pan/midgard: Identify UBO/SSBO op symmetry
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 assert(block);
82 assert(successor);
83
84 /* Deduplicate */
85 for (unsigned i = 0; i < block->nr_successors; ++i) {
86 if (block->successors[i] == successor)
87 return;
88 }
89
90 block->successors[block->nr_successors++] = successor;
91 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
92 }
93
94 /* Helpers to generate midgard_instruction's using macro magic, since every
95 * driver seems to do it that way */
96
97 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
98
99 #define M_LOAD_STORE(name, store) \
100 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
101 midgard_instruction i = { \
102 .type = TAG_LOAD_STORE_4, \
103 .mask = 0xF, \
104 .ssa_args = { \
105 .dest = -1, \
106 .src = { -1, -1, -1 }, \
107 }, \
108 .load_store = { \
109 .op = midgard_op_##name, \
110 .swizzle = SWIZZLE_XYZW, \
111 .address = address \
112 } \
113 }; \
114 \
115 if (store) \
116 i.ssa_args.src[0] = ssa; \
117 else \
118 i.ssa_args.dest = ssa; \
119 \
120 return i; \
121 }
122
123 #define M_LOAD(name) M_LOAD_STORE(name, false)
124 #define M_STORE(name) M_LOAD_STORE(name, true)
125
126 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
127 * the corresponding Midgard source */
128
129 static midgard_vector_alu_src
130 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
131 bool half, bool sext)
132 {
133 if (!src) return blank_alu_src;
134
135 /* Figure out how many components there are so we can adjust the
136 * swizzle. Specifically we want to broadcast the last channel so
137 * things like ball2/3 work
138 */
139
140 if (broadcast_count) {
141 uint8_t last_component = src->swizzle[broadcast_count - 1];
142
143 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
144 src->swizzle[c] = last_component;
145 }
146 }
147
148 midgard_vector_alu_src alu_src = {
149 .rep_low = 0,
150 .rep_high = 0,
151 .half = half,
152 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
153 };
154
155 if (is_int) {
156 alu_src.mod = midgard_int_normal;
157
158 /* Sign/zero-extend if needed */
159
160 if (half) {
161 alu_src.mod = sext ?
162 midgard_int_sign_extend
163 : midgard_int_zero_extend;
164 }
165
166 /* These should have been lowered away */
167 assert(!(src->abs || src->negate));
168 } else {
169 alu_src.mod = (src->abs << 0) | (src->negate << 1);
170 }
171
172 return alu_src;
173 }
174
175 /* load/store instructions have both 32-bit and 16-bit variants, depending on
176 * whether we are using vectors composed of highp or mediump. At the moment, we
177 * don't support half-floats -- this requires changes in other parts of the
178 * compiler -- therefore the 16-bit versions are commented out. */
179
180 //M_LOAD(ld_attr_16);
181 M_LOAD(ld_attr_32);
182 //M_LOAD(ld_vary_16);
183 M_LOAD(ld_vary_32);
184 M_LOAD(ld_ubo_int4);
185 M_LOAD(ld_int4);
186 M_STORE(st_int4);
187 M_LOAD(ld_color_buffer_8);
188 //M_STORE(st_vary_16);
189 M_STORE(st_vary_32);
190 M_LOAD(st_cubemap_coords);
191 M_LOAD(ld_compute_id);
192
193 static midgard_instruction
194 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
195 {
196 midgard_branch_cond branch = {
197 .op = op,
198 .dest_tag = tag,
199 .offset = offset,
200 .cond = cond
201 };
202
203 uint16_t compact;
204 memcpy(&compact, &branch, sizeof(branch));
205
206 midgard_instruction ins = {
207 .type = TAG_ALU_4,
208 .unit = ALU_ENAB_BR_COMPACT,
209 .prepacked_branch = true,
210 .compact_branch = true,
211 .br_compact = compact,
212 .ssa_args = {
213 .dest = -1,
214 .src = { -1, -1, -1 },
215 }
216 };
217
218 if (op == midgard_jmp_writeout_op_writeout)
219 ins.writeout = true;
220
221 return ins;
222 }
223
224 static midgard_instruction
225 v_branch(bool conditional, bool invert)
226 {
227 midgard_instruction ins = {
228 .type = TAG_ALU_4,
229 .unit = ALU_ENAB_BRANCH,
230 .compact_branch = true,
231 .branch = {
232 .conditional = conditional,
233 .invert_conditional = invert
234 },
235 .ssa_args = {
236 .dest = -1,
237 .src = { -1, -1, -1 },
238 }
239 };
240
241 return ins;
242 }
243
244 static midgard_branch_extended
245 midgard_create_branch_extended( midgard_condition cond,
246 midgard_jmp_writeout_op op,
247 unsigned dest_tag,
248 signed quadword_offset)
249 {
250 /* The condition code is actually a LUT describing a function to
251 * combine multiple condition codes. However, we only support a single
252 * condition code at the moment, so we just duplicate over a bunch of
253 * times. */
254
255 uint16_t duplicated_cond =
256 (cond << 14) |
257 (cond << 12) |
258 (cond << 10) |
259 (cond << 8) |
260 (cond << 6) |
261 (cond << 4) |
262 (cond << 2) |
263 (cond << 0);
264
265 midgard_branch_extended branch = {
266 .op = op,
267 .dest_tag = dest_tag,
268 .offset = quadword_offset,
269 .cond = duplicated_cond
270 };
271
272 return branch;
273 }
274
275 static void
276 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
277 {
278 ins->has_constants = true;
279 memcpy(&ins->constants, constants, 16);
280 }
281
282 static int
283 glsl_type_size(const struct glsl_type *type, bool bindless)
284 {
285 return glsl_count_attribute_slots(type, false);
286 }
287
288 /* Lower fdot2 to a vector multiplication followed by channel addition */
289 static void
290 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
291 {
292 if (alu->op != nir_op_fdot2)
293 return;
294
295 b->cursor = nir_before_instr(&alu->instr);
296
297 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
298 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
299
300 nir_ssa_def *product = nir_fmul(b, src0, src1);
301
302 nir_ssa_def *sum = nir_fadd(b,
303 nir_channel(b, product, 0),
304 nir_channel(b, product, 1));
305
306 /* Replace the fdot2 with this sum */
307 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
308 }
309
310 static int
311 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
312 {
313 /* This is way too meta */
314 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
315 unsigned idx_idx = is_store ? 1 : 0;
316
317 nir_src index = instr->src[idx_idx];
318 assert(nir_src_is_const(index));
319 uint32_t uindex = nir_src_as_uint(index);
320
321 return PAN_SYSVAL(SSBO, uindex);
322 }
323
324 static int
325 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
326 {
327 switch (instr->intrinsic) {
328 case nir_intrinsic_load_viewport_scale:
329 return PAN_SYSVAL_VIEWPORT_SCALE;
330 case nir_intrinsic_load_viewport_offset:
331 return PAN_SYSVAL_VIEWPORT_OFFSET;
332 case nir_intrinsic_load_num_work_groups:
333 return PAN_SYSVAL_NUM_WORK_GROUPS;
334 case nir_intrinsic_load_ssbo:
335 case nir_intrinsic_store_ssbo:
336 return midgard_sysval_for_ssbo(instr);
337 default:
338 return -1;
339 }
340 }
341
342 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
343 unsigned *dest)
344 {
345 nir_intrinsic_instr *intr;
346 nir_dest *dst = NULL;
347 nir_tex_instr *tex;
348 int sysval = -1;
349
350 bool is_store = false;
351
352 switch (instr->type) {
353 case nir_instr_type_intrinsic:
354 intr = nir_instr_as_intrinsic(instr);
355 sysval = midgard_nir_sysval_for_intrinsic(intr);
356 dst = &intr->dest;
357 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
358 break;
359 case nir_instr_type_tex:
360 tex = nir_instr_as_tex(instr);
361 if (tex->op != nir_texop_txs)
362 break;
363
364 sysval = PAN_SYSVAL(TEXTURE_SIZE,
365 PAN_TXS_SYSVAL_ID(tex->texture_index,
366 nir_tex_instr_dest_size(tex) -
367 (tex->is_array ? 1 : 0),
368 tex->is_array));
369 dst = &tex->dest;
370 break;
371 default:
372 break;
373 }
374
375 if (dest && dst && !is_store)
376 *dest = nir_dest_index(ctx, dst);
377
378 return sysval;
379 }
380
381 static void
382 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
383 {
384 int sysval;
385
386 sysval = sysval_for_instr(ctx, instr, NULL);
387 if (sysval < 0)
388 return;
389
390 /* We have a sysval load; check if it's already been assigned */
391
392 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
393 return;
394
395 /* It hasn't -- so assign it now! */
396
397 unsigned id = ctx->sysval_count++;
398 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
399 ctx->sysvals[id] = sysval;
400 }
401
402 static void
403 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
404 {
405 ctx->sysval_count = 0;
406
407 nir_foreach_function(function, shader) {
408 if (!function->impl) continue;
409
410 nir_foreach_block(block, function->impl) {
411 nir_foreach_instr_safe(instr, block) {
412 midgard_nir_assign_sysval_body(ctx, instr);
413 }
414 }
415 }
416 }
417
418 static bool
419 midgard_nir_lower_fdot2(nir_shader *shader)
420 {
421 bool progress = false;
422
423 nir_foreach_function(function, shader) {
424 if (!function->impl) continue;
425
426 nir_builder _b;
427 nir_builder *b = &_b;
428 nir_builder_init(b, function->impl);
429
430 nir_foreach_block(block, function->impl) {
431 nir_foreach_instr_safe(instr, block) {
432 if (instr->type != nir_instr_type_alu) continue;
433
434 nir_alu_instr *alu = nir_instr_as_alu(instr);
435 midgard_nir_lower_fdot2_body(b, alu);
436
437 progress |= true;
438 }
439 }
440
441 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
442
443 }
444
445 return progress;
446 }
447
448 /* Flushes undefined values to zero */
449
450 static void
451 optimise_nir(nir_shader *nir)
452 {
453 bool progress;
454 unsigned lower_flrp =
455 (nir->options->lower_flrp16 ? 16 : 0) |
456 (nir->options->lower_flrp32 ? 32 : 0) |
457 (nir->options->lower_flrp64 ? 64 : 0);
458
459 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
460 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
461 NIR_PASS(progress, nir, nir_lower_idiv);
462
463 nir_lower_tex_options lower_tex_1st_pass_options = {
464 .lower_rect = true,
465 .lower_txp = ~0
466 };
467
468 nir_lower_tex_options lower_tex_2nd_pass_options = {
469 .lower_txs_lod = true,
470 };
471
472 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
473 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
474
475 do {
476 progress = false;
477
478 NIR_PASS(progress, nir, nir_lower_var_copies);
479 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
480
481 NIR_PASS(progress, nir, nir_copy_prop);
482 NIR_PASS(progress, nir, nir_opt_dce);
483 NIR_PASS(progress, nir, nir_opt_dead_cf);
484 NIR_PASS(progress, nir, nir_opt_cse);
485 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
486 NIR_PASS(progress, nir, nir_opt_algebraic);
487 NIR_PASS(progress, nir, nir_opt_constant_folding);
488
489 if (lower_flrp != 0) {
490 bool lower_flrp_progress = false;
491 NIR_PASS(lower_flrp_progress,
492 nir,
493 nir_lower_flrp,
494 lower_flrp,
495 false /* always_precise */,
496 nir->options->lower_ffma);
497 if (lower_flrp_progress) {
498 NIR_PASS(progress, nir,
499 nir_opt_constant_folding);
500 progress = true;
501 }
502
503 /* Nothing should rematerialize any flrps, so we only
504 * need to do this lowering once.
505 */
506 lower_flrp = 0;
507 }
508
509 NIR_PASS(progress, nir, nir_opt_undef);
510 NIR_PASS(progress, nir, nir_undef_to_zero);
511
512 NIR_PASS(progress, nir, nir_opt_loop_unroll,
513 nir_var_shader_in |
514 nir_var_shader_out |
515 nir_var_function_temp);
516
517 NIR_PASS(progress, nir, nir_opt_vectorize);
518 } while (progress);
519
520 /* Must be run at the end to prevent creation of fsin/fcos ops */
521 NIR_PASS(progress, nir, midgard_nir_scale_trig);
522
523 do {
524 progress = false;
525
526 NIR_PASS(progress, nir, nir_opt_dce);
527 NIR_PASS(progress, nir, nir_opt_algebraic);
528 NIR_PASS(progress, nir, nir_opt_constant_folding);
529 NIR_PASS(progress, nir, nir_copy_prop);
530 } while (progress);
531
532 NIR_PASS(progress, nir, nir_opt_algebraic_late);
533
534 /* We implement booleans as 32-bit 0/~0 */
535 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
536
537 /* Now that booleans are lowered, we can run out late opts */
538 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
539
540 /* Lower mods for float ops only. Integer ops don't support modifiers
541 * (saturate doesn't make sense on integers, neg/abs require dedicated
542 * instructions) */
543
544 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
545 NIR_PASS(progress, nir, nir_copy_prop);
546 NIR_PASS(progress, nir, nir_opt_dce);
547
548 /* Take us out of SSA */
549 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
550 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
551
552 /* We are a vector architecture; write combine where possible */
553 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
554 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
555
556 NIR_PASS(progress, nir, nir_opt_dce);
557 }
558
559 /* Do not actually emit a load; instead, cache the constant for inlining */
560
561 static void
562 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
563 {
564 nir_ssa_def def = instr->def;
565
566 float *v = rzalloc_array(NULL, float, 4);
567 nir_const_load_to_arr(v, instr, f32);
568
569 /* Shifted for SSA, +1 for off-by-one */
570 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
571 }
572
573 /* Normally constants are embedded implicitly, but for I/O and such we have to
574 * explicitly emit a move with the constant source */
575
576 static void
577 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
578 {
579 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
580
581 if (constant_value) {
582 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
583 attach_constants(ctx, &ins, constant_value, node + 1);
584 emit_mir_instruction(ctx, ins);
585 }
586 }
587
588 static bool
589 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
590 {
591 unsigned comp = src->swizzle[0];
592
593 for (unsigned c = 1; c < nr_components; ++c) {
594 if (src->swizzle[c] != comp)
595 return true;
596 }
597
598 return false;
599 }
600
601 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
602 * output of a conditional test) into that register */
603
604 static void
605 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
606 {
607 int condition = nir_src_index(ctx, src);
608
609 /* Source to swizzle the desired component into w */
610
611 const midgard_vector_alu_src alu_src = {
612 .swizzle = SWIZZLE(component, component, component, component),
613 };
614
615 /* There is no boolean move instruction. Instead, we simulate a move by
616 * ANDing the condition with itself to get it into r31.w */
617
618 midgard_instruction ins = {
619 .type = TAG_ALU_4,
620
621 /* We need to set the conditional as close as possible */
622 .precede_break = true,
623 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
624 .mask = 1 << COMPONENT_W,
625
626 .ssa_args = {
627 .src = { condition, condition, -1 },
628 .dest = SSA_FIXED_REGISTER(31),
629 },
630
631 .alu = {
632 .op = midgard_alu_op_iand,
633 .outmod = midgard_outmod_int_wrap,
634 .reg_mode = midgard_reg_mode_32,
635 .dest_override = midgard_dest_override_none,
636 .src1 = vector_alu_srco_unsigned(alu_src),
637 .src2 = vector_alu_srco_unsigned(alu_src)
638 },
639 };
640
641 emit_mir_instruction(ctx, ins);
642 }
643
644 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
645 * r31 instead */
646
647 static void
648 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
649 {
650 int condition = nir_src_index(ctx, &src->src);
651
652 /* Source to swizzle the desired component into w */
653
654 const midgard_vector_alu_src alu_src = {
655 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
656 };
657
658 /* There is no boolean move instruction. Instead, we simulate a move by
659 * ANDing the condition with itself to get it into r31.w */
660
661 midgard_instruction ins = {
662 .type = TAG_ALU_4,
663 .precede_break = true,
664 .mask = mask_of(nr_comp),
665 .ssa_args = {
666 .src = { condition, condition, -1 },
667 .dest = SSA_FIXED_REGISTER(31),
668 },
669 .alu = {
670 .op = midgard_alu_op_iand,
671 .outmod = midgard_outmod_int_wrap,
672 .reg_mode = midgard_reg_mode_32,
673 .dest_override = midgard_dest_override_none,
674 .src1 = vector_alu_srco_unsigned(alu_src),
675 .src2 = vector_alu_srco_unsigned(alu_src)
676 },
677 };
678
679 emit_mir_instruction(ctx, ins);
680 }
681
682 #define ALU_CASE(nir, _op) \
683 case nir_op_##nir: \
684 op = midgard_alu_op_##_op; \
685 assert(src_bitsize == dst_bitsize); \
686 break;
687
688 #define ALU_CASE_BCAST(nir, _op, count) \
689 case nir_op_##nir: \
690 op = midgard_alu_op_##_op; \
691 broadcast_swizzle = count; \
692 assert(src_bitsize == dst_bitsize); \
693 break;
694 static bool
695 nir_is_fzero_constant(nir_src src)
696 {
697 if (!nir_src_is_const(src))
698 return false;
699
700 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
701 if (nir_src_comp_as_float(src, c) != 0.0)
702 return false;
703 }
704
705 return true;
706 }
707
708 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
709 * special treatment override this anyway. */
710
711 static midgard_reg_mode
712 reg_mode_for_nir(nir_alu_instr *instr)
713 {
714 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
715
716 switch (src_bitsize) {
717 case 8:
718 return midgard_reg_mode_8;
719 case 16:
720 return midgard_reg_mode_16;
721 case 32:
722 return midgard_reg_mode_32;
723 case 64:
724 return midgard_reg_mode_64;
725 default:
726 unreachable("Invalid bit size");
727 }
728 }
729
730 static void
731 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
732 {
733 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
734 * is handled elsewhere */
735
736 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
737 midgard_emit_derivatives(ctx, instr);
738 return;
739 }
740
741 bool is_ssa = instr->dest.dest.is_ssa;
742
743 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
744 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
745 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
746
747 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
748 * supported. A few do not and are commented for now. Also, there are a
749 * number of NIR ops which Midgard does not support and need to be
750 * lowered, also TODO. This switch block emits the opcode and calling
751 * convention of the Midgard instruction; actual packing is done in
752 * emit_alu below */
753
754 unsigned op;
755
756 /* Number of components valid to check for the instruction (the rest
757 * will be forced to the last), or 0 to use as-is. Relevant as
758 * ball-type instructions have a channel count in NIR but are all vec4
759 * in Midgard */
760
761 unsigned broadcast_swizzle = 0;
762
763 /* What register mode should we operate in? */
764 midgard_reg_mode reg_mode =
765 reg_mode_for_nir(instr);
766
767 /* Do we need a destination override? Used for inline
768 * type conversion */
769
770 midgard_dest_override dest_override =
771 midgard_dest_override_none;
772
773 /* Should we use a smaller respective source and sign-extend? */
774
775 bool half_1 = false, sext_1 = false;
776 bool half_2 = false, sext_2 = false;
777
778 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
779 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
780
781 switch (instr->op) {
782 ALU_CASE(fadd, fadd);
783 ALU_CASE(fmul, fmul);
784 ALU_CASE(fmin, fmin);
785 ALU_CASE(fmax, fmax);
786 ALU_CASE(imin, imin);
787 ALU_CASE(imax, imax);
788 ALU_CASE(umin, umin);
789 ALU_CASE(umax, umax);
790 ALU_CASE(ffloor, ffloor);
791 ALU_CASE(fround_even, froundeven);
792 ALU_CASE(ftrunc, ftrunc);
793 ALU_CASE(fceil, fceil);
794 ALU_CASE(fdot3, fdot3);
795 ALU_CASE(fdot4, fdot4);
796 ALU_CASE(iadd, iadd);
797 ALU_CASE(isub, isub);
798 ALU_CASE(imul, imul);
799
800 /* Zero shoved as second-arg */
801 ALU_CASE(iabs, iabsdiff);
802
803 ALU_CASE(mov, imov);
804
805 ALU_CASE(feq32, feq);
806 ALU_CASE(fne32, fne);
807 ALU_CASE(flt32, flt);
808 ALU_CASE(ieq32, ieq);
809 ALU_CASE(ine32, ine);
810 ALU_CASE(ilt32, ilt);
811 ALU_CASE(ult32, ult);
812
813 /* We don't have a native b2f32 instruction. Instead, like many
814 * GPUs, we exploit booleans as 0/~0 for false/true, and
815 * correspondingly AND
816 * by 1.0 to do the type conversion. For the moment, prime us
817 * to emit:
818 *
819 * iand [whatever], #0
820 *
821 * At the end of emit_alu (as MIR), we'll fix-up the constant
822 */
823
824 ALU_CASE(b2f32, iand);
825 ALU_CASE(b2i32, iand);
826
827 /* Likewise, we don't have a dedicated f2b32 instruction, but
828 * we can do a "not equal to 0.0" test. */
829
830 ALU_CASE(f2b32, fne);
831 ALU_CASE(i2b32, ine);
832
833 ALU_CASE(frcp, frcp);
834 ALU_CASE(frsq, frsqrt);
835 ALU_CASE(fsqrt, fsqrt);
836 ALU_CASE(fexp2, fexp2);
837 ALU_CASE(flog2, flog2);
838
839 ALU_CASE(f2i32, f2i_rtz);
840 ALU_CASE(f2u32, f2u_rtz);
841 ALU_CASE(i2f32, i2f_rtz);
842 ALU_CASE(u2f32, u2f_rtz);
843
844 ALU_CASE(f2i16, f2i_rtz);
845 ALU_CASE(f2u16, f2u_rtz);
846 ALU_CASE(i2f16, i2f_rtz);
847 ALU_CASE(u2f16, u2f_rtz);
848
849 ALU_CASE(fsin, fsin);
850 ALU_CASE(fcos, fcos);
851
852 /* We'll set invert */
853 ALU_CASE(inot, imov);
854 ALU_CASE(iand, iand);
855 ALU_CASE(ior, ior);
856 ALU_CASE(ixor, ixor);
857 ALU_CASE(ishl, ishl);
858 ALU_CASE(ishr, iasr);
859 ALU_CASE(ushr, ilsr);
860
861 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
862 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
863 ALU_CASE(b32all_fequal4, fball_eq);
864
865 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
866 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
867 ALU_CASE(b32any_fnequal4, fbany_neq);
868
869 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
870 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
871 ALU_CASE(b32all_iequal4, iball_eq);
872
873 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
874 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
875 ALU_CASE(b32any_inequal4, ibany_neq);
876
877 /* Source mods will be shoved in later */
878 ALU_CASE(fabs, fmov);
879 ALU_CASE(fneg, fmov);
880 ALU_CASE(fsat, fmov);
881
882 /* For size conversion, we use a move. Ideally though we would squash
883 * these ops together; maybe that has to happen after in NIR as part of
884 * propagation...? An earlier algebraic pass ensured we step down by
885 * only / exactly one size. If stepping down, we use a dest override to
886 * reduce the size; if stepping up, we use a larger-sized move with a
887 * half source and a sign/zero-extension modifier */
888
889 case nir_op_i2i8:
890 case nir_op_i2i16:
891 case nir_op_i2i32:
892 /* If we end up upscale, we'll need a sign-extend on the
893 * operand (the second argument) */
894
895 sext_2 = true;
896 case nir_op_u2u8:
897 case nir_op_u2u16:
898 case nir_op_u2u32: {
899 op = midgard_alu_op_imov;
900
901 if (dst_bitsize == (src_bitsize * 2)) {
902 /* Converting up */
903 half_2 = true;
904
905 /* Use a greater register mode */
906 reg_mode++;
907 } else if (src_bitsize == (dst_bitsize * 2)) {
908 /* Converting down */
909 dest_override = midgard_dest_override_lower;
910 }
911
912 break;
913 }
914
915 case nir_op_f2f16: {
916 assert(src_bitsize == 32);
917
918 op = midgard_alu_op_fmov;
919 dest_override = midgard_dest_override_lower;
920 break;
921 }
922
923 case nir_op_f2f32: {
924 assert(src_bitsize == 16);
925
926 op = midgard_alu_op_fmov;
927 half_2 = true;
928 reg_mode++;
929 break;
930 }
931
932
933 /* For greater-or-equal, we lower to less-or-equal and flip the
934 * arguments */
935
936 case nir_op_fge:
937 case nir_op_fge32:
938 case nir_op_ige32:
939 case nir_op_uge32: {
940 op =
941 instr->op == nir_op_fge ? midgard_alu_op_fle :
942 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
943 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
944 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
945 0;
946
947 /* Swap via temporary */
948 nir_alu_src temp = instr->src[1];
949 instr->src[1] = instr->src[0];
950 instr->src[0] = temp;
951
952 break;
953 }
954
955 case nir_op_b32csel: {
956 /* Midgard features both fcsel and icsel, depending on
957 * the type of the arguments/output. However, as long
958 * as we're careful we can _always_ use icsel and
959 * _never_ need fcsel, since the latter does additional
960 * floating-point-specific processing whereas the
961 * former just moves bits on the wire. It's not obvious
962 * why these are separate opcodes, save for the ability
963 * to do things like sat/pos/abs/neg for free */
964
965 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
966 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
967
968 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
969 nr_inputs = 2;
970
971 /* Emit the condition into r31 */
972
973 if (mixed)
974 emit_condition_mixed(ctx, &instr->src[0], nr_components);
975 else
976 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
977
978 /* The condition is the first argument; move the other
979 * arguments up one to be a binary instruction for
980 * Midgard */
981
982 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
983 break;
984 }
985
986 default:
987 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
988 assert(0);
989 return;
990 }
991
992 /* Midgard can perform certain modifiers on output of an ALU op */
993 unsigned outmod;
994
995 if (midgard_is_integer_out_op(op)) {
996 outmod = midgard_outmod_int_wrap;
997 } else {
998 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
999 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1000 }
1001
1002 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1003
1004 if (instr->op == nir_op_fmax) {
1005 if (nir_is_fzero_constant(instr->src[0].src)) {
1006 op = midgard_alu_op_fmov;
1007 nr_inputs = 1;
1008 outmod = midgard_outmod_pos;
1009 instr->src[0] = instr->src[1];
1010 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1011 op = midgard_alu_op_fmov;
1012 nr_inputs = 1;
1013 outmod = midgard_outmod_pos;
1014 }
1015 }
1016
1017 /* Fetch unit, quirks, etc information */
1018 unsigned opcode_props = alu_opcode_props[op].props;
1019 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1020
1021 /* src0 will always exist afaik, but src1 will not for 1-argument
1022 * instructions. The latter can only be fetched if the instruction
1023 * needs it, or else we may segfault. */
1024
1025 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1026 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1027
1028 /* Rather than use the instruction generation helpers, we do it
1029 * ourselves here to avoid the mess */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .ssa_args = {
1034 .src = {
1035 quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1036 quirk_flipped_r24 ? src0 : src1,
1037 -1
1038 },
1039 .dest = dest,
1040 }
1041 };
1042
1043 nir_alu_src *nirmods[2] = { NULL };
1044
1045 if (nr_inputs == 2) {
1046 nirmods[0] = &instr->src[0];
1047 nirmods[1] = &instr->src[1];
1048 } else if (nr_inputs == 1) {
1049 nirmods[quirk_flipped_r24] = &instr->src[0];
1050 } else {
1051 assert(0);
1052 }
1053
1054 /* These were lowered to a move, so apply the corresponding mod */
1055
1056 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1057 nir_alu_src *s = nirmods[quirk_flipped_r24];
1058
1059 if (instr->op == nir_op_fneg)
1060 s->negate = !s->negate;
1061
1062 if (instr->op == nir_op_fabs)
1063 s->abs = !s->abs;
1064 }
1065
1066 bool is_int = midgard_is_integer_op(op);
1067
1068 ins.mask = mask_of(nr_components);
1069
1070 midgard_vector_alu alu = {
1071 .op = op,
1072 .reg_mode = reg_mode,
1073 .dest_override = dest_override,
1074 .outmod = outmod,
1075
1076 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1077 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1078 };
1079
1080 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1081
1082 if (!is_ssa)
1083 ins.mask &= instr->dest.write_mask;
1084
1085 ins.alu = alu;
1086
1087 /* Late fixup for emulated instructions */
1088
1089 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1090 /* Presently, our second argument is an inline #0 constant.
1091 * Switch over to an embedded 1.0 constant (that can't fit
1092 * inline, since we're 32-bit, not 16-bit like the inline
1093 * constants) */
1094
1095 ins.ssa_args.inline_constant = false;
1096 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1097 ins.has_constants = true;
1098
1099 if (instr->op == nir_op_b2f32) {
1100 ins.constants[0] = 1.0f;
1101 } else {
1102 /* Type pun it into place */
1103 uint32_t one = 0x1;
1104 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1105 }
1106
1107 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1108 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1109 /* Lots of instructions need a 0 plonked in */
1110 ins.ssa_args.inline_constant = false;
1111 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1112 ins.has_constants = true;
1113 ins.constants[0] = 0.0f;
1114 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1115 } else if (instr->op == nir_op_inot) {
1116 ins.invert = true;
1117 }
1118
1119 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1120 /* To avoid duplicating the lookup tables (probably), true LUT
1121 * instructions can only operate as if they were scalars. Lower
1122 * them here by changing the component. */
1123
1124 uint8_t original_swizzle[4];
1125 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1126 unsigned orig_mask = ins.mask;
1127
1128 for (int i = 0; i < nr_components; ++i) {
1129 /* Mask the associated component, dropping the
1130 * instruction if needed */
1131
1132 ins.mask = 1 << i;
1133 ins.mask &= orig_mask;
1134
1135 if (!ins.mask)
1136 continue;
1137
1138 for (int j = 0; j < 4; ++j)
1139 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1140
1141 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1142 emit_mir_instruction(ctx, ins);
1143 }
1144 } else {
1145 emit_mir_instruction(ctx, ins);
1146 }
1147 }
1148
1149 #undef ALU_CASE
1150
1151 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1152 * optimized) versions of UBO #0 */
1153
1154 midgard_instruction *
1155 emit_ubo_read(
1156 compiler_context *ctx,
1157 unsigned dest,
1158 unsigned offset,
1159 nir_src *indirect_offset,
1160 unsigned index)
1161 {
1162 /* TODO: half-floats */
1163
1164 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1165
1166 /* TODO: Don't split */
1167 ins.load_store.varying_parameters = (offset & 7) << 7;
1168 ins.load_store.address = offset >> 3;
1169
1170 if (indirect_offset) {
1171 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1172 ins.load_store.arg_2 = 0x80;
1173 } else {
1174 ins.load_store.arg_2 = 0x1E;
1175 }
1176
1177 ins.load_store.arg_1 = index;
1178
1179 return emit_mir_instruction(ctx, ins);
1180 }
1181
1182 /* SSBO reads are like UBO reads if you squint */
1183
1184 static void
1185 emit_ssbo_access(
1186 compiler_context *ctx,
1187 nir_instr *instr,
1188 bool is_read,
1189 unsigned srcdest,
1190 unsigned offset,
1191 nir_src *indirect_offset,
1192 unsigned index)
1193 {
1194 /* TODO: types */
1195
1196 midgard_instruction ins;
1197
1198 if (is_read)
1199 ins = m_ld_int4(srcdest, offset);
1200 else
1201 ins = m_st_int4(srcdest, offset);
1202
1203 /* SSBO reads use a generic memory read interface, so we need the
1204 * address of the SSBO as the first argument. This is a sysval. */
1205
1206 unsigned addr = make_compiler_temp(ctx);
1207 emit_sysval_read(ctx, instr, addr, 2);
1208
1209 /* The source array is a bit of a leaky abstraction for SSBOs.
1210 * Nevertheless, for loads:
1211 *
1212 * src[0] = arg_1
1213 * src[1] = arg_2
1214 * src[2] = unused
1215 *
1216 * Whereas for stores:
1217 *
1218 * src[0] = value
1219 * src[1] = arg_1
1220 * src[2] = arg_2
1221 *
1222 * We would like arg_1 = the address and
1223 * arg_2 = the offset.
1224 */
1225
1226 ins.ssa_args.src[is_read ? 0 : 1] = addr;
1227
1228 /* TODO: What is this? It looks superficially like a shift << 5, but
1229 * arg_1 doesn't take a shift Should it be E0 or A0? */
1230 if (indirect_offset)
1231 ins.load_store.arg_1 |= 0xE0;
1232
1233 /* We also need to emit the indirect offset */
1234
1235 if (indirect_offset)
1236 ins.ssa_args.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1237 else
1238 ins.load_store.arg_2 = 0x7E;
1239
1240 /* TODO: Bounds check */
1241
1242 /* Finally, we emit the direct offset */
1243
1244 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1245 ins.load_store.address = (offset >> 9);
1246
1247 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1248
1249 if (is_read)
1250 ins.mask = mask_of(nir_intrinsic_dest_components(intr));
1251 else
1252 ins.mask = nir_intrinsic_write_mask(intr);
1253
1254 emit_mir_instruction(ctx, ins);
1255 }
1256
1257 static void
1258 emit_varying_read(
1259 compiler_context *ctx,
1260 unsigned dest, unsigned offset,
1261 unsigned nr_comp, unsigned component,
1262 nir_src *indirect_offset, nir_alu_type type)
1263 {
1264 /* XXX: Half-floats? */
1265 /* TODO: swizzle, mask */
1266
1267 midgard_instruction ins = m_ld_vary_32(dest, offset);
1268 ins.mask = mask_of(nr_comp);
1269 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1270
1271 midgard_varying_parameter p = {
1272 .is_varying = 1,
1273 .interpolation = midgard_interp_default,
1274 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1275 };
1276
1277 unsigned u;
1278 memcpy(&u, &p, sizeof(p));
1279 ins.load_store.varying_parameters = u;
1280
1281 if (indirect_offset)
1282 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1283 else
1284 ins.load_store.arg_2 = 0x1E;
1285
1286 ins.load_store.arg_1 = 0x9E;
1287
1288 /* Use the type appropriate load */
1289 switch (type) {
1290 case nir_type_uint:
1291 case nir_type_bool:
1292 ins.load_store.op = midgard_op_ld_vary_32u;
1293 break;
1294 case nir_type_int:
1295 ins.load_store.op = midgard_op_ld_vary_32i;
1296 break;
1297 case nir_type_float:
1298 ins.load_store.op = midgard_op_ld_vary_32;
1299 break;
1300 default:
1301 unreachable("Attempted to load unknown type");
1302 break;
1303 }
1304
1305 emit_mir_instruction(ctx, ins);
1306 }
1307
1308 void
1309 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1310 unsigned nr_components)
1311 {
1312 unsigned dest = 0;
1313
1314 /* Figure out which uniform this is */
1315 int sysval = sysval_for_instr(ctx, instr, &dest);
1316 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1317
1318 if (dest_override >= 0)
1319 dest = dest_override;
1320
1321 /* Sysvals are prefix uniforms */
1322 unsigned uniform = ((uintptr_t) val) - 1;
1323
1324 /* Emit the read itself -- this is never indirect */
1325 midgard_instruction *ins =
1326 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1327
1328 ins->mask = mask_of(nr_components);
1329 }
1330
1331 static unsigned
1332 compute_builtin_arg(nir_op op)
1333 {
1334 switch (op) {
1335 case nir_intrinsic_load_work_group_id:
1336 return 0x14;
1337 case nir_intrinsic_load_local_invocation_id:
1338 return 0x10;
1339 default:
1340 unreachable("Invalid compute paramater loaded");
1341 }
1342 }
1343
1344 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1345 * Handle MRT here */
1346
1347 static void
1348 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1349 {
1350 /* First, move in whatever we're outputting */
1351 midgard_instruction move = v_mov(src, blank_alu_src, SSA_FIXED_REGISTER(0));
1352 if (rt != 0) {
1353 /* Force a tight schedule. TODO: Make the scheduler MRT aware */
1354 move.unit = UNIT_VMUL;
1355 move.precede_break = true;
1356 move.dont_eliminate = true;
1357 }
1358
1359 emit_mir_instruction(ctx, move);
1360
1361 /* If we're doing MRT, we need to specify the render target */
1362
1363 midgard_instruction rt_move = {
1364 .ssa_args = {
1365 .dest = -1
1366 }
1367 };
1368
1369 if (rt != 0) {
1370 /* We'll write to r1.z */
1371 rt_move = v_mov(-1, blank_alu_src, SSA_FIXED_REGISTER(1));
1372 rt_move.mask = 1 << COMPONENT_Z;
1373 rt_move.unit = UNIT_SADD;
1374
1375 /* r1.z = (rt * 0x100) */
1376 rt_move.ssa_args.inline_constant = true;
1377 rt_move.inline_constant = (rt * 0x100);
1378
1379 /* r1 */
1380 ctx->work_registers = MAX2(ctx->work_registers, 1);
1381
1382 /* Do the write */
1383 emit_mir_instruction(ctx, rt_move);
1384 }
1385
1386 /* Next, generate the branch. For R render targets in the writeout, the
1387 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1388
1389 unsigned offset = (2 * (ctx->nir->num_outputs - 1)) + rt;
1390
1391 struct midgard_instruction ins =
1392 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1393
1394 /* Add dependencies */
1395 ins.ssa_args.src[0] = move.ssa_args.dest;
1396 ins.ssa_args.src[1] = rt_move.ssa_args.dest;
1397
1398 /* Emit the branch */
1399 emit_mir_instruction(ctx, ins);
1400 }
1401
1402 static void
1403 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1404 {
1405 unsigned reg = nir_dest_index(ctx, &instr->dest);
1406 midgard_instruction ins = m_ld_compute_id(reg, 0);
1407 ins.mask = mask_of(3);
1408 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1409 emit_mir_instruction(ctx, ins);
1410 }
1411 static void
1412 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1413 {
1414 unsigned offset = 0, reg;
1415
1416 switch (instr->intrinsic) {
1417 case nir_intrinsic_discard_if:
1418 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1419
1420 /* fallthrough */
1421
1422 case nir_intrinsic_discard: {
1423 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1424 struct midgard_instruction discard = v_branch(conditional, false);
1425 discard.branch.target_type = TARGET_DISCARD;
1426 emit_mir_instruction(ctx, discard);
1427 break;
1428 }
1429
1430 case nir_intrinsic_load_uniform:
1431 case nir_intrinsic_load_ubo:
1432 case nir_intrinsic_load_ssbo:
1433 case nir_intrinsic_load_input: {
1434 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1435 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1436 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1437
1438 /* Get the base type of the intrinsic */
1439 /* TODO: Infer type? Does it matter? */
1440 nir_alu_type t =
1441 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1442 t = nir_alu_type_get_base_type(t);
1443
1444 if (!(is_ubo || is_ssbo)) {
1445 offset = nir_intrinsic_base(instr);
1446 }
1447
1448 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1449
1450 nir_src *src_offset = nir_get_io_offset_src(instr);
1451
1452 bool direct = nir_src_is_const(*src_offset);
1453 nir_src *indirect_offset = direct ? NULL : src_offset;
1454
1455 if (direct)
1456 offset += nir_src_as_uint(*src_offset);
1457
1458 /* We may need to apply a fractional offset */
1459 int component = instr->intrinsic == nir_intrinsic_load_input ?
1460 nir_intrinsic_component(instr) : 0;
1461 reg = nir_dest_index(ctx, &instr->dest);
1462
1463 if (is_uniform && !ctx->is_blend) {
1464 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, indirect_offset, 0);
1465 } else if (is_ubo) {
1466 nir_src index = instr->src[0];
1467
1468 /* We don't yet support indirect UBOs. For indirect
1469 * block numbers (if that's possible), we don't know
1470 * enough about the hardware yet. For indirect sources,
1471 * we know what we need but we need to add some NIR
1472 * support for lowering correctly with respect to
1473 * 128-bit reads */
1474
1475 assert(nir_src_is_const(index));
1476 assert(nir_src_is_const(*src_offset));
1477
1478 /* TODO: Alignment */
1479 assert((offset & 0xF) == 0);
1480
1481 uint32_t uindex = nir_src_as_uint(index) + 1;
1482 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1483 } else if (is_ssbo) {
1484 nir_src index = instr->src[0];
1485 assert(nir_src_is_const(index));
1486 uint32_t uindex = nir_src_as_uint(index);
1487
1488 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1489 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1490 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1491 } else if (ctx->is_blend) {
1492 /* For blend shaders, load the input color, which is
1493 * preloaded to r0 */
1494
1495 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1496 emit_mir_instruction(ctx, move);
1497 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1498 midgard_instruction ins = m_ld_attr_32(reg, offset);
1499 ins.load_store.arg_1 = 0x1E;
1500 ins.load_store.arg_2 = 0x1E;
1501 ins.mask = mask_of(nr_comp);
1502
1503 /* Use the type appropriate load */
1504 switch (t) {
1505 case nir_type_uint:
1506 case nir_type_bool:
1507 ins.load_store.op = midgard_op_ld_attr_32u;
1508 break;
1509 case nir_type_int:
1510 ins.load_store.op = midgard_op_ld_attr_32i;
1511 break;
1512 case nir_type_float:
1513 ins.load_store.op = midgard_op_ld_attr_32;
1514 break;
1515 default:
1516 unreachable("Attempted to load unknown type");
1517 break;
1518 }
1519
1520 emit_mir_instruction(ctx, ins);
1521 } else {
1522 DBG("Unknown load\n");
1523 assert(0);
1524 }
1525
1526 break;
1527 }
1528
1529 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1530
1531 case nir_intrinsic_load_raw_output_pan:
1532 reg = nir_dest_index(ctx, &instr->dest);
1533 assert(ctx->is_blend);
1534
1535 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1536 emit_mir_instruction(ctx, ins);
1537 break;
1538
1539 case nir_intrinsic_load_blend_const_color_rgba: {
1540 assert(ctx->is_blend);
1541 reg = nir_dest_index(ctx, &instr->dest);
1542
1543 /* Blend constants are embedded directly in the shader and
1544 * patched in, so we use some magic routing */
1545
1546 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1547 ins.has_constants = true;
1548 ins.has_blend_constant = true;
1549 emit_mir_instruction(ctx, ins);
1550 break;
1551 }
1552
1553 case nir_intrinsic_store_output:
1554 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1555
1556 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1557
1558 reg = nir_src_index(ctx, &instr->src[0]);
1559
1560 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1561 /* Determine number of render targets */
1562 emit_fragment_store(ctx, reg, offset);
1563 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1564 /* We should have been vectorized, though we don't
1565 * currently check that st_vary is emitted only once
1566 * per slot (this is relevant, since there's not a mask
1567 * parameter available on the store [set to 0 by the
1568 * blob]). We do respect the component by adjusting the
1569 * swizzle. If this is a constant source, we'll need to
1570 * emit that explicitly. */
1571
1572 emit_explicit_constant(ctx, reg, reg);
1573
1574 unsigned component = nir_intrinsic_component(instr);
1575
1576 midgard_instruction st = m_st_vary_32(reg, offset);
1577 st.load_store.arg_1 = 0x9E;
1578 st.load_store.arg_2 = 0x1E;
1579 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1580 emit_mir_instruction(ctx, st);
1581 } else {
1582 DBG("Unknown store\n");
1583 assert(0);
1584 }
1585
1586 break;
1587
1588 /* Special case of store_output for lowered blend shaders */
1589 case nir_intrinsic_store_raw_output_pan:
1590 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1591 reg = nir_src_index(ctx, &instr->src[0]);
1592 emit_fragment_store(ctx, reg, 0);
1593
1594 break;
1595
1596 case nir_intrinsic_store_ssbo:
1597 assert(nir_src_is_const(instr->src[1]));
1598
1599 bool direct_offset = nir_src_is_const(instr->src[2]);
1600 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1601 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1602 reg = nir_src_index(ctx, &instr->src[0]);
1603
1604 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1605
1606 emit_explicit_constant(ctx, reg, reg);
1607 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1608 break;
1609
1610 case nir_intrinsic_load_alpha_ref_float:
1611 assert(instr->dest.is_ssa);
1612
1613 float ref_value = ctx->alpha_ref;
1614
1615 /* See emit_load_const */
1616 float *v = ralloc_array(NULL, float, 4);
1617 memcpy(v, &ref_value, sizeof(float));
1618 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1619 break;
1620
1621 case nir_intrinsic_load_viewport_scale:
1622 case nir_intrinsic_load_viewport_offset:
1623 case nir_intrinsic_load_num_work_groups:
1624 emit_sysval_read(ctx, &instr->instr, -1, 3);
1625 break;
1626
1627 case nir_intrinsic_load_work_group_id:
1628 case nir_intrinsic_load_local_invocation_id:
1629 emit_compute_builtin(ctx, instr);
1630 break;
1631
1632 default:
1633 printf ("Unhandled intrinsic\n");
1634 assert(0);
1635 break;
1636 }
1637 }
1638
1639 static unsigned
1640 midgard_tex_format(enum glsl_sampler_dim dim)
1641 {
1642 switch (dim) {
1643 case GLSL_SAMPLER_DIM_1D:
1644 case GLSL_SAMPLER_DIM_BUF:
1645 return MALI_TEX_1D;
1646
1647 case GLSL_SAMPLER_DIM_2D:
1648 case GLSL_SAMPLER_DIM_EXTERNAL:
1649 return MALI_TEX_2D;
1650
1651 case GLSL_SAMPLER_DIM_3D:
1652 return MALI_TEX_3D;
1653
1654 case GLSL_SAMPLER_DIM_CUBE:
1655 return MALI_TEX_CUBE;
1656
1657 default:
1658 DBG("Unknown sampler dim type\n");
1659 assert(0);
1660 return 0;
1661 }
1662 }
1663
1664 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1665 * was successful */
1666
1667 static bool
1668 pan_attach_constant_bias(
1669 compiler_context *ctx,
1670 nir_src lod,
1671 midgard_texture_word *word)
1672 {
1673 /* To attach as constant, it has to *be* constant */
1674
1675 if (!nir_src_is_const(lod))
1676 return false;
1677
1678 float f = nir_src_as_float(lod);
1679
1680 /* Break into fixed-point */
1681 signed lod_int = f;
1682 float lod_frac = f - lod_int;
1683
1684 /* Carry over negative fractions */
1685 if (lod_frac < 0.0) {
1686 lod_int--;
1687 lod_frac += 1.0;
1688 }
1689
1690 /* Encode */
1691 word->bias = float_to_ubyte(lod_frac);
1692 word->bias_int = lod_int;
1693
1694 return true;
1695 }
1696
1697 static enum mali_sampler_type
1698 midgard_sampler_type(nir_alu_type t) {
1699 switch (nir_alu_type_get_base_type(t))
1700 {
1701 case nir_type_float:
1702 return MALI_SAMPLER_FLOAT;
1703 case nir_type_int:
1704 return MALI_SAMPLER_SIGNED;
1705 case nir_type_uint:
1706 return MALI_SAMPLER_UNSIGNED;
1707 default:
1708 unreachable("Unknown sampler type");
1709 }
1710 }
1711
1712 static void
1713 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1714 unsigned midgard_texop)
1715 {
1716 /* TODO */
1717 //assert (!instr->sampler);
1718 //assert (!instr->texture_array_size);
1719
1720 int texture_index = instr->texture_index;
1721 int sampler_index = texture_index;
1722
1723 /* No helper to build texture words -- we do it all here */
1724 midgard_instruction ins = {
1725 .type = TAG_TEXTURE_4,
1726 .mask = 0xF,
1727 .ssa_args = {
1728 .dest = nir_dest_index(ctx, &instr->dest),
1729 .src = { -1, -1, -1 },
1730 },
1731 .texture = {
1732 .op = midgard_texop,
1733 .format = midgard_tex_format(instr->sampler_dim),
1734 .texture_handle = texture_index,
1735 .sampler_handle = sampler_index,
1736 .swizzle = SWIZZLE_XYZW,
1737 .in_reg_swizzle = SWIZZLE_XYZW,
1738
1739 /* TODO: half */
1740 .in_reg_full = 1,
1741 .out_full = 1,
1742
1743 .sampler_type = midgard_sampler_type(instr->dest_type),
1744 }
1745 };
1746
1747 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1748 int index = nir_src_index(ctx, &instr->src[i].src);
1749 midgard_vector_alu_src alu_src = blank_alu_src;
1750
1751 switch (instr->src[i].src_type) {
1752 case nir_tex_src_coord: {
1753 emit_explicit_constant(ctx, index, index);
1754
1755 /* Texelfetch coordinates uses all four elements
1756 * (xyz/index) regardless of texture dimensionality,
1757 * which means it's necessary to zero the unused
1758 * components to keep everything happy */
1759
1760 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1761 unsigned old_index = index;
1762
1763 index = make_compiler_temp(ctx);
1764
1765 /* mov index, old_index */
1766 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1767 mov.mask = 0x3;
1768 emit_mir_instruction(ctx, mov);
1769
1770 /* mov index.zw, #0 */
1771 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1772 blank_alu_src, index);
1773 mov.has_constants = true;
1774 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1775 emit_mir_instruction(ctx, mov);
1776 }
1777
1778 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1779 /* texelFetch is undefined on samplerCube */
1780 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1781
1782 /* For cubemaps, we use a special ld/st op to
1783 * select the face and copy the xy into the
1784 * texture register */
1785
1786 unsigned temp = make_compiler_temp(ctx);
1787 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1788 st.ssa_args.src[0] = index;
1789 st.mask = 0x3; /* xy */
1790 st.load_store.arg_1 = 0x20;
1791 st.load_store.swizzle = alu_src.swizzle;
1792 emit_mir_instruction(ctx, st);
1793
1794 ins.ssa_args.src[0] = temp;
1795 } else {
1796 ins.ssa_args.src[0] = index;
1797 }
1798
1799 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1800 /* Array component in w but NIR wants it in z */
1801 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1802 }
1803
1804 break;
1805 }
1806
1807 case nir_tex_src_bias:
1808 case nir_tex_src_lod: {
1809 /* Try as a constant if we can */
1810
1811 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1812 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1813 break;
1814
1815 ins.texture.lod_register = true;
1816 ins.ssa_args.src[1] = index;
1817 emit_explicit_constant(ctx, index, index);
1818
1819 break;
1820 };
1821
1822 default:
1823 unreachable("Unknown texture source type\n");
1824 }
1825 }
1826
1827 emit_mir_instruction(ctx, ins);
1828
1829 /* Used for .cont and .last hinting */
1830 ctx->texture_op_count++;
1831 }
1832
1833 static void
1834 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1835 {
1836 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1837 * generic tex in some cases (which confuses the hardware) */
1838
1839 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1840
1841 if (is_vertex && instr->op == nir_texop_tex)
1842 instr->op = nir_texop_txl;
1843
1844 switch (instr->op) {
1845 case nir_texop_tex:
1846 case nir_texop_txb:
1847 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1848 break;
1849 case nir_texop_txl:
1850 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1851 break;
1852 case nir_texop_txf:
1853 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1854 break;
1855 case nir_texop_txs:
1856 emit_sysval_read(ctx, &instr->instr, -1, 4);
1857 break;
1858 default:
1859 unreachable("Unhanlded texture op");
1860 }
1861 }
1862
1863 static void
1864 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1865 {
1866 switch (instr->type) {
1867 case nir_jump_break: {
1868 /* Emit a branch out of the loop */
1869 struct midgard_instruction br = v_branch(false, false);
1870 br.branch.target_type = TARGET_BREAK;
1871 br.branch.target_break = ctx->current_loop_depth;
1872 emit_mir_instruction(ctx, br);
1873 break;
1874 }
1875
1876 default:
1877 DBG("Unknown jump type %d\n", instr->type);
1878 break;
1879 }
1880 }
1881
1882 static void
1883 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1884 {
1885 switch (instr->type) {
1886 case nir_instr_type_load_const:
1887 emit_load_const(ctx, nir_instr_as_load_const(instr));
1888 break;
1889
1890 case nir_instr_type_intrinsic:
1891 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1892 break;
1893
1894 case nir_instr_type_alu:
1895 emit_alu(ctx, nir_instr_as_alu(instr));
1896 break;
1897
1898 case nir_instr_type_tex:
1899 emit_tex(ctx, nir_instr_as_tex(instr));
1900 break;
1901
1902 case nir_instr_type_jump:
1903 emit_jump(ctx, nir_instr_as_jump(instr));
1904 break;
1905
1906 case nir_instr_type_ssa_undef:
1907 /* Spurious */
1908 break;
1909
1910 default:
1911 DBG("Unhandled instruction type\n");
1912 break;
1913 }
1914 }
1915
1916
1917 /* ALU instructions can inline or embed constants, which decreases register
1918 * pressure and saves space. */
1919
1920 #define CONDITIONAL_ATTACH(src) { \
1921 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1922 \
1923 if (entry) { \
1924 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1925 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1926 } \
1927 }
1928
1929 static void
1930 inline_alu_constants(compiler_context *ctx)
1931 {
1932 mir_foreach_instr(ctx, alu) {
1933 /* Other instructions cannot inline constants */
1934 if (alu->type != TAG_ALU_4) continue;
1935
1936 /* If there is already a constant here, we can do nothing */
1937 if (alu->has_constants) continue;
1938
1939 CONDITIONAL_ATTACH(src[0]);
1940
1941 if (!alu->has_constants) {
1942 CONDITIONAL_ATTACH(src[1])
1943 } else if (!alu->inline_constant) {
1944 /* Corner case: _two_ vec4 constants, for instance with a
1945 * csel. For this case, we can only use a constant
1946 * register for one, we'll have to emit a move for the
1947 * other. Note, if both arguments are constants, then
1948 * necessarily neither argument depends on the value of
1949 * any particular register. As the destination register
1950 * will be wiped, that means we can spill the constant
1951 * to the destination register.
1952 */
1953
1954 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src[1] + 1);
1955 unsigned scratch = alu->ssa_args.dest;
1956
1957 if (entry) {
1958 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1959 attach_constants(ctx, &ins, entry, alu->ssa_args.src[1] + 1);
1960
1961 /* Force a break XXX Defer r31 writes */
1962 ins.unit = UNIT_VLUT;
1963
1964 /* Set the source */
1965 alu->ssa_args.src[1] = scratch;
1966
1967 /* Inject us -before- the last instruction which set r31 */
1968 mir_insert_instruction_before(mir_prev_op(alu), ins);
1969 }
1970 }
1971 }
1972 }
1973
1974 /* Being a little silly with the names, but returns the op that is the bitwise
1975 * inverse of the op with the argument switched. I.e. (f and g are
1976 * contrapositives):
1977 *
1978 * f(a, b) = ~g(b, a)
1979 *
1980 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1981 *
1982 * f(a, b) = ~g(b, a)
1983 * ~f(a, b) = g(b, a)
1984 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1985 * f(a, b) = h(a, b)
1986 *
1987 * Thus we define this function in pairs.
1988 */
1989
1990 static inline midgard_alu_op
1991 mir_contrapositive(midgard_alu_op op)
1992 {
1993 switch (op) {
1994 case midgard_alu_op_flt:
1995 return midgard_alu_op_fle;
1996 case midgard_alu_op_fle:
1997 return midgard_alu_op_flt;
1998
1999 case midgard_alu_op_ilt:
2000 return midgard_alu_op_ile;
2001 case midgard_alu_op_ile:
2002 return midgard_alu_op_ilt;
2003
2004 default:
2005 unreachable("No known contrapositive");
2006 }
2007 }
2008
2009 /* Midgard supports two types of constants, embedded constants (128-bit) and
2010 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2011 * constants can be demoted to inline constants, for space savings and
2012 * sometimes a performance boost */
2013
2014 static void
2015 embedded_to_inline_constant(compiler_context *ctx)
2016 {
2017 mir_foreach_instr(ctx, ins) {
2018 if (!ins->has_constants) continue;
2019
2020 if (ins->ssa_args.inline_constant) continue;
2021
2022 /* Blend constants must not be inlined by definition */
2023 if (ins->has_blend_constant) continue;
2024
2025 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2026 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2027 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2028
2029 if (!(is_16 || is_32))
2030 continue;
2031
2032 /* src1 cannot be an inline constant due to encoding
2033 * restrictions. So, if possible we try to flip the arguments
2034 * in that case */
2035
2036 int op = ins->alu.op;
2037
2038 if (ins->ssa_args.src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2039 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2040
2041 switch (op) {
2042 /* Conditionals can be inverted */
2043 case midgard_alu_op_flt:
2044 case midgard_alu_op_ilt:
2045 case midgard_alu_op_fle:
2046 case midgard_alu_op_ile:
2047 ins->alu.op = mir_contrapositive(ins->alu.op);
2048 ins->invert = true;
2049 flip = true;
2050 break;
2051
2052 case midgard_alu_op_fcsel:
2053 case midgard_alu_op_icsel:
2054 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2055 default:
2056 break;
2057 }
2058
2059 if (flip) {
2060 /* Flip the SSA numbers */
2061 ins->ssa_args.src[0] = ins->ssa_args.src[1];
2062 ins->ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2063
2064 /* And flip the modifiers */
2065
2066 unsigned src_temp;
2067
2068 src_temp = ins->alu.src2;
2069 ins->alu.src2 = ins->alu.src1;
2070 ins->alu.src1 = src_temp;
2071 }
2072 }
2073
2074 if (ins->ssa_args.src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2075 /* Extract the source information */
2076
2077 midgard_vector_alu_src *src;
2078 int q = ins->alu.src2;
2079 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2080 src = m;
2081
2082 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2083 int component = src->swizzle & 3;
2084
2085 /* Scale constant appropriately, if we can legally */
2086 uint16_t scaled_constant = 0;
2087
2088 if (midgard_is_integer_op(op) || is_16) {
2089 unsigned int *iconstants = (unsigned int *) ins->constants;
2090 scaled_constant = (uint16_t) iconstants[component];
2091
2092 /* Constant overflow after resize */
2093 if (scaled_constant != iconstants[component])
2094 continue;
2095 } else {
2096 float original = (float) ins->constants[component];
2097 scaled_constant = _mesa_float_to_half(original);
2098
2099 /* Check for loss of precision. If this is
2100 * mediump, we don't care, but for a highp
2101 * shader, we need to pay attention. NIR
2102 * doesn't yet tell us which mode we're in!
2103 * Practically this prevents most constants
2104 * from being inlined, sadly. */
2105
2106 float fp32 = _mesa_half_to_float(scaled_constant);
2107
2108 if (fp32 != original)
2109 continue;
2110 }
2111
2112 /* We don't know how to handle these with a constant */
2113
2114 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2115 DBG("Bailing inline constant...\n");
2116 continue;
2117 }
2118
2119 /* Make sure that the constant is not itself a
2120 * vector by checking if all accessed values
2121 * (by the swizzle) are the same. */
2122
2123 uint32_t *cons = (uint32_t *) ins->constants;
2124 uint32_t value = cons[component];
2125
2126 bool is_vector = false;
2127 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2128
2129 for (int c = 1; c < 4; ++c) {
2130 /* We only care if this component is actually used */
2131 if (!(mask & (1 << c)))
2132 continue;
2133
2134 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2135
2136 if (test != value) {
2137 is_vector = true;
2138 break;
2139 }
2140 }
2141
2142 if (is_vector)
2143 continue;
2144
2145 /* Get rid of the embedded constant */
2146 ins->has_constants = false;
2147 ins->ssa_args.src[1] = -1;
2148 ins->ssa_args.inline_constant = true;
2149 ins->inline_constant = scaled_constant;
2150 }
2151 }
2152 }
2153
2154 /* Dead code elimination for branches at the end of a block - only one branch
2155 * per block is legal semantically */
2156
2157 static void
2158 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2159 {
2160 bool branched = false;
2161
2162 mir_foreach_instr_in_block_safe(block, ins) {
2163 if (!midgard_is_branch_unit(ins->unit)) continue;
2164
2165 /* We ignore prepacked branches since the fragment epilogue is
2166 * just generally special */
2167 if (ins->prepacked_branch) continue;
2168
2169 /* Discards are similarly special and may not correspond to the
2170 * end of a block */
2171
2172 if (ins->branch.target_type == TARGET_DISCARD) continue;
2173
2174 if (branched) {
2175 /* We already branched, so this is dead */
2176 mir_remove_instruction(ins);
2177 }
2178
2179 branched = true;
2180 }
2181 }
2182
2183 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2184 * the move can be propagated away entirely */
2185
2186 static bool
2187 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2188 {
2189 /* Nothing to do */
2190 if (comp == midgard_outmod_none)
2191 return true;
2192
2193 if (*outmod == midgard_outmod_none) {
2194 *outmod = comp;
2195 return true;
2196 }
2197
2198 /* TODO: Compose rules */
2199 return false;
2200 }
2201
2202 static bool
2203 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2204 {
2205 bool progress = false;
2206
2207 mir_foreach_instr_in_block_safe(block, ins) {
2208 if (ins->type != TAG_ALU_4) continue;
2209 if (ins->alu.op != midgard_alu_op_fmov) continue;
2210 if (ins->alu.outmod != midgard_outmod_pos) continue;
2211
2212 /* TODO: Registers? */
2213 unsigned src = ins->ssa_args.src[1];
2214 if (src & IS_REG) continue;
2215 assert(!mir_has_multiple_writes(ctx, src));
2216
2217 /* There might be a source modifier, too */
2218 if (mir_nontrivial_source2_mod(ins)) continue;
2219
2220 /* Backpropagate the modifier */
2221 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2222 if (v->type != TAG_ALU_4) continue;
2223 if (v->ssa_args.dest != src) continue;
2224
2225 /* Can we even take a float outmod? */
2226 if (midgard_is_integer_out_op(v->alu.op)) continue;
2227
2228 midgard_outmod_float temp = v->alu.outmod;
2229 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2230
2231 /* Throw in the towel.. */
2232 if (!progress) break;
2233
2234 /* Otherwise, transfer the modifier */
2235 v->alu.outmod = temp;
2236 ins->alu.outmod = midgard_outmod_none;
2237
2238 break;
2239 }
2240 }
2241
2242 return progress;
2243 }
2244
2245 static void
2246 emit_fragment_epilogue(compiler_context *ctx)
2247 {
2248 /* Just emit the last chunk with the branch */
2249 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2250 }
2251
2252 static midgard_block *
2253 emit_block(compiler_context *ctx, nir_block *block)
2254 {
2255 midgard_block *this_block = ctx->after_block;
2256 ctx->after_block = NULL;
2257
2258 if (!this_block)
2259 this_block = calloc(sizeof(midgard_block), 1);
2260
2261 list_addtail(&this_block->link, &ctx->blocks);
2262
2263 this_block->is_scheduled = false;
2264 ++ctx->block_count;
2265
2266 ctx->texture_index[0] = -1;
2267 ctx->texture_index[1] = -1;
2268
2269 /* Set up current block */
2270 list_inithead(&this_block->instructions);
2271 ctx->current_block = this_block;
2272
2273 nir_foreach_instr(instr, block) {
2274 emit_instr(ctx, instr);
2275 ++ctx->instruction_count;
2276 }
2277
2278 inline_alu_constants(ctx);
2279 embedded_to_inline_constant(ctx);
2280
2281 /* Append fragment shader epilogue (value writeout) */
2282 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2283 if (block == nir_impl_last_block(ctx->func->impl)) {
2284 emit_fragment_epilogue(ctx);
2285 }
2286 }
2287
2288 /* Allow the next control flow to access us retroactively, for
2289 * branching etc */
2290 ctx->current_block = this_block;
2291
2292 return this_block;
2293 }
2294
2295 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2296
2297 static void
2298 emit_if(struct compiler_context *ctx, nir_if *nif)
2299 {
2300 midgard_block *before_block = ctx->current_block;
2301
2302 /* Conditional branches expect the condition in r31.w; emit a move for
2303 * that in the _previous_ block (which is the current block). */
2304 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2305
2306 /* Speculatively emit the branch, but we can't fill it in until later */
2307 EMIT(branch, true, true);
2308 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2309
2310 /* Emit the two subblocks. */
2311 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2312 midgard_block *end_then_block = ctx->current_block;
2313
2314 /* Emit a jump from the end of the then block to the end of the else */
2315 EMIT(branch, false, false);
2316 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2317
2318 /* Emit second block, and check if it's empty */
2319
2320 int else_idx = ctx->block_count;
2321 int count_in = ctx->instruction_count;
2322 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2323 midgard_block *end_else_block = ctx->current_block;
2324 int after_else_idx = ctx->block_count;
2325
2326 /* Now that we have the subblocks emitted, fix up the branches */
2327
2328 assert(then_block);
2329 assert(else_block);
2330
2331 if (ctx->instruction_count == count_in) {
2332 /* The else block is empty, so don't emit an exit jump */
2333 mir_remove_instruction(then_exit);
2334 then_branch->branch.target_block = after_else_idx;
2335 } else {
2336 then_branch->branch.target_block = else_idx;
2337 then_exit->branch.target_block = after_else_idx;
2338 }
2339
2340 /* Wire up the successors */
2341
2342 ctx->after_block = calloc(sizeof(midgard_block), 1);
2343
2344 midgard_block_add_successor(before_block, then_block);
2345 midgard_block_add_successor(before_block, else_block);
2346
2347 midgard_block_add_successor(end_then_block, ctx->after_block);
2348 midgard_block_add_successor(end_else_block, ctx->after_block);
2349 }
2350
2351 static void
2352 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2353 {
2354 /* Remember where we are */
2355 midgard_block *start_block = ctx->current_block;
2356
2357 /* Allocate a loop number, growing the current inner loop depth */
2358 int loop_idx = ++ctx->current_loop_depth;
2359
2360 /* Get index from before the body so we can loop back later */
2361 int start_idx = ctx->block_count;
2362
2363 /* Emit the body itself */
2364 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2365
2366 /* Branch back to loop back */
2367 struct midgard_instruction br_back = v_branch(false, false);
2368 br_back.branch.target_block = start_idx;
2369 emit_mir_instruction(ctx, br_back);
2370
2371 /* Mark down that branch in the graph. */
2372 midgard_block_add_successor(start_block, loop_block);
2373 midgard_block_add_successor(ctx->current_block, loop_block);
2374
2375 /* Find the index of the block about to follow us (note: we don't add
2376 * one; blocks are 0-indexed so we get a fencepost problem) */
2377 int break_block_idx = ctx->block_count;
2378
2379 /* Fix up the break statements we emitted to point to the right place,
2380 * now that we can allocate a block number for them */
2381 ctx->after_block = calloc(sizeof(midgard_block), 1);
2382
2383 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2384 mir_foreach_instr_in_block(block, ins) {
2385 if (ins->type != TAG_ALU_4) continue;
2386 if (!ins->compact_branch) continue;
2387 if (ins->prepacked_branch) continue;
2388
2389 /* We found a branch -- check the type to see if we need to do anything */
2390 if (ins->branch.target_type != TARGET_BREAK) continue;
2391
2392 /* It's a break! Check if it's our break */
2393 if (ins->branch.target_break != loop_idx) continue;
2394
2395 /* Okay, cool, we're breaking out of this loop.
2396 * Rewrite from a break to a goto */
2397
2398 ins->branch.target_type = TARGET_GOTO;
2399 ins->branch.target_block = break_block_idx;
2400
2401 midgard_block_add_successor(block, ctx->after_block);
2402 }
2403 }
2404
2405 /* Now that we've finished emitting the loop, free up the depth again
2406 * so we play nice with recursion amid nested loops */
2407 --ctx->current_loop_depth;
2408
2409 /* Dump loop stats */
2410 ++ctx->loop_count;
2411 }
2412
2413 static midgard_block *
2414 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2415 {
2416 midgard_block *start_block = NULL;
2417
2418 foreach_list_typed(nir_cf_node, node, node, list) {
2419 switch (node->type) {
2420 case nir_cf_node_block: {
2421 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2422
2423 if (!start_block)
2424 start_block = block;
2425
2426 break;
2427 }
2428
2429 case nir_cf_node_if:
2430 emit_if(ctx, nir_cf_node_as_if(node));
2431 break;
2432
2433 case nir_cf_node_loop:
2434 emit_loop(ctx, nir_cf_node_as_loop(node));
2435 break;
2436
2437 case nir_cf_node_function:
2438 assert(0);
2439 break;
2440 }
2441 }
2442
2443 return start_block;
2444 }
2445
2446 /* Due to lookahead, we need to report the first tag executed in the command
2447 * stream and in branch targets. An initial block might be empty, so iterate
2448 * until we find one that 'works' */
2449
2450 static unsigned
2451 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2452 {
2453 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2454
2455 unsigned first_tag = 0;
2456
2457 mir_foreach_block_from(ctx, initial_block, v) {
2458 midgard_bundle *initial_bundle =
2459 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2460
2461 if (initial_bundle) {
2462 first_tag = initial_bundle->tag;
2463 break;
2464 }
2465 }
2466
2467 return first_tag;
2468 }
2469
2470 int
2471 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2472 {
2473 struct util_dynarray *compiled = &program->compiled;
2474
2475 midgard_debug = debug_get_option_midgard_debug();
2476
2477 compiler_context ictx = {
2478 .nir = nir,
2479 .screen = screen,
2480 .stage = nir->info.stage,
2481 .temp_alloc = 0,
2482
2483 .is_blend = is_blend,
2484 .blend_constant_offset = 0,
2485
2486 .alpha_ref = program->alpha_ref
2487 };
2488
2489 compiler_context *ctx = &ictx;
2490
2491 /* Start off with a safe cutoff, allowing usage of all 16 work
2492 * registers. Later, we'll promote uniform reads to uniform registers
2493 * if we determine it is beneficial to do so */
2494 ctx->uniform_cutoff = 8;
2495
2496 /* Initialize at a global (not block) level hash tables */
2497
2498 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2499 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2500 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2501
2502 /* Record the varying mapping for the command stream's bookkeeping */
2503
2504 struct exec_list *varyings =
2505 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2506
2507 unsigned max_varying = 0;
2508 nir_foreach_variable(var, varyings) {
2509 unsigned loc = var->data.driver_location;
2510 unsigned sz = glsl_type_size(var->type, FALSE);
2511
2512 for (int c = 0; c < sz; ++c) {
2513 program->varyings[loc + c] = var->data.location + c;
2514 max_varying = MAX2(max_varying, loc + c);
2515 }
2516 }
2517
2518 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2519 * (so we don't accidentally duplicate the epilogue since mesa/st has
2520 * messed with our I/O quite a bit already) */
2521
2522 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2523
2524 if (ctx->stage == MESA_SHADER_VERTEX) {
2525 NIR_PASS_V(nir, nir_lower_viewport_transform);
2526 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2527 }
2528
2529 NIR_PASS_V(nir, nir_lower_var_copies);
2530 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2531 NIR_PASS_V(nir, nir_split_var_copies);
2532 NIR_PASS_V(nir, nir_lower_var_copies);
2533 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2534 NIR_PASS_V(nir, nir_lower_var_copies);
2535 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2536
2537 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2538
2539 /* Optimisation passes */
2540
2541 optimise_nir(nir);
2542
2543 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2544 nir_print_shader(nir, stdout);
2545 }
2546
2547 /* Assign sysvals and counts, now that we're sure
2548 * (post-optimisation) */
2549
2550 midgard_nir_assign_sysvals(ctx, nir);
2551
2552 program->uniform_count = nir->num_uniforms;
2553 program->sysval_count = ctx->sysval_count;
2554 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2555
2556 nir_foreach_function(func, nir) {
2557 if (!func->impl)
2558 continue;
2559
2560 list_inithead(&ctx->blocks);
2561 ctx->block_count = 0;
2562 ctx->func = func;
2563
2564 emit_cf_list(ctx, &func->impl->body);
2565 emit_block(ctx, func->impl->end_block);
2566
2567 break; /* TODO: Multi-function shaders */
2568 }
2569
2570 util_dynarray_init(compiled, NULL);
2571
2572 /* MIR-level optimizations */
2573
2574 bool progress = false;
2575
2576 do {
2577 progress = false;
2578
2579 mir_foreach_block(ctx, block) {
2580 progress |= midgard_opt_pos_propagate(ctx, block);
2581 progress |= midgard_opt_copy_prop(ctx, block);
2582 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2583 progress |= midgard_opt_combine_projection(ctx, block);
2584 progress |= midgard_opt_varying_projection(ctx, block);
2585 progress |= midgard_opt_not_propagate(ctx, block);
2586 progress |= midgard_opt_fuse_src_invert(ctx, block);
2587 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2588 }
2589 } while (progress);
2590
2591 mir_foreach_block(ctx, block) {
2592 midgard_lower_invert(ctx, block);
2593 midgard_lower_derivatives(ctx, block);
2594 }
2595
2596 /* Nested control-flow can result in dead branches at the end of the
2597 * block. This messes with our analysis and is just dead code, so cull
2598 * them */
2599 mir_foreach_block(ctx, block) {
2600 midgard_opt_cull_dead_branch(ctx, block);
2601 }
2602
2603 /* Ensure we were lowered */
2604 mir_foreach_instr_global(ctx, ins) {
2605 assert(!ins->invert);
2606 }
2607
2608 /* Schedule! */
2609 schedule_program(ctx);
2610
2611 /* Now that all the bundles are scheduled and we can calculate block
2612 * sizes, emit actual branch instructions rather than placeholders */
2613
2614 int br_block_idx = 0;
2615
2616 mir_foreach_block(ctx, block) {
2617 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2618 for (int c = 0; c < bundle->instruction_count; ++c) {
2619 midgard_instruction *ins = bundle->instructions[c];
2620
2621 if (!midgard_is_branch_unit(ins->unit)) continue;
2622
2623 if (ins->prepacked_branch) continue;
2624
2625 /* Parse some basic branch info */
2626 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2627 bool is_conditional = ins->branch.conditional;
2628 bool is_inverted = ins->branch.invert_conditional;
2629 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2630
2631 /* Determine the block we're jumping to */
2632 int target_number = ins->branch.target_block;
2633
2634 /* Report the destination tag */
2635 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2636
2637 /* Count up the number of quadwords we're
2638 * jumping over = number of quadwords until
2639 * (br_block_idx, target_number) */
2640
2641 int quadword_offset = 0;
2642
2643 if (is_discard) {
2644 /* Ignored */
2645 } else if (target_number > br_block_idx) {
2646 /* Jump forward */
2647
2648 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2649 midgard_block *blk = mir_get_block(ctx, idx);
2650 assert(blk);
2651
2652 quadword_offset += blk->quadword_count;
2653 }
2654 } else {
2655 /* Jump backwards */
2656
2657 for (int idx = br_block_idx; idx >= target_number; --idx) {
2658 midgard_block *blk = mir_get_block(ctx, idx);
2659 assert(blk);
2660
2661 quadword_offset -= blk->quadword_count;
2662 }
2663 }
2664
2665 /* Unconditional extended branches (far jumps)
2666 * have issues, so we always use a conditional
2667 * branch, setting the condition to always for
2668 * unconditional. For compact unconditional
2669 * branches, cond isn't used so it doesn't
2670 * matter what we pick. */
2671
2672 midgard_condition cond =
2673 !is_conditional ? midgard_condition_always :
2674 is_inverted ? midgard_condition_false :
2675 midgard_condition_true;
2676
2677 midgard_jmp_writeout_op op =
2678 is_discard ? midgard_jmp_writeout_op_discard :
2679 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2680 midgard_jmp_writeout_op_branch_cond;
2681
2682 if (!is_compact) {
2683 midgard_branch_extended branch =
2684 midgard_create_branch_extended(
2685 cond, op,
2686 dest_tag,
2687 quadword_offset);
2688
2689 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2690 } else if (is_conditional || is_discard) {
2691 midgard_branch_cond branch = {
2692 .op = op,
2693 .dest_tag = dest_tag,
2694 .offset = quadword_offset,
2695 .cond = cond
2696 };
2697
2698 assert(branch.offset == quadword_offset);
2699
2700 memcpy(&ins->br_compact, &branch, sizeof(branch));
2701 } else {
2702 assert(op == midgard_jmp_writeout_op_branch_uncond);
2703
2704 midgard_branch_uncond branch = {
2705 .op = op,
2706 .dest_tag = dest_tag,
2707 .offset = quadword_offset,
2708 .unknown = 1
2709 };
2710
2711 assert(branch.offset == quadword_offset);
2712
2713 memcpy(&ins->br_compact, &branch, sizeof(branch));
2714 }
2715 }
2716 }
2717
2718 ++br_block_idx;
2719 }
2720
2721 /* Emit flat binary from the instruction arrays. Iterate each block in
2722 * sequence. Save instruction boundaries such that lookahead tags can
2723 * be assigned easily */
2724
2725 /* Cache _all_ bundles in source order for lookahead across failed branches */
2726
2727 int bundle_count = 0;
2728 mir_foreach_block(ctx, block) {
2729 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2730 }
2731 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2732 int bundle_idx = 0;
2733 mir_foreach_block(ctx, block) {
2734 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2735 source_order_bundles[bundle_idx++] = bundle;
2736 }
2737 }
2738
2739 int current_bundle = 0;
2740
2741 /* Midgard prefetches instruction types, so during emission we
2742 * need to lookahead. Unless this is the last instruction, in
2743 * which we return 1. Or if this is the second to last and the
2744 * last is an ALU, then it's also 1... */
2745
2746 mir_foreach_block(ctx, block) {
2747 mir_foreach_bundle_in_block(block, bundle) {
2748 int lookahead = 1;
2749
2750 if (current_bundle + 1 < bundle_count) {
2751 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2752
2753 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2754 lookahead = 1;
2755 } else {
2756 lookahead = next;
2757 }
2758 }
2759
2760 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2761 ++current_bundle;
2762 }
2763
2764 /* TODO: Free deeper */
2765 //util_dynarray_fini(&block->instructions);
2766 }
2767
2768 free(source_order_bundles);
2769
2770 /* Report the very first tag executed */
2771 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2772
2773 /* Deal with off-by-one related to the fencepost problem */
2774 program->work_register_count = ctx->work_registers + 1;
2775 program->uniform_cutoff = ctx->uniform_cutoff;
2776
2777 program->blend_patch_offset = ctx->blend_constant_offset;
2778 program->tls_size = ctx->tls_size;
2779
2780 if (midgard_debug & MIDGARD_DBG_SHADERS)
2781 disassemble_midgard(program->compiled.data, program->compiled.size, false, 0, "");
2782
2783 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2784 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2785
2786 /* Count instructions and bundles */
2787
2788 mir_foreach_instr_global(ctx, ins) {
2789 nr_ins++;
2790 }
2791
2792 mir_foreach_block(ctx, block) {
2793 nr_bundles += util_dynarray_num_elements(
2794 &block->bundles, midgard_bundle);
2795
2796 nr_quadwords += block->quadword_count;
2797 }
2798
2799 /* Calculate thread count. There are certain cutoffs by
2800 * register count for thread count */
2801
2802 unsigned nr_registers = program->work_register_count;
2803
2804 unsigned nr_threads =
2805 (nr_registers <= 4) ? 4 :
2806 (nr_registers <= 8) ? 2 :
2807 1;
2808
2809 /* Dump stats */
2810
2811 fprintf(stderr, "shader%d - %s shader: "
2812 "%u inst, %u bundles, %u quadwords, "
2813 "%u registers, %u threads, %u loops, "
2814 "%d:%d spills:fills\n",
2815 SHADER_DB_COUNT++,
2816 gl_shader_stage_name(ctx->stage),
2817 nr_ins, nr_bundles, nr_quadwords,
2818 nr_registers, nr_threads,
2819 ctx->loop_count,
2820 ctx->spills, ctx->fills);
2821 }
2822
2823
2824 return 0;
2825 }