pan/mdg: Remove mir_*size routines
[mesa.git] / src / panfrost / midgard / midgard_emit.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
28 * use scalar ALU instructions, for functional or performance reasons. To do
29 * this, we just demote vector ALU payloads to scalar. */
30
31 static int
32 component_from_mask(unsigned mask)
33 {
34 for (int c = 0; c < 8; ++c) {
35 if (mask & (1 << c))
36 return c;
37 }
38
39 assert(0);
40 return 0;
41 }
42
43 static unsigned
44 vector_to_scalar_source(unsigned u, bool is_int, bool is_full,
45 unsigned component)
46 {
47 midgard_vector_alu_src v;
48 memcpy(&v, &u, sizeof(v));
49
50 /* TODO: Integers */
51
52 midgard_scalar_alu_src s = { 0 };
53
54 if (is_full) {
55 /* For a 32-bit op, just check the source half flag */
56 s.full = !v.half;
57 } else if (!v.half) {
58 /* For a 16-bit op that's not subdivided, never full */
59 s.full = false;
60 } else {
61 /* We can't do 8-bit scalar, abort! */
62 assert(0);
63 }
64
65 /* Component indexing takes size into account */
66
67 if (s.full)
68 s.component = component << 1;
69 else
70 s.component = component;
71
72 if (is_int) {
73 /* TODO */
74 } else {
75 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
76 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
77 }
78
79 unsigned o;
80 memcpy(&o, &s, sizeof(s));
81
82 return o & ((1 << 6) - 1);
83 }
84
85 static midgard_scalar_alu
86 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
87 {
88 bool is_int = midgard_is_integer_op(v.op);
89 bool is_full = v.reg_mode == midgard_reg_mode_32;
90 bool is_inline_constant = ins->has_inline_constant;
91
92 unsigned comp = component_from_mask(ins->mask);
93
94 /* The output component is from the mask */
95 midgard_scalar_alu s = {
96 .op = v.op,
97 .src1 = vector_to_scalar_source(v.src1, is_int, is_full, ins->swizzle[0][comp]),
98 .src2 = !is_inline_constant ? vector_to_scalar_source(v.src2, is_int, is_full, ins->swizzle[1][comp]) : 0,
99 .unknown = 0,
100 .outmod = v.outmod,
101 .output_full = is_full,
102 .output_component = comp
103 };
104
105 /* Full components are physically spaced out */
106 if (is_full) {
107 assert(s.output_component < 4);
108 s.output_component <<= 1;
109 }
110
111 /* Inline constant is passed along rather than trying to extract it
112 * from v */
113
114 if (ins->has_inline_constant) {
115 uint16_t imm = 0;
116 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
117 imm |= (lower_11 >> 9) & 3;
118 imm |= (lower_11 >> 6) & 4;
119 imm |= (lower_11 >> 2) & 0x38;
120 imm |= (lower_11 & 63) << 6;
121
122 s.src2 = imm;
123 }
124
125 return s;
126 }
127
128 /* 64-bit swizzles are super easy since there are 2 components of 2 components
129 * in an 8-bit field ... lots of duplication to go around!
130 *
131 * Swizzles of 32-bit vectors accessed from 64-bit instructions are a little
132 * funny -- pack them *as if* they were native 64-bit, using rep_* flags to
133 * flag upper. For instance, xy would become 64-bit XY but that's just xyzw
134 * native. Likewise, zz would become 64-bit XX with rep* so it would be xyxy
135 * with rep. Pretty nifty, huh? */
136
137 static unsigned
138 mir_pack_swizzle_64(unsigned *swizzle, unsigned max_component)
139 {
140 unsigned packed = 0;
141
142 for (unsigned i = 0; i < 2; ++i) {
143 assert(swizzle[i] <= max_component);
144
145 unsigned a = (swizzle[i] & 1) ?
146 (COMPONENT_W << 2) | COMPONENT_Z :
147 (COMPONENT_Y << 2) | COMPONENT_X;
148
149 packed |= a << (i * 4);
150 }
151
152 return packed;
153 }
154
155 static void
156 mir_pack_mask_alu(midgard_instruction *ins)
157 {
158 unsigned effective = ins->mask;
159
160 /* If we have a destination override, we need to figure out whether to
161 * override to the lower or upper half, shifting the effective mask in
162 * the latter, so AAAA.... becomes AAAA */
163
164 unsigned upper_shift = mir_upper_override(ins);
165
166 if (upper_shift) {
167 effective >>= upper_shift;
168 ins->alu.dest_override = midgard_dest_override_upper;
169 }
170
171 if (ins->alu.reg_mode == midgard_reg_mode_32)
172 ins->alu.mask = expand_writemask(effective, 4);
173 else if (ins->alu.reg_mode == midgard_reg_mode_64)
174 ins->alu.mask = expand_writemask(effective, 2);
175 else
176 ins->alu.mask = effective;
177 }
178
179 static void
180 mir_pack_swizzle_alu(midgard_instruction *ins)
181 {
182 midgard_vector_alu_src src[] = {
183 vector_alu_from_unsigned(ins->alu.src1),
184 vector_alu_from_unsigned(ins->alu.src2)
185 };
186
187 for (unsigned i = 0; i < 2; ++i) {
188 unsigned packed = 0;
189
190 if (ins->alu.reg_mode == midgard_reg_mode_64) {
191 unsigned sz = nir_alu_type_get_type_size(ins->src_types[i]);
192 unsigned components = 64 / sz;
193
194 packed = mir_pack_swizzle_64(ins->swizzle[i], components);
195
196 if (sz == 32) {
197 bool lo = ins->swizzle[i][0] >= COMPONENT_Z;
198 bool hi = ins->swizzle[i][1] >= COMPONENT_Z;
199 unsigned mask = mir_bytemask(ins);
200
201 if (mask & 0xFF) {
202 /* We can't mix halves... */
203 if (mask & 0xFF00)
204 assert(lo == hi);
205
206 src[i].rep_low |= lo;
207 } else {
208 src[i].rep_low |= hi;
209 }
210 } else if (sz < 32) {
211 unreachable("Cannot encode 8/16 swizzle in 64-bit");
212 }
213 } else {
214 /* For 32-bit, swizzle packing is stupid-simple. For 16-bit,
215 * the strategy is to check whether the nibble we're on is
216 * upper or lower. We need all components to be on the same
217 * "side"; that much is enforced by the ISA and should have
218 * been lowered. TODO: 8-bit packing. TODO: vec8 */
219
220 unsigned first = ins->mask ? ffs(ins->mask) - 1 : 0;
221 bool upper = ins->swizzle[i][first] > 3;
222
223 if (upper && ins->mask)
224 assert(nir_alu_type_get_type_size(ins->src_types[i]) <= 16);
225
226 for (unsigned c = 0; c < 4; ++c) {
227 unsigned v = ins->swizzle[i][c];
228
229 bool t_upper = v > 3;
230
231 /* Ensure we're doing something sane */
232
233 if (ins->mask & (1 << c)) {
234 assert(t_upper == upper);
235 assert(v <= 7);
236 }
237
238 /* Use the non upper part */
239 v &= 0x3;
240
241 packed |= v << (2 * c);
242 }
243
244 src[i].rep_high = upper;
245
246 /* Replicate for now.. should really pick a side for
247 * dot products */
248
249 if (ins->alu.reg_mode == midgard_reg_mode_16)
250 src[i].rep_low = true;
251 }
252
253 src[i].swizzle = packed;
254 }
255
256 ins->alu.src1 = vector_alu_srco_unsigned(src[0]);
257
258 if (!ins->has_inline_constant)
259 ins->alu.src2 = vector_alu_srco_unsigned(src[1]);
260 }
261
262 static void
263 mir_pack_swizzle_ldst(midgard_instruction *ins)
264 {
265 /* TODO: non-32-bit, non-vec4 */
266 for (unsigned c = 0; c < 4; ++c) {
267 unsigned v = ins->swizzle[0][c];
268
269 /* Check vec4 */
270 assert(v <= 3);
271
272 ins->load_store.swizzle |= v << (2 * c);
273 }
274
275 /* TODO: arg_1/2 */
276 }
277
278 static void
279 mir_pack_swizzle_tex(midgard_instruction *ins)
280 {
281 for (unsigned i = 0; i < 2; ++i) {
282 unsigned packed = 0;
283
284 for (unsigned c = 0; c < 4; ++c) {
285 unsigned v = ins->swizzle[i][c];
286
287 /* Check vec4 */
288 assert(v <= 3);
289
290 packed |= v << (2 * c);
291 }
292
293 if (i == 0)
294 ins->texture.swizzle = packed;
295 else
296 ins->texture.in_reg_swizzle = packed;
297 }
298
299 /* TODO: bias component */
300 }
301
302 /* Load store masks are 4-bits. Load/store ops pack for that. vec4 is the
303 * natural mask width; vec8 is constrained to be in pairs, vec2 is duplicated. TODO: 8-bit?
304 */
305
306 static void
307 mir_pack_ldst_mask(midgard_instruction *ins)
308 {
309 unsigned sz = nir_alu_type_get_type_size(ins->dest_type);
310 unsigned packed = ins->mask;
311
312 if (sz == 64) {
313 packed = ((ins->mask & 0x2) ? (0x8 | 0x4) : 0) |
314 ((ins->mask & 0x1) ? (0x2 | 0x1) : 0);
315 } else if (sz == 16) {
316 packed = 0;
317
318 for (unsigned i = 0; i < 4; ++i) {
319 /* Make sure we're duplicated */
320 bool u = (ins->mask & (1 << (2*i + 0))) != 0;
321 bool v = (ins->mask & (1 << (2*i + 1))) != 0;
322 assert(u == v);
323
324 packed |= (u << i);
325 }
326 } else {
327 assert(sz == 32);
328 }
329
330 ins->load_store.mask = packed;
331 }
332
333 static void
334 mir_lower_inverts(midgard_instruction *ins)
335 {
336 bool inv[3] = {
337 ins->src_invert[0],
338 ins->src_invert[1],
339 ins->src_invert[2]
340 };
341
342 switch (ins->alu.op) {
343 case midgard_alu_op_iand:
344 /* a & ~b = iandnot(a, b) */
345 /* ~a & ~b = ~(a | b) = inor(a, b) */
346
347 if (inv[0] && inv[1])
348 ins->alu.op = midgard_alu_op_inor;
349 else if (inv[1])
350 ins->alu.op = midgard_alu_op_iandnot;
351
352 break;
353 case midgard_alu_op_ior:
354 /* a | ~b = iornot(a, b) */
355 /* ~a | ~b = ~(a & b) = inand(a, b) */
356
357 if (inv[0] && inv[1])
358 ins->alu.op = midgard_alu_op_inand;
359 else if (inv[1])
360 ins->alu.op = midgard_alu_op_iornot;
361
362 break;
363
364 case midgard_alu_op_ixor:
365 /* ~a ^ b = a ^ ~b = ~(a ^ b) = inxor(a, b) */
366 /* ~a ^ ~b = a ^ b */
367
368 if (inv[0] ^ inv[1])
369 ins->alu.op = midgard_alu_op_inxor;
370
371 break;
372
373 default:
374 break;
375 }
376 }
377
378 static void
379 emit_alu_bundle(compiler_context *ctx,
380 midgard_bundle *bundle,
381 struct util_dynarray *emission,
382 unsigned lookahead)
383 {
384 /* Emit the control word */
385 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
386
387 /* Next up, emit register words */
388 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
389 midgard_instruction *ins = bundle->instructions[i];
390
391 /* Check if this instruction has registers */
392 if (ins->compact_branch) continue;
393
394 /* Otherwise, just emit the registers */
395 uint16_t reg_word = 0;
396 memcpy(&reg_word, &ins->registers, sizeof(uint16_t));
397 util_dynarray_append(emission, uint16_t, reg_word);
398 }
399
400 /* Now, we emit the body itself */
401 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
402 midgard_instruction *ins = bundle->instructions[i];
403
404 /* Where is this body */
405 unsigned size = 0;
406 void *source = NULL;
407
408 /* In case we demote to a scalar */
409 midgard_scalar_alu scalarized;
410
411 if (!ins->compact_branch)
412 mir_lower_inverts(ins);
413
414 if (ins->unit & UNITS_ANY_VECTOR) {
415 mir_pack_mask_alu(ins);
416 mir_pack_swizzle_alu(ins);
417 size = sizeof(midgard_vector_alu);
418 source = &ins->alu;
419 } else if (ins->unit == ALU_ENAB_BR_COMPACT) {
420 size = sizeof(midgard_branch_cond);
421 source = &ins->br_compact;
422 } else if (ins->compact_branch) { /* misnomer */
423 size = sizeof(midgard_branch_extended);
424 source = &ins->branch_extended;
425 } else {
426 size = sizeof(midgard_scalar_alu);
427 scalarized = vector_to_scalar_alu(ins->alu, ins);
428 source = &scalarized;
429 }
430
431 memcpy(util_dynarray_grow_bytes(emission, size, 1), source, size);
432 }
433
434 /* Emit padding (all zero) */
435 memset(util_dynarray_grow_bytes(emission, bundle->padding, 1), 0, bundle->padding);
436
437 /* Tack on constants */
438
439 if (bundle->has_embedded_constants)
440 util_dynarray_append(emission, midgard_constants, bundle->constants);
441 }
442
443 /* Shift applied to the immediate used as an offset. Probably this is papering
444 * over some other semantic distinction else well, but it unifies things in the
445 * compiler so I don't mind. */
446
447 static unsigned
448 mir_ldst_imm_shift(midgard_load_store_op op)
449 {
450 if (OP_IS_UBO_READ(op))
451 return 3;
452 else
453 return 1;
454 }
455
456 static enum mali_sampler_type
457 midgard_sampler_type(nir_alu_type t) {
458 switch (nir_alu_type_get_base_type(t))
459 {
460 case nir_type_float:
461 return MALI_SAMPLER_FLOAT;
462 case nir_type_int:
463 return MALI_SAMPLER_SIGNED;
464 case nir_type_uint:
465 return MALI_SAMPLER_UNSIGNED;
466 default:
467 unreachable("Unknown sampler type");
468 }
469 }
470
471 /* After everything is scheduled, emit whole bundles at a time */
472
473 void
474 emit_binary_bundle(compiler_context *ctx,
475 midgard_bundle *bundle,
476 struct util_dynarray *emission,
477 int next_tag)
478 {
479 int lookahead = next_tag << 4;
480
481 switch (bundle->tag) {
482 case TAG_ALU_4:
483 case TAG_ALU_8:
484 case TAG_ALU_12:
485 case TAG_ALU_16:
486 case TAG_ALU_4 + 4:
487 case TAG_ALU_8 + 4:
488 case TAG_ALU_12 + 4:
489 case TAG_ALU_16 + 4:
490 emit_alu_bundle(ctx, bundle, emission, lookahead);
491 break;
492
493 case TAG_LOAD_STORE_4: {
494 /* One or two composing instructions */
495
496 uint64_t current64, next64 = LDST_NOP;
497
498 /* Copy masks */
499
500 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
501 mir_pack_ldst_mask(bundle->instructions[i]);
502
503 mir_pack_swizzle_ldst(bundle->instructions[i]);
504
505 /* Apply a constant offset */
506 unsigned offset = bundle->instructions[i]->constants.u32[0];
507
508 if (offset) {
509 unsigned shift = mir_ldst_imm_shift(bundle->instructions[i]->load_store.op);
510 unsigned upper_shift = 10 - shift;
511
512 bundle->instructions[i]->load_store.varying_parameters |= (offset & ((1 << upper_shift) - 1)) << shift;
513 bundle->instructions[i]->load_store.address |= (offset >> upper_shift);
514 }
515 }
516
517 memcpy(&current64, &bundle->instructions[0]->load_store, sizeof(current64));
518
519 if (bundle->instruction_count == 2)
520 memcpy(&next64, &bundle->instructions[1]->load_store, sizeof(next64));
521
522 midgard_load_store instruction = {
523 .type = bundle->tag,
524 .next_type = next_tag,
525 .word1 = current64,
526 .word2 = next64
527 };
528
529 util_dynarray_append(emission, midgard_load_store, instruction);
530
531 break;
532 }
533
534 case TAG_TEXTURE_4:
535 case TAG_TEXTURE_4_VTX:
536 case TAG_TEXTURE_4_BARRIER: {
537 /* Texture instructions are easy, since there is no pipelining
538 * nor VLIW to worry about. We may need to set .cont/.last
539 * flags. */
540
541 midgard_instruction *ins = bundle->instructions[0];
542
543 ins->texture.type = bundle->tag;
544 ins->texture.next_type = next_tag;
545 ins->texture.mask = ins->mask;
546 mir_pack_swizzle_tex(ins);
547
548 unsigned osz = nir_alu_type_get_type_size(ins->dest_type);
549 unsigned isz = nir_alu_type_get_type_size(ins->src_types[1]);
550
551 assert(osz == 32 || osz == 16);
552 assert(isz == 32 || isz == 16);
553
554 ins->texture.out_full = (osz == 32);
555 ins->texture.in_reg_full = (isz == 32);
556 ins->texture.sampler_type = midgard_sampler_type(ins->dest_type);
557
558 if (mir_op_computes_derivatives(ctx->stage, ins->texture.op)) {
559 ins->texture.cont = !ins->helper_terminate;
560 ins->texture.last = ins->helper_terminate || ins->helper_execute;
561 } else {
562 ins->texture.cont = ins->texture.last = 1;
563 }
564
565 util_dynarray_append(emission, midgard_texture_word, ins->texture);
566 break;
567 }
568
569 default:
570 unreachable("Unknown midgard instruction type\n");
571 }
572 }