 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1093 /* Lots of instructions need a 0 plonked in */
1094 ins.ssa_args.inline_constant = false;
1095 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1096 ins.has_constants = true;
1097 ins.constants[0] = 0.0f;
1098 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1099 } else if (instr->op == nir_op_inot) {
1100 /* ~b = ~(b & b), so duplicate the source */
1101 ins.ssa_args.src1 = ins.ssa_args.src0;
1102 ins.alu.src2 = ins.alu.src1;
1103 }
1104
1105 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1106 /* To avoid duplicating the lookup tables (probably), true LUT
1107 * instructions can only operate as if they were scalars. Lower
1108 * them here by changing the component. */
1109
1110 uint8_t original_swizzle[4];
1111 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1112 unsigned orig_mask = ins.mask;
1113
1114 for (int i = 0; i < nr_components; ++i) {
1115 /* Mask the associated component, dropping the
1116 * instruction if needed */
1117
1118 ins.mask = 1 << i;
1119 ins.mask &= orig_mask;
1120
1121 if (!ins.mask)
1122 continue;
1123
1124 for (int j = 0; j < 4; ++j)
1125 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1126
1127 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1128 emit_mir_instruction(ctx, ins);
1129 }
1130 } else {
1131 emit_mir_instruction(ctx, ins);
1132 }
1133 }
1134
1135 #undef ALU_CASE
1136
1137 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1138 * optimized) versions of UBO #0 */
1139
1140 void
1141 emit_ubo_read(
1142 compiler_context *ctx,
1143 unsigned dest,
1144 unsigned offset,
1145 nir_src *indirect_offset,
1146 unsigned index)
1147 {
1148 /* TODO: half-floats */
1149
1150 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1151
1152 /* TODO: Don't split */
1153 ins.load_store.varying_parameters = (offset & 7) << 7;
1154 ins.load_store.address = offset >> 3;
1155
1156 if (indirect_offset) {
1157 emit_indirect_offset(ctx, indirect_offset);
1158 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1159 } else {
1160 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1161 }
1162
1163 emit_mir_instruction(ctx, ins);
1164 }
1165
1166 static void
1167 emit_varying_read(
1168 compiler_context *ctx,
1169 unsigned dest, unsigned offset,
1170 unsigned nr_comp, unsigned component,
1171 nir_src *indirect_offset, nir_alu_type type)
1172 {
1173 /* XXX: Half-floats? */
1174 /* TODO: swizzle, mask */
1175
1176 midgard_instruction ins = m_ld_vary_32(dest, offset);
1177 ins.mask = mask_of(nr_comp);
1178 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1179
1180 midgard_varying_parameter p = {
1181 .is_varying = 1,
1182 .interpolation = midgard_interp_default,
1183 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1184 };
1185
1186 unsigned u;
1187 memcpy(&u, &p, sizeof(p));
1188 ins.load_store.varying_parameters = u;
1189
1190 if (indirect_offset) {
1191 /* We need to add in the dynamic index, moved to r27.w */
1192 emit_indirect_offset(ctx, indirect_offset);
1193 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1194 } else {
1195 /* Just a direct load */
1196 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1197 }
1198
1199 /* Use the type appropriate load */
1200 switch (type) {
1201 case nir_type_uint:
1202 case nir_type_bool:
1203 ins.load_store.op = midgard_op_ld_vary_32u;
1204 break;
1205 case nir_type_int:
1206 ins.load_store.op = midgard_op_ld_vary_32i;
1207 break;
1208 case nir_type_float:
1209 ins.load_store.op = midgard_op_ld_vary_32;
1210 break;
1211 default:
1212 unreachable("Attempted to load unknown type");
1213 break;
1214 }
1215
1216 emit_mir_instruction(ctx, ins);
1217 }
1218
1219 static void
1220 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1221 {
1222 unsigned dest = 0;
1223
1224 /* Figure out which uniform this is */
1225 int sysval = sysval_for_instr(ctx, instr, &dest);
1226 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1227
1228 /* Sysvals are prefix uniforms */
1229 unsigned uniform = ((uintptr_t) val) - 1;
1230
1231 /* Emit the read itself -- this is never indirect */
1232 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1233 }
1234
1235 static void
1236 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1237 {
1238 unsigned offset = 0, reg;
1239
1240 switch (instr->intrinsic) {
1241 case nir_intrinsic_discard_if:
1242 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1243
1244 /* fallthrough */
1245
1246 case nir_intrinsic_discard: {
1247 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1248 struct midgard_instruction discard = v_branch(conditional, false);
1249 discard.branch.target_type = TARGET_DISCARD;
1250 emit_mir_instruction(ctx, discard);
1251
1252 ctx->can_discard = true;
1253 break;
1254 }
1255
1256 case nir_intrinsic_load_uniform:
1257 case nir_intrinsic_load_ubo:
1258 case nir_intrinsic_load_input: {
1259 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1260 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1261
1262 /* Get the base type of the intrinsic */
1263 /* TODO: Infer type? Does it matter? */
1264 nir_alu_type t =
1265 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1266 t = nir_alu_type_get_base_type(t);
1267
1268 if (!is_ubo) {
1269 offset = nir_intrinsic_base(instr);
1270 }
1271
1272 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1273
1274 nir_src *src_offset = nir_get_io_offset_src(instr);
1275
1276 bool direct = nir_src_is_const(*src_offset);
1277
1278 if (direct)
1279 offset += nir_src_as_uint(*src_offset);
1280
1281 /* We may need to apply a fractional offset */
1282 int component = instr->intrinsic == nir_intrinsic_load_input ?
1283 nir_intrinsic_component(instr) : 0;
1284 reg = nir_dest_index(ctx, &instr->dest);
1285
1286 if (is_uniform && !ctx->is_blend) {
1287 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1288 } else if (is_ubo) {
1289 nir_src index = instr->src[0];
1290
1291 /* We don't yet support indirect UBOs. For indirect
1292 * block numbers (if that's possible), we don't know
1293 * enough about the hardware yet. For indirect sources,
1294 * we know what we need but we need to add some NIR
1295 * support for lowering correctly with respect to
1296 * 128-bit reads */
1297
1298 assert(nir_src_is_const(index));
1299 assert(nir_src_is_const(*src_offset));
1300
1301 /* TODO: Alignment */
1302 assert((offset & 0xF) == 0);
1303
1304 uint32_t uindex = nir_src_as_uint(index) + 1;
1305 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1306 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1307 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1308 } else if (ctx->is_blend) {
1309 /* For blend shaders, load the input color, which is
1310 * preloaded to r0 */
1311
1312 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1313 emit_mir_instruction(ctx, move);
1314 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1315 midgard_instruction ins = m_ld_attr_32(reg, offset);
1316 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1317 ins.mask = mask_of(nr_comp);
1318
1319 /* Use the type appropriate load */
1320 switch (t) {
1321 case nir_type_uint:
1322 case nir_type_bool:
1323 ins.load_store.op = midgard_op_ld_attr_32u;
1324 break;
1325 case nir_type_int:
1326 ins.load_store.op = midgard_op_ld_attr_32i;
1327 break;
1328 case nir_type_float:
1329 ins.load_store.op = midgard_op_ld_attr_32;
1330 break;
1331 default:
1332 unreachable("Attempted to load unknown type");
1333 break;
1334 }
1335
1336 emit_mir_instruction(ctx, ins);
1337 } else {
1338 DBG("Unknown load\n");
1339 assert(0);
1340 }
1341
1342 break;
1343 }
1344
1345 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1346
1347 case nir_intrinsic_load_raw_output_pan:
1348 reg = nir_dest_index(ctx, &instr->dest);
1349 assert(ctx->is_blend);
1350
1351 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1352 emit_mir_instruction(ctx, ins);
1353 break;
1354
1355 case nir_intrinsic_load_blend_const_color_rgba: {
1356 assert(ctx->is_blend);
1357 reg = nir_dest_index(ctx, &instr->dest);
1358
1359 /* Blend constants are embedded directly in the shader and
1360 * patched in, so we use some magic routing */
1361
1362 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1363 ins.has_constants = true;
1364 ins.has_blend_constant = true;
1365 emit_mir_instruction(ctx, ins);
1366 break;
1367 }
1368
1369 case nir_intrinsic_store_output:
1370 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1371
1372 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1373
1374 reg = nir_src_index(ctx, &instr->src[0]);
1375
1376 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1377 /* gl_FragColor is not emitted with load/store
1378 * instructions. Instead, it gets plonked into
1379 * r0 at the end of the shader and we do the
1380 * framebuffer writeout dance. TODO: Defer
1381 * writes */
1382
1383 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1384 emit_mir_instruction(ctx, move);
1385
1386 /* Save the index we're writing to for later reference
1387 * in the epilogue */
1388
1389 ctx->fragment_output = reg;
1390 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1391 /* Varyings are written into one of two special
1392 * varying register, r26 or r27. The register itself is
1393 * selected as the register in the st_vary instruction,
1394 * minus the base of 26. E.g. write into r27 and then
1395 * call st_vary(1) */
1396
1397 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1398 emit_mir_instruction(ctx, ins);
1399
1400 /* We should have been vectorized, though we don't
1401 * currently check that st_vary is emitted only once
1402 * per slot (this is relevant, since there's not a mask
1403 * parameter available on the store [set to 0 by the
1404 * blob]). We do respect the component by adjusting the
1405 * swizzle. */
1406
1407 unsigned component = nir_intrinsic_component(instr);
1408
1409 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1410 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1411 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1412 emit_mir_instruction(ctx, st);
1413 } else {
1414 DBG("Unknown store\n");
1415 assert(0);
1416 }
1417
1418 break;
1419
1420 /* Special case of store_output for lowered blend shaders */
1421 case nir_intrinsic_store_raw_output_pan:
1422 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1423 reg = nir_src_index(ctx, &instr->src[0]);
1424
1425 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1426 emit_mir_instruction(ctx, move);
1427 ctx->fragment_output = reg;
1428
1429 break;
1430
1431 case nir_intrinsic_load_alpha_ref_float:
1432 assert(instr->dest.is_ssa);
1433
1434 float ref_value = ctx->alpha_ref;
1435
1436 float *v = ralloc_array(NULL, float, 4);
1437 memcpy(v, &ref_value, sizeof(float));
1438 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1439 break;
1440
1441 case nir_intrinsic_load_viewport_scale:
1442 case nir_intrinsic_load_viewport_offset:
1443 emit_sysval_read(ctx, &instr->instr);
1444 break;
1445
1446 default:
1447 printf ("Unhandled intrinsic\n");
1448 assert(0);
1449 break;
1450 }
1451 }
1452
1453 static unsigned
1454 midgard_tex_format(enum glsl_sampler_dim dim)
1455 {
1456 switch (dim) {
1457 case GLSL_SAMPLER_DIM_1D:
1458 case GLSL_SAMPLER_DIM_BUF:
1459 return MALI_TEX_1D;
1460
1461 case GLSL_SAMPLER_DIM_2D:
1462 case GLSL_SAMPLER_DIM_EXTERNAL:
1463 return MALI_TEX_2D;
1464
1465 case GLSL_SAMPLER_DIM_3D:
1466 return MALI_TEX_3D;
1467
1468 case GLSL_SAMPLER_DIM_CUBE:
1469 return MALI_TEX_CUBE;
1470
1471 default:
1472 DBG("Unknown sampler dim type\n");
1473 assert(0);
1474 return 0;
1475 }
1476 }
1477
1478 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1479 * was successful */
1480
1481 static bool
1482 pan_attach_constant_bias(
1483 compiler_context *ctx,
1484 nir_src lod,
1485 midgard_texture_word *word)
1486 {
1487 /* To attach as constant, it has to *be* constant */
1488
1489 if (!nir_src_is_const(lod))
1490 return false;
1491
1492 float f = nir_src_as_float(lod);
1493
1494 /* Break into fixed-point */
1495 signed lod_int = f;
1496 float lod_frac = f - lod_int;
1497
1498 /* Carry over negative fractions */
1499 if (lod_frac < 0.0) {
1500 lod_int--;
1501 lod_frac += 1.0;
1502 }
1503
1504 /* Encode */
1505 word->bias = float_to_ubyte(lod_frac);
1506 word->bias_int = lod_int;
1507
1508 return true;
1509 }
1510
1511 static enum mali_sampler_type
1512 midgard_sampler_type(nir_alu_type t) {
1513 switch (nir_alu_type_get_base_type(t))
1514 {
1515 case nir_type_float:
1516 return MALI_SAMPLER_FLOAT;
1517 case nir_type_int:
1518 return MALI_SAMPLER_SIGNED;
1519 case nir_type_uint:
1520 return MALI_SAMPLER_UNSIGNED;
1521 default:
1522 unreachable("Unknown sampler type");
1523 }
1524 }
1525
1526 static void
1527 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1528 unsigned midgard_texop)
1529 {
1530 /* TODO */
1531 //assert (!instr->sampler);
1532 //assert (!instr->texture_array_size);
1533
1534 /* Allocate registers via a round robin scheme to alternate between the two registers */
1535 int reg = ctx->texture_op_count & 1;
1536 int in_reg = reg, out_reg = reg;
1537
1538 int texture_index = instr->texture_index;
1539 int sampler_index = texture_index;
1540
1541 /* No helper to build texture words -- we do it all here */
1542 midgard_instruction ins = {
1543 .type = TAG_TEXTURE_4,
1544 .mask = 0xF,
1545 .texture = {
1546 .op = midgard_texop,
1547 .format = midgard_tex_format(instr->sampler_dim),
1548 .texture_handle = texture_index,
1549 .sampler_handle = sampler_index,
1550
1551 /* TODO: Regalloc it in */
1552 .swizzle = SWIZZLE_XYZW,
1553
1554 /* TODO: half */
1555 .in_reg_full = 1,
1556 .out_full = 1,
1557
1558 .sampler_type = midgard_sampler_type(instr->dest_type),
1559 }
1560 };
1561
1562 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1563 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1564 int index = nir_src_index(ctx, &instr->src[i].src);
1565 int nr_comp = nir_src_num_components(instr->src[i].src);
1566 midgard_vector_alu_src alu_src = blank_alu_src;
1567
1568 switch (instr->src[i].src_type) {
1569 case nir_tex_src_coord: {
1570 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1571 /* texelFetch is undefined on samplerCube */
1572 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1573
1574 /* For cubemaps, we need to load coords into
1575 * special r27, and then use a special ld/st op
1576 * to select the face and copy the xy into the
1577 * texture register */
1578
1579 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1580
1581 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1582 emit_mir_instruction(ctx, move);
1583
1584 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1585 st.load_store.unknown = 0x24; /* XXX: What is this? */
1586 st.mask = 0x3; /* xy */
1587 st.load_store.swizzle = alu_src.swizzle;
1588 emit_mir_instruction(ctx, st);
1589
1590 ins.texture.in_reg_swizzle = swizzle_of(2);
1591 } else {
1592 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1593
1594 midgard_instruction mov = v_mov(index, alu_src, reg);
1595 mov.mask = mask_of(nr_comp);
1596 emit_mir_instruction(ctx, mov);
1597
1598 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1599 /* Texel fetch opcodes care about the
1600 * values of z and w, so we actually
1601 * need to spill into a second register
1602 * for a texel fetch with register bias
1603 * (for non-2D). TODO: Implement that
1604 */
1605
1606 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1607
1608 midgard_instruction zero = v_mov(index, alu_src, reg);
1609 zero.ssa_args.inline_constant = true;
1610 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1611 zero.has_constants = true;
1612 zero.mask = ~mov.mask;
1613 emit_mir_instruction(ctx, zero);
1614
1615 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1616 } else {
1617 /* Non-texel fetch doesn't need that
1618 * nonsense. However we do use the Z
1619 * for array indexing */
1620 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1621 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1622 }
1623 }
1624
1625 break;
1626 }
1627
1628 case nir_tex_src_bias:
1629 case nir_tex_src_lod: {
1630 /* Try as a constant if we can */
1631
1632 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1633 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1634 break;
1635
1636 /* Otherwise we use a register. To keep RA simple, we
1637 * put the bias/LOD into the w component of the input
1638 * source, which is otherwise in xy */
1639
1640 alu_src.swizzle = SWIZZLE_XXXX;
1641
1642 midgard_instruction mov = v_mov(index, alu_src, reg);
1643 mov.mask = 1 << COMPONENT_W;
1644 emit_mir_instruction(ctx, mov);
1645
1646 ins.texture.lod_register = true;
1647
1648 midgard_tex_register_select sel = {
1649 .select = in_reg,
1650 .full = 1,
1651
1652 /* w */
1653 .component_lo = 1,
1654 .component_hi = 1
1655 };
1656
1657 uint8_t packed;
1658 memcpy(&packed, &sel, sizeof(packed));
1659 ins.texture.bias = packed;
1660
1661 break;
1662 };
1663
1664 default:
1665 unreachable("Unknown texture source type\n");
1666 }
1667 }
1668
1669 /* Set registers to read and write from the same place */
1670 ins.texture.in_reg_select = in_reg;
1671 ins.texture.out_reg_select = out_reg;
1672
1673 emit_mir_instruction(ctx, ins);
1674
1675 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1676 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1677 emit_mir_instruction(ctx, ins2);
1678
1679 /* Used for .cont and .last hinting */
1680 ctx->texture_op_count++;
1681 }
1682
1683 static void
1684 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1685 {
1686 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1687 * generic tex in some cases (which confuses the hardware) */
1688
1689 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1690
1691 if (is_vertex && instr->op == nir_texop_tex)
1692 instr->op = nir_texop_txl;
1693
1694 switch (instr->op) {
1695 case nir_texop_tex:
1696 case nir_texop_txb:
1697 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1698 break;
1699 case nir_texop_txl:
1700 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1701 break;
1702 case nir_texop_txf:
1703 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1704 break;
1705 case nir_texop_txs:
1706 emit_sysval_read(ctx, &instr->instr);
1707 break;
1708 default:
1709 unreachable("Unhanlded texture op");
1710 }
1711 }
1712
1713 static void
1714 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1715 {
1716 switch (instr->type) {
1717 case nir_jump_break: {
1718 /* Emit a branch out of the loop */
1719 struct midgard_instruction br = v_branch(false, false);
1720 br.branch.target_type = TARGET_BREAK;
1721 br.branch.target_break = ctx->current_loop_depth;
1722 emit_mir_instruction(ctx, br);
1723 break;
1724 }
1725
1726 default:
1727 DBG("Unknown jump type %d\n", instr->type);
1728 break;
1729 }
1730 }
1731
1732 static void
1733 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1734 {
1735 switch (instr->type) {
1736 case nir_instr_type_load_const:
1737 emit_load_const(ctx, nir_instr_as_load_const(instr));
1738 break;
1739
1740 case nir_instr_type_intrinsic:
1741 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1742 break;
1743
1744 case nir_instr_type_alu:
1745 emit_alu(ctx, nir_instr_as_alu(instr));
1746 break;
1747
1748 case nir_instr_type_tex:
1749 emit_tex(ctx, nir_instr_as_tex(instr));
1750 break;
1751
1752 case nir_instr_type_jump:
1753 emit_jump(ctx, nir_instr_as_jump(instr));
1754 break;
1755
1756 case nir_instr_type_ssa_undef:
1757 /* Spurious */
1758 break;
1759
1760 default:
1761 DBG("Unhandled instruction type\n");
1762 break;
1763 }
1764 }
1765
1766
1767 /* ALU instructions can inline or embed constants, which decreases register
1768 * pressure and saves space. */
1769
1770 #define CONDITIONAL_ATTACH(src) { \
1771 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1772 \
1773 if (entry) { \
1774 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1775 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1776 } \
1777 }
1778
1779 static void
1780 inline_alu_constants(compiler_context *ctx)
1781 {
1782 mir_foreach_instr(ctx, alu) {
1783 /* Other instructions cannot inline constants */
1784 if (alu->type != TAG_ALU_4) continue;
1785
1786 /* If there is already a constant here, we can do nothing */
1787 if (alu->has_constants) continue;
1788
1789 /* It makes no sense to inline constants on a branch */
1790 if (alu->compact_branch || alu->prepacked_branch) continue;
1791
1792 CONDITIONAL_ATTACH(src0);
1793
1794 if (!alu->has_constants) {
1795 CONDITIONAL_ATTACH(src1)
1796 } else if (!alu->inline_constant) {
1797 /* Corner case: _two_ vec4 constants, for instance with a
1798 * csel. For this case, we can only use a constant
1799 * register for one, we'll have to emit a move for the
1800 * other. Note, if both arguments are constants, then
1801 * necessarily neither argument depends on the value of
1802 * any particular register. As the destination register
1803 * will be wiped, that means we can spill the constant
1804 * to the destination register.
1805 */
1806
1807 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1808 unsigned scratch = alu->ssa_args.dest;
1809
1810 if (entry) {
1811 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1812 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1813
1814 /* Force a break XXX Defer r31 writes */
1815 ins.unit = UNIT_VLUT;
1816
1817 /* Set the source */
1818 alu->ssa_args.src1 = scratch;
1819
1820 /* Inject us -before- the last instruction which set r31 */
1821 mir_insert_instruction_before(mir_prev_op(alu), ins);
1822 }
1823 }
1824 }
1825 }
1826
1827 /* Midgard supports two types of constants, embedded constants (128-bit) and
1828 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1829 * constants can be demoted to inline constants, for space savings and
1830 * sometimes a performance boost */
1831
1832 static void
1833 embedded_to_inline_constant(compiler_context *ctx)
1834 {
1835 mir_foreach_instr(ctx, ins) {
1836 if (!ins->has_constants) continue;
1837
1838 if (ins->ssa_args.inline_constant) continue;
1839
1840 /* Blend constants must not be inlined by definition */
1841 if (ins->has_blend_constant) continue;
1842
1843 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1844 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1845 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1846
1847 if (!(is_16 || is_32))
1848 continue;
1849
1850 /* src1 cannot be an inline constant due to encoding
1851 * restrictions. So, if possible we try to flip the arguments
1852 * in that case */
1853
1854 int op = ins->alu.op;
1855
1856 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1857 switch (op) {
1858 /* These ops require an operational change to flip
1859 * their arguments TODO */
1860 case midgard_alu_op_flt:
1861 case midgard_alu_op_fle:
1862 case midgard_alu_op_ilt:
1863 case midgard_alu_op_ile:
1864 case midgard_alu_op_fcsel:
1865 case midgard_alu_op_icsel:
1866 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1867 default:
1868 break;
1869 }
1870
1871 if (alu_opcode_props[op].props & OP_COMMUTES) {
1872 /* Flip the SSA numbers */
1873 ins->ssa_args.src0 = ins->ssa_args.src1;
1874 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1875
1876 /* And flip the modifiers */
1877
1878 unsigned src_temp;
1879
1880 src_temp = ins->alu.src2;
1881 ins->alu.src2 = ins->alu.src1;
1882 ins->alu.src1 = src_temp;
1883 }
1884 }
1885
1886 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1887 /* Extract the source information */
1888
1889 midgard_vector_alu_src *src;
1890 int q = ins->alu.src2;
1891 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1892 src = m;
1893
1894 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1895 int component = src->swizzle & 3;
1896
1897 /* Scale constant appropriately, if we can legally */
1898 uint16_t scaled_constant = 0;
1899
1900 if (midgard_is_integer_op(op) || is_16) {
1901 unsigned int *iconstants = (unsigned int *) ins->constants;
1902 scaled_constant = (uint16_t) iconstants[component];
1903
1904 /* Constant overflow after resize */
1905 if (scaled_constant != iconstants[component])
1906 continue;
1907 } else {
1908 float original = (float) ins->constants[component];
1909 scaled_constant = _mesa_float_to_half(original);
1910
1911 /* Check for loss of precision. If this is
1912 * mediump, we don't care, but for a highp
1913 * shader, we need to pay attention. NIR
1914 * doesn't yet tell us which mode we're in!
1915 * Practically this prevents most constants
1916 * from being inlined, sadly. */
1917
1918 float fp32 = _mesa_half_to_float(scaled_constant);
1919
1920 if (fp32 != original)
1921 continue;
1922 }
1923
1924 /* We don't know how to handle these with a constant */
1925
1926 if (src->mod || src->half || src->rep_low || src->rep_high) {
1927 DBG("Bailing inline constant...\n");
1928 continue;
1929 }
1930
1931 /* Make sure that the constant is not itself a
1932 * vector by checking if all accessed values
1933 * (by the swizzle) are the same. */
1934
1935 uint32_t *cons = (uint32_t *) ins->constants;
1936 uint32_t value = cons[component];
1937
1938 bool is_vector = false;
1939 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1940
1941 for (int c = 1; c < 4; ++c) {
1942 /* We only care if this component is actually used */
1943 if (!(mask & (1 << c)))
1944 continue;
1945
1946 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1947
1948 if (test != value) {
1949 is_vector = true;
1950 break;
1951 }
1952 }
1953
1954 if (is_vector)
1955 continue;
1956
1957 /* Get rid of the embedded constant */
1958 ins->has_constants = false;
1959 ins->ssa_args.src1 = SSA_UNUSED_0;
1960 ins->ssa_args.inline_constant = true;
1961 ins->inline_constant = scaled_constant;
1962 }
1963 }
1964 }
1965
1966 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
1967 * texture pipeline */
1968
1969 static bool
1970 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
1971 {
1972 bool progress = false;
1973
1974 mir_foreach_instr_in_block_safe(block, ins) {
1975 if (ins->type != TAG_ALU_4) continue;
1976 if (ins->compact_branch) continue;
1977
1978 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1979 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
1980
1981 mir_remove_instruction(ins);
1982 progress = true;
1983 }
1984
1985 return progress;
1986 }
1987
1988 /* Dead code elimination for branches at the end of a block - only one branch
1989 * per block is legal semantically */
1990
1991 static void
1992 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1993 {
1994 bool branched = false;
1995
1996 mir_foreach_instr_in_block_safe(block, ins) {
1997 if (!midgard_is_branch_unit(ins->unit)) continue;
1998
1999 /* We ignore prepacked branches since the fragment epilogue is
2000 * just generally special */
2001 if (ins->prepacked_branch) continue;
2002
2003 /* Discards are similarly special and may not correspond to the
2004 * end of a block */
2005
2006 if (ins->branch.target_type == TARGET_DISCARD) continue;
2007
2008 if (branched) {
2009 /* We already branched, so this is dead */
2010 mir_remove_instruction(ins);
2011 }
2012
2013 branched = true;
2014 }
2015 }
2016
2017 static bool
2018 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2019 {
2020 /* abs or neg */
2021 if (!is_int && src.mod) return true;
2022
2023 /* Other int mods don't matter in isolation */
2024 if (is_int && src.mod == midgard_int_shift) return true;
2025
2026 /* size-conversion */
2027 if (src.half) return true;
2028
2029 /* swizzle */
2030 for (unsigned c = 0; c < 4; ++c) {
2031 if (!(mask & (1 << c))) continue;
2032 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2033 }
2034
2035 return false;
2036 }
2037
2038 static bool
2039 mir_nontrivial_source2_mod(midgard_instruction *ins)
2040 {
2041 bool is_int = midgard_is_integer_op(ins->alu.op);
2042
2043 midgard_vector_alu_src src2 =
2044 vector_alu_from_unsigned(ins->alu.src2);
2045
2046 return mir_nontrivial_mod(src2, is_int, ins->mask);
2047 }
2048
2049 static bool
2050 mir_nontrivial_outmod(midgard_instruction *ins)
2051 {
2052 bool is_int = midgard_is_integer_op(ins->alu.op);
2053 unsigned mod = ins->alu.outmod;
2054
2055 /* Type conversion is a sort of outmod */
2056 if (ins->alu.dest_override != midgard_dest_override_none)
2057 return true;
2058
2059 if (is_int)
2060 return mod != midgard_outmod_int_wrap;
2061 else
2062 return mod != midgard_outmod_none;
2063 }
2064
2065 static bool
2066 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2067 {
2068 bool progress = false;
2069
2070 mir_foreach_instr_in_block_safe(block, ins) {
2071 if (ins->type != TAG_ALU_4) continue;
2072 if (!OP_IS_MOVE(ins->alu.op)) continue;
2073
2074 unsigned from = ins->ssa_args.src1;
2075 unsigned to = ins->ssa_args.dest;
2076
2077 /* We only work on pure SSA */
2078
2079 if (to >= SSA_FIXED_MINIMUM) continue;
2080 if (from >= SSA_FIXED_MINIMUM) continue;
2081 if (to >= ctx->func->impl->ssa_alloc) continue;
2082 if (from >= ctx->func->impl->ssa_alloc) continue;
2083
2084 /* Constant propagation is not handled here, either */
2085 if (ins->ssa_args.inline_constant) continue;
2086 if (ins->has_constants) continue;
2087
2088 if (mir_nontrivial_source2_mod(ins)) continue;
2089 if (mir_nontrivial_outmod(ins)) continue;
2090
2091 /* We're clear -- rewrite */
2092 mir_rewrite_index_src(ctx, to, from);
2093 mir_remove_instruction(ins);
2094 progress |= true;
2095 }
2096
2097 return progress;
2098 }
2099
2100 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2101 * the move can be propagated away entirely */
2102
2103 static bool
2104 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2105 {
2106 /* Nothing to do */
2107 if (comp == midgard_outmod_none)
2108 return true;
2109
2110 if (*outmod == midgard_outmod_none) {
2111 *outmod = comp;
2112 return true;
2113 }
2114
2115 /* TODO: Compose rules */
2116 return false;
2117 }
2118
2119 static bool
2120 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2121 {
2122 bool progress = false;
2123
2124 mir_foreach_instr_in_block_safe(block, ins) {
2125 if (ins->type != TAG_ALU_4) continue;
2126 if (ins->alu.op != midgard_alu_op_fmov) continue;
2127 if (ins->alu.outmod != midgard_outmod_pos) continue;
2128
2129 /* TODO: Registers? */
2130 unsigned src = ins->ssa_args.src1;
2131 if (src >= ctx->func->impl->ssa_alloc) continue;
2132 assert(!mir_has_multiple_writes(ctx, src));
2133
2134 /* There might be a source modifier, too */
2135 if (mir_nontrivial_source2_mod(ins)) continue;
2136
2137 /* Backpropagate the modifier */
2138 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2139 if (v->type != TAG_ALU_4) continue;
2140 if (v->ssa_args.dest != src) continue;
2141
2142 /* Can we even take a float outmod? */
2143 if (midgard_is_integer_out_op(v->alu.op)) continue;
2144
2145 midgard_outmod_float temp = v->alu.outmod;
2146 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2147
2148 /* Throw in the towel.. */
2149 if (!progress) break;
2150
2151 /* Otherwise, transfer the modifier */
2152 v->alu.outmod = temp;
2153 ins->alu.outmod = midgard_outmod_none;
2154
2155 break;
2156 }
2157 }
2158
2159 return progress;
2160 }
2161
2162 static void
2163 emit_fragment_epilogue(compiler_context *ctx)
2164 {
2165 /* Special case: writing out constants requires us to include the move
2166 * explicitly now, so shove it into r0 */
2167
2168 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2169
2170 if (constant_value) {
2171 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2172 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2173 emit_mir_instruction(ctx, ins);
2174 }
2175
2176 /* Perform the actual fragment writeout. We have two writeout/branch
2177 * instructions, forming a loop until writeout is successful as per the
2178 * docs. TODO: gl_FragDepth */
2179
2180 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2181 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2182 }
2183
2184 static midgard_block *
2185 emit_block(compiler_context *ctx, nir_block *block)
2186 {
2187 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2188 list_addtail(&this_block->link, &ctx->blocks);
2189
2190 this_block->is_scheduled = false;
2191 ++ctx->block_count;
2192
2193 ctx->texture_index[0] = -1;
2194 ctx->texture_index[1] = -1;
2195
2196 /* Add us as a successor to the block we are following */
2197 if (ctx->current_block)
2198 midgard_block_add_successor(ctx->current_block, this_block);
2199
2200 /* Set up current block */
2201 list_inithead(&this_block->instructions);
2202 ctx->current_block = this_block;
2203
2204 nir_foreach_instr(instr, block) {
2205 emit_instr(ctx, instr);
2206 ++ctx->instruction_count;
2207 }
2208
2209 inline_alu_constants(ctx);
2210 embedded_to_inline_constant(ctx);
2211
2212 /* Append fragment shader epilogue (value writeout) */
2213 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2214 if (block == nir_impl_last_block(ctx->func->impl)) {
2215 emit_fragment_epilogue(ctx);
2216 }
2217 }
2218
2219 if (block == nir_start_block(ctx->func->impl))
2220 ctx->initial_block = this_block;
2221
2222 if (block == nir_impl_last_block(ctx->func->impl))
2223 ctx->final_block = this_block;
2224
2225 /* Allow the next control flow to access us retroactively, for
2226 * branching etc */
2227 ctx->current_block = this_block;
2228
2229 /* Document the fallthrough chain */
2230 ctx->previous_source_block = this_block;
2231
2232 return this_block;
2233 }
2234
2235 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2236
2237 static void
2238 emit_if(struct compiler_context *ctx, nir_if *nif)
2239 {
2240 /* Conditional branches expect the condition in r31.w; emit a move for
2241 * that in the _previous_ block (which is the current block). */
2242 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2243
2244 /* Speculatively emit the branch, but we can't fill it in until later */
2245 EMIT(branch, true, true);
2246 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2247
2248 /* Emit the two subblocks */
2249 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2250
2251 /* Emit a jump from the end of the then block to the end of the else */
2252 EMIT(branch, false, false);
2253 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2254
2255 /* Emit second block, and check if it's empty */
2256
2257 int else_idx = ctx->block_count;
2258 int count_in = ctx->instruction_count;
2259 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2260 int after_else_idx = ctx->block_count;
2261
2262 /* Now that we have the subblocks emitted, fix up the branches */
2263
2264 assert(then_block);
2265 assert(else_block);
2266
2267 if (ctx->instruction_count == count_in) {
2268 /* The else block is empty, so don't emit an exit jump */
2269 mir_remove_instruction(then_exit);
2270 then_branch->branch.target_block = after_else_idx;
2271 } else {
2272 then_branch->branch.target_block = else_idx;
2273 then_exit->branch.target_block = after_else_idx;
2274 }
2275 }
2276
2277 static void
2278 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2279 {
2280 /* Remember where we are */
2281 midgard_block *start_block = ctx->current_block;
2282
2283 /* Allocate a loop number, growing the current inner loop depth */
2284 int loop_idx = ++ctx->current_loop_depth;
2285
2286 /* Get index from before the body so we can loop back later */
2287 int start_idx = ctx->block_count;
2288
2289 /* Emit the body itself */
2290 emit_cf_list(ctx, &nloop->body);
2291
2292 /* Branch back to loop back */
2293 struct midgard_instruction br_back = v_branch(false, false);
2294 br_back.branch.target_block = start_idx;
2295 emit_mir_instruction(ctx, br_back);
2296
2297 /* Mark down that branch in the graph. Note that we're really branching
2298 * to the block *after* we started in. TODO: Why doesn't the branch
2299 * itself have an off-by-one then...? */
2300 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2301
2302 /* Find the index of the block about to follow us (note: we don't add
2303 * one; blocks are 0-indexed so we get a fencepost problem) */
2304 int break_block_idx = ctx->block_count;
2305
2306 /* Fix up the break statements we emitted to point to the right place,
2307 * now that we can allocate a block number for them */
2308
2309 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2310 mir_foreach_instr_in_block(block, ins) {
2311 if (ins->type != TAG_ALU_4) continue;
2312 if (!ins->compact_branch) continue;
2313 if (ins->prepacked_branch) continue;
2314
2315 /* We found a branch -- check the type to see if we need to do anything */
2316 if (ins->branch.target_type != TARGET_BREAK) continue;
2317
2318 /* It's a break! Check if it's our break */
2319 if (ins->branch.target_break != loop_idx) continue;
2320
2321 /* Okay, cool, we're breaking out of this loop.
2322 * Rewrite from a break to a goto */
2323
2324 ins->branch.target_type = TARGET_GOTO;
2325 ins->branch.target_block = break_block_idx;
2326 }
2327 }
2328
2329 /* Now that we've finished emitting the loop, free up the depth again
2330 * so we play nice with recursion amid nested loops */
2331 --ctx->current_loop_depth;
2332
2333 /* Dump loop stats */
2334 ++ctx->loop_count;
2335 }
2336
2337 static midgard_block *
2338 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2339 {
2340 midgard_block *start_block = NULL;
2341
2342 foreach_list_typed(nir_cf_node, node, node, list) {
2343 switch (node->type) {
2344 case nir_cf_node_block: {
2345 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2346
2347 if (!start_block)
2348 start_block = block;
2349
2350 break;
2351 }
2352
2353 case nir_cf_node_if:
2354 emit_if(ctx, nir_cf_node_as_if(node));
2355 break;
2356
2357 case nir_cf_node_loop:
2358 emit_loop(ctx, nir_cf_node_as_loop(node));
2359 break;
2360
2361 case nir_cf_node_function:
2362 assert(0);
2363 break;
2364 }
2365 }
2366
2367 return start_block;
2368 }
2369
2370 /* Due to lookahead, we need to report the first tag executed in the command
2371 * stream and in branch targets. An initial block might be empty, so iterate
2372 * until we find one that 'works' */
2373
2374 static unsigned
2375 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2376 {
2377 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2378
2379 unsigned first_tag = 0;
2380
2381 do {
2382 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2383
2384 if (initial_bundle) {
2385 first_tag = initial_bundle->tag;
2386 break;
2387 }
2388
2389 /* Initial block is empty, try the next block */
2390 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2391 } while(initial_block != NULL);
2392
2393 assert(first_tag);
2394 return first_tag;
2395 }
2396
2397 int
2398 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2399 {
2400 struct util_dynarray *compiled = &program->compiled;
2401
2402 midgard_debug = debug_get_option_midgard_debug();
2403
2404 compiler_context ictx = {
2405 .nir = nir,
2406 .stage = nir->info.stage,
2407
2408 .is_blend = is_blend,
2409 .blend_constant_offset = 0,
2410
2411 .alpha_ref = program->alpha_ref
2412 };
2413
2414 compiler_context *ctx = &ictx;
2415
2416 /* Start off with a safe cutoff, allowing usage of all 16 work
2417 * registers. Later, we'll promote uniform reads to uniform registers
2418 * if we determine it is beneficial to do so */
2419 ctx->uniform_cutoff = 8;
2420
2421 /* Initialize at a global (not block) level hash tables */
2422
2423 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2424 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2425 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2426
2427 /* Record the varying mapping for the command stream's bookkeeping */
2428
2429 struct exec_list *varyings =
2430 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2431
2432 unsigned max_varying = 0;
2433 nir_foreach_variable(var, varyings) {
2434 unsigned loc = var->data.driver_location;
2435 unsigned sz = glsl_type_size(var->type, FALSE);
2436
2437 for (int c = 0; c < sz; ++c) {
2438 program->varyings[loc + c] = var->data.location + c;
2439 max_varying = MAX2(max_varying, loc + c);
2440 }
2441 }
2442
2443 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2444 * (so we don't accidentally duplicate the epilogue since mesa/st has
2445 * messed with our I/O quite a bit already) */
2446
2447 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2448
2449 if (ctx->stage == MESA_SHADER_VERTEX) {
2450 NIR_PASS_V(nir, nir_lower_viewport_transform);
2451 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2452 }
2453
2454 NIR_PASS_V(nir, nir_lower_var_copies);
2455 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2456 NIR_PASS_V(nir, nir_split_var_copies);
2457 NIR_PASS_V(nir, nir_lower_var_copies);
2458 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2459 NIR_PASS_V(nir, nir_lower_var_copies);
2460 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2461
2462 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2463
2464 /* Optimisation passes */
2465
2466 optimise_nir(nir);
2467
2468 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2469 nir_print_shader(nir, stdout);
2470 }
2471
2472 /* Assign sysvals and counts, now that we're sure
2473 * (post-optimisation) */
2474
2475 midgard_nir_assign_sysvals(ctx, nir);
2476
2477 program->uniform_count = nir->num_uniforms;
2478 program->sysval_count = ctx->sysval_count;
2479 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2480
2481 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2482 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2483
2484 nir_foreach_function(func, nir) {
2485 if (!func->impl)
2486 continue;
2487
2488 list_inithead(&ctx->blocks);
2489 ctx->block_count = 0;
2490 ctx->func = func;
2491
2492 emit_cf_list(ctx, &func->impl->body);
2493 emit_block(ctx, func->impl->end_block);
2494
2495 break; /* TODO: Multi-function shaders */
2496 }
2497
2498 util_dynarray_init(compiled, NULL);
2499
2500 /* MIR-level optimizations */
2501
2502 bool progress = false;
2503
2504 do {
2505 progress = false;
2506
2507 mir_foreach_block(ctx, block) {
2508 progress |= midgard_opt_pos_propagate(ctx, block);
2509 progress |= midgard_opt_copy_prop(ctx, block);
2510 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2511 }
2512 } while (progress);
2513
2514 /* Nested control-flow can result in dead branches at the end of the
2515 * block. This messes with our analysis and is just dead code, so cull
2516 * them */
2517 mir_foreach_block(ctx, block) {
2518 midgard_opt_cull_dead_branch(ctx, block);
2519 }
2520
2521 /* Schedule! */
2522 schedule_program(ctx);
2523
2524 /* Now that all the bundles are scheduled and we can calculate block
2525 * sizes, emit actual branch instructions rather than placeholders */
2526
2527 int br_block_idx = 0;
2528
2529 mir_foreach_block(ctx, block) {
2530 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2531 for (int c = 0; c < bundle->instruction_count; ++c) {
2532 midgard_instruction *ins = bundle->instructions[c];
2533
2534 if (!midgard_is_branch_unit(ins->unit)) continue;
2535
2536 if (ins->prepacked_branch) continue;
2537
2538 /* Parse some basic branch info */
2539 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2540 bool is_conditional = ins->branch.conditional;
2541 bool is_inverted = ins->branch.invert_conditional;
2542 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2543
2544 /* Determine the block we're jumping to */
2545 int target_number = ins->branch.target_block;
2546
2547 /* Report the destination tag */
2548 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2549
2550 /* Count up the number of quadwords we're
2551 * jumping over = number of quadwords until
2552 * (br_block_idx, target_number) */
2553
2554 int quadword_offset = 0;
2555
2556 if (is_discard) {
2557 /* Jump to the end of the shader. We
2558 * need to include not only the
2559 * following blocks, but also the
2560 * contents of our current block (since
2561 * discard can come in the middle of
2562 * the block) */
2563
2564 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2565
2566 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2567 quadword_offset += quadword_size(bun->tag);
2568 }
2569
2570 mir_foreach_block_from(ctx, blk, b) {
2571 quadword_offset += b->quadword_count;
2572 }
2573
2574 } else if (target_number > br_block_idx) {
2575 /* Jump forward */
2576
2577 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2578 midgard_block *blk = mir_get_block(ctx, idx);
2579 assert(blk);
2580
2581 quadword_offset += blk->quadword_count;
2582 }
2583 } else {
2584 /* Jump backwards */
2585
2586 for (int idx = br_block_idx; idx >= target_number; --idx) {
2587 midgard_block *blk = mir_get_block(ctx, idx);
2588 assert(blk);
2589
2590 quadword_offset -= blk->quadword_count;
2591 }
2592 }
2593
2594 /* Unconditional extended branches (far jumps)
2595 * have issues, so we always use a conditional
2596 * branch, setting the condition to always for
2597 * unconditional. For compact unconditional
2598 * branches, cond isn't used so it doesn't
2599 * matter what we pick. */
2600
2601 midgard_condition cond =
2602 !is_conditional ? midgard_condition_always :
2603 is_inverted ? midgard_condition_false :
2604 midgard_condition_true;
2605
2606 midgard_jmp_writeout_op op =
2607 is_discard ? midgard_jmp_writeout_op_discard :
2608 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2609 midgard_jmp_writeout_op_branch_cond;
2610
2611 if (!is_compact) {
2612 midgard_branch_extended branch =
2613 midgard_create_branch_extended(
2614 cond, op,
2615 dest_tag,
2616 quadword_offset);
2617
2618 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2619 } else if (is_conditional || is_discard) {
2620 midgard_branch_cond branch = {
2621 .op = op,
2622 .dest_tag = dest_tag,
2623 .offset = quadword_offset,
2624 .cond = cond
2625 };
2626
2627 assert(branch.offset == quadword_offset);
2628
2629 memcpy(&ins->br_compact, &branch, sizeof(branch));
2630 } else {
2631 assert(op == midgard_jmp_writeout_op_branch_uncond);
2632
2633 midgard_branch_uncond branch = {
2634 .op = op,
2635 .dest_tag = dest_tag,
2636 .offset = quadword_offset,
2637 .unknown = 1
2638 };
2639
2640 assert(branch.offset == quadword_offset);
2641
2642 memcpy(&ins->br_compact, &branch, sizeof(branch));
2643 }
2644 }
2645 }
2646
2647 ++br_block_idx;
2648 }
2649
2650 /* Emit flat binary from the instruction arrays. Iterate each block in
2651 * sequence. Save instruction boundaries such that lookahead tags can
2652 * be assigned easily */
2653
2654 /* Cache _all_ bundles in source order for lookahead across failed branches */
2655
2656 int bundle_count = 0;
2657 mir_foreach_block(ctx, block) {
2658 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2659 }
2660 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2661 int bundle_idx = 0;
2662 mir_foreach_block(ctx, block) {
2663 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2664 source_order_bundles[bundle_idx++] = bundle;
2665 }
2666 }
2667
2668 int current_bundle = 0;
2669
2670 /* Midgard prefetches instruction types, so during emission we
2671 * need to lookahead. Unless this is the last instruction, in
2672 * which we return 1. Or if this is the second to last and the
2673 * last is an ALU, then it's also 1... */
2674
2675 mir_foreach_block(ctx, block) {
2676 mir_foreach_bundle_in_block(block, bundle) {
2677 int lookahead = 1;
2678
2679 if (current_bundle + 1 < bundle_count) {
2680 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2681
2682 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2683 lookahead = 1;
2684 } else {
2685 lookahead = next;
2686 }
2687 }
2688
2689 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2690 ++current_bundle;
2691 }
2692
2693 /* TODO: Free deeper */
2694 //util_dynarray_fini(&block->instructions);
2695 }
2696
2697 free(source_order_bundles);
2698
2699 /* Report the very first tag executed */
2700 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2701
2702 /* Deal with off-by-one related to the fencepost problem */
2703 program->work_register_count = ctx->work_registers + 1;
2704
2705 program->can_discard = ctx->can_discard;
2706 program->uniform_cutoff = ctx->uniform_cutoff;
2707
2708 program->blend_patch_offset = ctx->blend_constant_offset;
2709 program->tls_size = ctx->tls_size;
2710
2711 if (midgard_debug & MIDGARD_DBG_SHADERS)
2712 disassemble_midgard(program->compiled.data, program->compiled.size);
2713
2714 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2715 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2716
2717 /* Count instructions and bundles */
2718
2719 mir_foreach_instr_global(ctx, ins) {
2720 nr_ins++;
2721 }
2722
2723 mir_foreach_block(ctx, block) {
2724 nr_bundles += util_dynarray_num_elements(
2725 &block->bundles, midgard_bundle);
2726
2727 nr_quadwords += block->quadword_count;
2728 }
2729
2730 /* Calculate thread count. There are certain cutoffs by
2731 * register count for thread count */
2732
2733 unsigned nr_registers = program->work_register_count;
2734
2735 unsigned nr_threads =
2736 (nr_registers <= 4) ? 4 :
2737 (nr_registers <= 8) ? 2 :
2738 1;
2739
2740 /* Dump stats */
2741
2742 fprintf(stderr, "shader%d - %s shader: "
2743 "%u inst, %u bundles, %u quadwords, "
2744 "%u registers, %u threads, %u loops, "
2745 "%d:%d spills:fills\n",
2746 SHADER_DB_COUNT++,
2747 gl_shader_stage_name(ctx->stage),
2748 nr_ins, nr_bundles, nr_quadwords,
2749 nr_registers, nr_threads,
2750 ctx->loop_count,
2751 ctx->spills, ctx->fills);
2752 }
2753
2754
2755 return 0;
2756 }