baeec45f04240244cad4a4394b6b232eef82c3fb
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "midgard_quirks.h"
30
31 struct phys_reg {
32 /* Physical register: 0-31 */
33 unsigned reg;
34
35 /* Byte offset into the physical register: 0-15 */
36 unsigned offset;
37
38 /* log2(bytes per component) for fast mul/div */
39 unsigned shift;
40 };
41
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43
44 static void
45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
46 {
47 unsigned out[MIR_VEC_COMPONENTS];
48
49 signed reg_comp = reg_offset >> srcshift;
50 signed dst_comp = dst_offset >> dstshift;
51
52 unsigned max_component = (16 >> srcshift) - 1;
53
54 assert(reg_comp << srcshift == reg_offset);
55 assert(dst_comp << dstshift == dst_offset);
56
57 for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58 signed comp = MAX2(c - dst_comp, 0);
59 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60 }
61
62 memcpy(swizzle, out, sizeof(out));
63 }
64
65 /* Helper to return the default phys_reg for a given register */
66
67 static struct phys_reg
68 default_phys_reg(int reg, unsigned shift)
69 {
70 struct phys_reg r = {
71 .reg = reg,
72 .offset = 0,
73 .shift = shift
74 };
75
76 return r;
77 }
78
79 /* Determine which physical register, swizzle, and mask a virtual
80 * register corresponds to */
81
82 static struct phys_reg
83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
84 {
85 /* Check for special cases */
86 if (reg == ~0)
87 return default_phys_reg(REGISTER_UNUSED, shift);
88 else if (reg >= SSA_FIXED_MINIMUM)
89 return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
90 else if (!l)
91 return default_phys_reg(REGISTER_UNUSED, shift);
92
93 struct phys_reg r = {
94 .reg = l->solutions[reg] / 16,
95 .offset = l->solutions[reg] & 0xF,
96 .shift = shift
97 };
98
99 /* Report that we actually use this register, and return it */
100
101 if (r.reg < 16)
102 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
103
104 return r;
105 }
106
107 static void
108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110 if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111 assert(classes[node] == REG_CLASS_WORK);
112 classes[node] = class;
113 }
114 }
115
116 /* Special register classes impose special constraints on who can read their
117 * values, so check that */
118
119 static bool
120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122 /* Non-nodes are implicitly ok */
123 if (node >= SSA_FIXED_MINIMUM)
124 return true;
125
126 switch (classes[node]) {
127 case REG_CLASS_LDST:
128 return (tag == TAG_LOAD_STORE_4);
129 case REG_CLASS_TEXR:
130 return (tag == TAG_TEXTURE_4);
131 case REG_CLASS_TEXW:
132 return (tag != TAG_LOAD_STORE_4);
133 case REG_CLASS_WORK:
134 return IS_ALU(tag);
135 default:
136 unreachable("Invalid class");
137 }
138 }
139
140 static bool
141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143 /* Non-nodes are implicitly ok */
144 if (node >= SSA_FIXED_MINIMUM)
145 return true;
146
147 switch (classes[node]) {
148 case REG_CLASS_TEXR:
149 return true;
150 case REG_CLASS_TEXW:
151 return (tag == TAG_TEXTURE_4);
152 case REG_CLASS_LDST:
153 case REG_CLASS_WORK:
154 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155 default:
156 unreachable("Invalid class");
157 }
158 }
159
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161 * to create a bit field of types of instructions that read a particular index.
162 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163
164 static void
165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167 if (node < SSA_FIXED_MINIMUM)
168 BITSET_SET(bitfield, node);
169 }
170
171 void
172 mir_lower_special_reads(compiler_context *ctx)
173 {
174 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175
176 /* Bitfields for the various types of registers we could have. aluw can
177 * be written by either ALU or load/store */
178
179 unsigned *alur = calloc(sz, 1);
180 unsigned *aluw = calloc(sz, 1);
181 unsigned *brar = calloc(sz, 1);
182 unsigned *ldst = calloc(sz, 1);
183 unsigned *texr = calloc(sz, 1);
184 unsigned *texw = calloc(sz, 1);
185
186 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187
188 mir_foreach_instr_global(ctx, ins) {
189 switch (ins->type) {
190 case TAG_ALU_4:
191 mark_node_class(aluw, ins->dest);
192 mark_node_class(alur, ins->src[0]);
193 mark_node_class(alur, ins->src[1]);
194 mark_node_class(alur, ins->src[2]);
195
196 if (ins->compact_branch && ins->writeout)
197 mark_node_class(brar, ins->src[0]);
198
199 break;
200
201 case TAG_LOAD_STORE_4:
202 mark_node_class(aluw, ins->dest);
203 mark_node_class(ldst, ins->src[0]);
204 mark_node_class(ldst, ins->src[1]);
205 mark_node_class(ldst, ins->src[2]);
206 break;
207
208 case TAG_TEXTURE_4:
209 mark_node_class(texr, ins->src[0]);
210 mark_node_class(texr, ins->src[1]);
211 mark_node_class(texr, ins->src[2]);
212 mark_node_class(texw, ins->dest);
213 break;
214 }
215 }
216
217 /* Pass #2 is lowering now that we've analyzed all the classes.
218 * Conceptually, if an index is only marked for a single type of use,
219 * there is nothing to lower. If it is marked for different uses, we
220 * split up based on the number of types of uses. To do so, we divide
221 * into N distinct classes of use (where N>1 by definition), emit N-1
222 * moves from the index to copies of the index, and finally rewrite N-1
223 * of the types of uses to use the corresponding move */
224
225 unsigned spill_idx = ctx->temp_count;
226
227 for (unsigned i = 0; i < ctx->temp_count; ++i) {
228 bool is_alur = BITSET_TEST(alur, i);
229 bool is_aluw = BITSET_TEST(aluw, i);
230 bool is_brar = BITSET_TEST(brar, i);
231 bool is_ldst = BITSET_TEST(ldst, i);
232 bool is_texr = BITSET_TEST(texr, i);
233 bool is_texw = BITSET_TEST(texw, i);
234
235 /* Analyse to check how many distinct uses there are. ALU ops
236 * (alur) can read the results of the texture pipeline (texw)
237 * but not ldst or texr. Load/store ops (ldst) cannot read
238 * anything but load/store inputs. Texture pipeline cannot read
239 * anything but texture inputs. TODO: Simplify. */
240
241 bool collision =
242 (is_alur && (is_ldst || is_texr)) ||
243 (is_ldst && (is_alur || is_texr || is_texw)) ||
244 (is_texr && (is_alur || is_ldst || is_texw)) ||
245 (is_texw && (is_aluw || is_ldst || is_texr)) ||
246 (is_brar && is_texw);
247
248 if (!collision)
249 continue;
250
251 /* Use the index as-is as the work copy. Emit copies for
252 * special uses */
253
254 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
255 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
256
257 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
258 if (!collisions[j]) continue;
259
260 /* When the hazard is from reading, we move and rewrite
261 * sources (typical case). When it's from writing, we
262 * flip the move and rewrite destinations (obscure,
263 * only from control flow -- impossible in SSA) */
264
265 bool hazard_write = (j == 2);
266
267 unsigned idx = spill_idx++;
268
269 midgard_instruction m = hazard_write ?
270 v_mov(idx, i) : v_mov(i, idx);
271
272 /* Insert move before each read/write, depending on the
273 * hazard we're trying to account for */
274
275 mir_foreach_instr_global_safe(ctx, pre_use) {
276 if (pre_use->type != classes[j])
277 continue;
278
279 if (hazard_write) {
280 if (pre_use->dest != i)
281 continue;
282 } else {
283 if (!mir_has_arg(pre_use, i))
284 continue;
285 }
286
287 if (hazard_write) {
288 midgard_instruction *use = mir_next_op(pre_use);
289 assert(use);
290 mir_insert_instruction_before(ctx, use, m);
291 mir_rewrite_index_dst_single(pre_use, i, idx);
292 } else {
293 idx = spill_idx++;
294 m = v_mov(i, idx);
295 m.mask = mir_from_bytemask(mir_round_bytemask_up(
296 mir_bytemask_of_read_components(pre_use, i), 32), 32);
297 mir_insert_instruction_before(ctx, pre_use, m);
298 mir_rewrite_index_src_single(pre_use, i, idx);
299 }
300 }
301 }
302 }
303
304 free(alur);
305 free(aluw);
306 free(brar);
307 free(ldst);
308 free(texr);
309 free(texw);
310 }
311
312 /* We register allocate after scheduling, so we need to ensure instructions
313 * executing in parallel within a segment of a bundle don't clobber each
314 * other's registers. This is mostly a non-issue thanks to scheduling, but
315 * there are edge cases. In particular, after a register is written in a
316 * segment, it interferes with anything reading. */
317
318 static void
319 mir_compute_segment_interference(
320 compiler_context *ctx,
321 struct lcra_state *l,
322 midgard_bundle *bun,
323 unsigned pivot,
324 unsigned i)
325 {
326 for (unsigned j = pivot; j < i; ++j) {
327 mir_foreach_src(bun->instructions[j], s) {
328 if (bun->instructions[j]->src[s] >= ctx->temp_count)
329 continue;
330
331 for (unsigned q = pivot; q < i; ++q) {
332 if (bun->instructions[q]->dest >= ctx->temp_count)
333 continue;
334
335 /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
336
337 if (q >= j) {
338 if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
339 continue;
340 }
341
342 unsigned mask = mir_bytemask(bun->instructions[q]);
343 unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
344 lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
345 }
346 }
347 }
348 }
349
350 static void
351 mir_compute_bundle_interference(
352 compiler_context *ctx,
353 struct lcra_state *l,
354 midgard_bundle *bun)
355 {
356 if (!IS_ALU(bun->tag))
357 return;
358
359 bool old = bun->instructions[0]->unit >= UNIT_VADD;
360 unsigned pivot = 0;
361
362 for (unsigned i = 1; i < bun->instruction_count; ++i) {
363 bool new = bun->instructions[i]->unit >= UNIT_VADD;
364
365 if (old != new) {
366 mir_compute_segment_interference(ctx, l, bun, 0, i);
367 pivot = i;
368 break;
369 }
370 }
371
372 mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
373 }
374
375 static void
376 mir_compute_interference(
377 compiler_context *ctx,
378 struct lcra_state *l)
379 {
380 /* First, we need liveness information to be computed per block */
381 mir_compute_liveness(ctx);
382
383 /* We need to force r1.w live throughout a blend shader */
384
385 if (ctx->is_blend) {
386 unsigned r1w = ~0;
387
388 mir_foreach_block(ctx, _block) {
389 midgard_block *block = (midgard_block *) _block;
390 mir_foreach_instr_in_block_rev(block, ins) {
391 if (ins->writeout)
392 r1w = ins->src[2];
393 }
394
395 if (r1w != ~0)
396 break;
397 }
398
399 mir_foreach_instr_global(ctx, ins) {
400 if (ins->dest < ctx->temp_count)
401 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
402 }
403 }
404
405 /* Now that every block has live_in/live_out computed, we can determine
406 * interference by walking each block linearly. Take live_out at the
407 * end of each block and walk the block backwards. */
408
409 mir_foreach_block(ctx, _blk) {
410 midgard_block *blk = (midgard_block *) _blk;
411 uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
412
413 mir_foreach_instr_in_block_rev(blk, ins) {
414 /* Mark all registers live after the instruction as
415 * interfering with the destination */
416
417 unsigned dest = ins->dest;
418
419 if (dest < ctx->temp_count) {
420 for (unsigned i = 0; i < ctx->temp_count; ++i)
421 if (live[i]) {
422 unsigned mask = mir_bytemask(ins);
423 lcra_add_node_interference(l, dest, mask, i, live[i]);
424 }
425 }
426
427 /* Update live_in */
428 mir_liveness_ins_update(live, ins, ctx->temp_count);
429 }
430
431 mir_foreach_bundle_in_block(blk, bun)
432 mir_compute_bundle_interference(ctx, l, bun);
433
434 free(live);
435 }
436 }
437
438 /* This routine performs the actual register allocation. It should be succeeded
439 * by install_registers */
440
441 static struct lcra_state *
442 allocate_registers(compiler_context *ctx, bool *spilled)
443 {
444 /* The number of vec4 work registers available depends on when the
445 * uniforms start, so compute that first */
446 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
447
448 /* No register allocation to do with no SSA */
449
450 if (!ctx->temp_count)
451 return NULL;
452
453 struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 5);
454
455 /* Starts of classes, in bytes */
456 l->class_start[REG_CLASS_WORK] = 16 * 0;
457 l->class_start[REG_CLASS_LDST] = 16 * 26;
458 l->class_start[REG_CLASS_TEXR] = 16 * 28;
459 l->class_start[REG_CLASS_TEXW] = 16 * 28;
460
461 l->class_size[REG_CLASS_WORK] = 16 * work_count;
462 l->class_size[REG_CLASS_LDST] = 16 * 2;
463 l->class_size[REG_CLASS_TEXR] = 16 * 2;
464 l->class_size[REG_CLASS_TEXW] = 16 * 2;
465
466 lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
467
468 /* To save space on T*20, we don't have real texture registers.
469 * Instead, tex inputs reuse the load/store pipeline registers, and
470 * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
471 * noting that this handles interferences and sizes correctly. */
472
473 if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
474 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
475 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
476 }
477
478 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
479 unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
480 unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
481
482 mir_foreach_instr_global(ctx, ins) {
483 /* Swizzles of 32-bit sources on 64-bit instructions need to be
484 * aligned to either bottom (xy) or top (zw). More general
485 * swizzle lowering should happen prior to scheduling (TODO),
486 * but once we get RA we shouldn't disrupt this further. Align
487 * sources of 64-bit instructions. */
488
489 if (ins->type == TAG_ALU_4 && ins->alu.reg_mode == midgard_reg_mode_64) {
490 mir_foreach_src(ins, v) {
491 unsigned s = ins->src[v];
492
493 if (s < ctx->temp_count)
494 min_alignment[s] = 3;
495 }
496 }
497
498 if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->load_store.op)) {
499 mir_foreach_src(ins, v) {
500 unsigned s = ins->src[v];
501 unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
502
503 if (s < ctx->temp_count)
504 min_alignment[s] = (size == 64) ? 3 : 2;
505 }
506 }
507
508 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
509
510 unsigned size = nir_alu_type_get_type_size(ins->dest_type);
511
512 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
513 int comps1 = util_logbase2(ins->mask);
514
515 int bytes = (comps1 + 1) * (size / 8);
516
517 /* Use the largest class if there's ambiguity, this
518 * handles partial writes */
519
520 int dest = ins->dest;
521 found_class[dest] = MAX2(found_class[dest], bytes);
522
523 min_alignment[dest] =
524 (size == 16) ? 1 : /* (1 << 1) = 2-byte */
525 (size == 32) ? 2 : /* (1 << 2) = 4-byte */
526 (size == 64) ? 3 : /* (1 << 3) = 8-byte */
527 3; /* 8-bit todo */
528
529 /* We can't cross xy/zw boundaries. TODO: vec8 can */
530 if (size == 16)
531 min_bound[dest] = 8;
532
533 /* We don't have a swizzle for the conditional and we don't
534 * want to muck with the conditional itself, so just force
535 * alignment for now */
536
537 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op)) {
538 min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
539
540 /* LCRA assumes bound >= alignment */
541 min_bound[dest] = 16;
542 }
543
544 /* Since ld/st swizzles and masks are 32-bit only, we need them
545 * aligned to enable final packing */
546 if (ins->type == TAG_LOAD_STORE_4)
547 min_alignment[dest] = MAX2(min_alignment[dest], 2);
548 }
549
550 for (unsigned i = 0; i < ctx->temp_count; ++i) {
551 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
552 min_bound[i] ? min_bound[i] : 16);
553 lcra_restrict_range(l, i, found_class[i]);
554 }
555
556 free(found_class);
557 free(min_alignment);
558 free(min_bound);
559
560 /* Next, we'll determine semantic class. We default to zero (work).
561 * But, if we're used with a special operation, that will force us to a
562 * particular class. Each node must be assigned to exactly one class; a
563 * prepass before RA should have lowered what-would-have-been
564 * multiclass nodes into a series of moves to break it up into multiple
565 * nodes (TODO) */
566
567 mir_foreach_instr_global(ctx, ins) {
568 /* Check if this operation imposes any classes */
569
570 if (ins->type == TAG_LOAD_STORE_4) {
571 set_class(l->class, ins->src[0], REG_CLASS_LDST);
572 set_class(l->class, ins->src[1], REG_CLASS_LDST);
573 set_class(l->class, ins->src[2], REG_CLASS_LDST);
574
575 if (OP_IS_VEC4_ONLY(ins->load_store.op)) {
576 lcra_restrict_range(l, ins->dest, 16);
577 lcra_restrict_range(l, ins->src[0], 16);
578 lcra_restrict_range(l, ins->src[1], 16);
579 lcra_restrict_range(l, ins->src[2], 16);
580 }
581 } else if (ins->type == TAG_TEXTURE_4) {
582 set_class(l->class, ins->dest, REG_CLASS_TEXW);
583 set_class(l->class, ins->src[0], REG_CLASS_TEXR);
584 set_class(l->class, ins->src[1], REG_CLASS_TEXR);
585 set_class(l->class, ins->src[2], REG_CLASS_TEXR);
586 set_class(l->class, ins->src[3], REG_CLASS_TEXR);
587 }
588 }
589
590 /* Check that the semantics of the class are respected */
591 mir_foreach_instr_global(ctx, ins) {
592 assert(check_write_class(l->class, ins->type, ins->dest));
593 assert(check_read_class(l->class, ins->type, ins->src[0]));
594 assert(check_read_class(l->class, ins->type, ins->src[1]));
595 assert(check_read_class(l->class, ins->type, ins->src[2]));
596 }
597
598 /* Mark writeout to r0, render target to r1.z, unknown to r1.w */
599 mir_foreach_instr_global(ctx, ins) {
600 if (!(ins->compact_branch && ins->writeout)) continue;
601
602 if (ins->src[0] < ctx->temp_count) {
603 if (ins->writeout_depth)
604 l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_X * 4;
605 else if (ins->writeout_stencil)
606 l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_Y * 4;
607 else
608 l->solutions[ins->src[0]] = 0;
609 }
610
611 if (ins->src[1] < ctx->temp_count)
612 l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
613
614 if (ins->src[2] < ctx->temp_count)
615 l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_W * 4;
616 }
617
618 mir_compute_interference(ctx, l);
619
620 *spilled = !lcra_solve(l);
621 return l;
622 }
623
624
625 /* Once registers have been decided via register allocation
626 * (allocate_registers), we need to rewrite the MIR to use registers instead of
627 * indices */
628
629 static void
630 install_registers_instr(
631 compiler_context *ctx,
632 struct lcra_state *l,
633 midgard_instruction *ins)
634 {
635 unsigned src_shift[MIR_SRC_COUNT];
636
637 for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
638 src_shift[i] =
639 util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
640 }
641
642 unsigned dest_shift =
643 util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
644
645 switch (ins->type) {
646 case TAG_ALU_4:
647 case TAG_ALU_8:
648 case TAG_ALU_12:
649 case TAG_ALU_16: {
650 if (ins->compact_branch)
651 return;
652
653 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
654 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
655 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
656
657 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
658
659 unsigned dest_offset =
660 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
661 dest.offset;
662
663 offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
664
665 ins->registers.src1_reg = src1.reg;
666
667 ins->registers.src2_imm = ins->has_inline_constant;
668
669 if (ins->has_inline_constant) {
670 /* Encode inline 16-bit constant. See disassembler for
671 * where the algorithm is from */
672
673 ins->registers.src2_reg = ins->inline_constant >> 11;
674
675 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
676 uint16_t imm = ((lower_11 >> 8) & 0x7) |
677 ((lower_11 & 0xFF) << 3);
678
679 ins->alu.src2 = imm << 2;
680 } else {
681 offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
682
683 ins->registers.src2_reg = src2.reg;
684 }
685
686 ins->registers.out_reg = dest.reg;
687 break;
688 }
689
690 case TAG_LOAD_STORE_4: {
691 /* Which physical register we read off depends on
692 * whether we are loading or storing -- think about the
693 * logical dataflow */
694
695 bool encodes_src = OP_IS_STORE(ins->load_store.op);
696
697 if (encodes_src) {
698 struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
699 assert(src.reg == 26 || src.reg == 27);
700
701 ins->load_store.reg = src.reg - 26;
702 offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
703 } else {
704 struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
705
706 ins->load_store.reg = dst.reg;
707 offset_swizzle(ins->swizzle[0], 0, 2, 2, dst.offset);
708 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
709 }
710
711 /* We also follow up by actual arguments */
712
713 unsigned src2 = ins->src[1];
714 unsigned src3 = ins->src[2];
715
716 if (src2 != ~0) {
717 struct phys_reg src = index_to_reg(ctx, l, src2, 2);
718 unsigned component = src.offset >> src.shift;
719 assert(component << src.shift == src.offset);
720 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
721 }
722
723 if (src3 != ~0) {
724 struct phys_reg src = index_to_reg(ctx, l, src3, 2);
725 unsigned component = src.offset >> src.shift;
726 assert(component << src.shift == src.offset);
727 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
728 }
729
730 break;
731 }
732
733 case TAG_TEXTURE_4: {
734 if (ins->texture.op == TEXTURE_OP_BARRIER)
735 break;
736
737 /* Grab RA results */
738 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
739 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
740 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
741 struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
742
743 /* First, install the texture coordinate */
744 ins->texture.in_reg_select = coord.reg & 1;
745 offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
746
747 /* Next, install the destination */
748 ins->texture.out_reg_select = dest.reg & 1;
749 offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
750 dest_shift == 1 ? dest.offset % 8 :
751 dest.offset);
752 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
753
754 /* If there is a register LOD/bias, use it */
755 if (ins->src[2] != ~0) {
756 assert(!(lod.offset & 3));
757 midgard_tex_register_select sel = {
758 .select = lod.reg & 1,
759 .full = 1,
760 .component = lod.offset / 4
761 };
762
763 uint8_t packed;
764 memcpy(&packed, &sel, sizeof(packed));
765 ins->texture.bias = packed;
766 }
767
768 /* If there is an offset register, install it */
769 if (ins->src[3] != ~0) {
770 unsigned x = offset.offset / 4;
771 unsigned y = x + 1;
772 unsigned z = x + 2;
773
774 /* Check range, TODO: half-registers */
775 assert(z < 4);
776
777 ins->texture.offset =
778 (1) | /* full */
779 (offset.reg & 1) << 1 | /* select */
780 (0 << 2) | /* upper */
781 (x << 3) | /* swizzle */
782 (y << 5) | /* swizzle */
783 (z << 7); /* swizzle */
784 }
785
786 break;
787 }
788
789 default:
790 break;
791 }
792 }
793
794 static void
795 install_registers(compiler_context *ctx, struct lcra_state *l)
796 {
797 mir_foreach_instr_global(ctx, ins)
798 install_registers_instr(ctx, l, ins);
799 }
800
801
802 /* If register allocation fails, find the best spill node */
803
804 static signed
805 mir_choose_spill_node(
806 compiler_context *ctx,
807 struct lcra_state *l)
808 {
809 /* We can't spill a previously spilled value or an unspill */
810
811 mir_foreach_instr_global(ctx, ins) {
812 if (ins->no_spill & (1 << l->spill_class)) {
813 lcra_set_node_spill_cost(l, ins->dest, -1);
814
815 if (l->spill_class != REG_CLASS_WORK) {
816 mir_foreach_src(ins, s)
817 lcra_set_node_spill_cost(l, ins->src[s], -1);
818 }
819 }
820 }
821
822 return lcra_get_best_spill_node(l);
823 }
824
825 /* Once we've chosen a spill node, spill it */
826
827 static void
828 mir_spill_register(
829 compiler_context *ctx,
830 unsigned spill_node,
831 unsigned spill_class,
832 unsigned *spill_count)
833 {
834 unsigned spill_index = ctx->temp_count;
835
836 /* We have a spill node, so check the class. Work registers
837 * legitimately spill to TLS, but special registers just spill to work
838 * registers */
839
840 bool is_special = spill_class != REG_CLASS_WORK;
841 bool is_special_w = spill_class == REG_CLASS_TEXW;
842
843 /* Allocate TLS slot (maybe) */
844 unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
845
846 /* For TLS, replace all stores to the spilled node. For
847 * special reads, just keep as-is; the class will be demoted
848 * implicitly. For special writes, spill to a work register */
849
850 if (!is_special || is_special_w) {
851 if (is_special_w)
852 spill_slot = spill_index++;
853
854 mir_foreach_block(ctx, _block) {
855 midgard_block *block = (midgard_block *) _block;
856 mir_foreach_instr_in_block_safe(block, ins) {
857 if (ins->dest != spill_node) continue;
858
859 midgard_instruction st;
860
861 if (is_special_w) {
862 st = v_mov(spill_node, spill_slot);
863 st.no_spill |= (1 << spill_class);
864 } else {
865 ins->dest = spill_index++;
866 ins->no_spill |= (1 << spill_class);
867 st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
868 }
869
870 /* Hint: don't rewrite this node */
871 st.hint = true;
872
873 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
874
875 if (!is_special)
876 ctx->spills++;
877 }
878 }
879 }
880
881 /* For special reads, figure out how many bytes we need */
882 unsigned read_bytemask = 0;
883
884 mir_foreach_instr_global_safe(ctx, ins) {
885 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
886 }
887
888 /* Insert a load from TLS before the first consecutive
889 * use of the node, rewriting to use spilled indices to
890 * break up the live range. Or, for special, insert a
891 * move. Ironically the latter *increases* register
892 * pressure, but the two uses of the spilling mechanism
893 * are somewhat orthogonal. (special spilling is to use
894 * work registers to back special registers; TLS
895 * spilling is to use memory to back work registers) */
896
897 mir_foreach_block(ctx, _block) {
898 midgard_block *block = (midgard_block *) _block;
899 mir_foreach_instr_in_block(block, ins) {
900 /* We can't rewrite the moves used to spill in the
901 * first place. These moves are hinted. */
902 if (ins->hint) continue;
903
904 /* If we don't use the spilled value, nothing to do */
905 if (!mir_has_arg(ins, spill_node)) continue;
906
907 unsigned index = 0;
908
909 if (!is_special_w) {
910 index = ++spill_index;
911
912 midgard_instruction *before = ins;
913 midgard_instruction st;
914
915 if (is_special) {
916 /* Move */
917 st = v_mov(spill_node, index);
918 st.no_spill |= (1 << spill_class);
919 } else {
920 /* TLS load */
921 st = v_load_store_scratch(index, spill_slot, false, 0xF);
922 }
923
924 /* Mask the load based on the component count
925 * actually needed to prevent RA loops */
926
927 st.mask = mir_from_bytemask(mir_round_bytemask_up(
928 read_bytemask, 32), 32);
929
930 mir_insert_instruction_before_scheduled(ctx, block, before, st);
931 } else {
932 /* Special writes already have their move spilled in */
933 index = spill_slot;
934 }
935
936
937 /* Rewrite to use */
938 mir_rewrite_index_src_single(ins, spill_node, index);
939
940 if (!is_special)
941 ctx->fills++;
942 }
943 }
944
945 /* Reset hints */
946
947 mir_foreach_instr_global(ctx, ins) {
948 ins->hint = false;
949 }
950 }
951
952 /* Run register allocation in a loop, spilling until we succeed */
953
954 void
955 mir_ra(compiler_context *ctx)
956 {
957 struct lcra_state *l = NULL;
958 bool spilled = false;
959 int iter_count = 1000; /* max iterations */
960
961 /* Number of 128-bit slots in memory we've spilled into */
962 unsigned spill_count = 0;
963
964
965 mir_create_pipeline_registers(ctx);
966
967 do {
968 if (spilled) {
969 signed spill_node = mir_choose_spill_node(ctx, l);
970
971 if (spill_node == -1) {
972 fprintf(stderr, "ERROR: Failed to choose spill node\n");
973 return;
974 }
975
976 mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
977 }
978
979 mir_squeeze_index(ctx);
980 mir_invalidate_liveness(ctx);
981
982 if (l) {
983 lcra_free(l);
984 l = NULL;
985 }
986
987 l = allocate_registers(ctx, &spilled);
988 } while(spilled && ((iter_count--) > 0));
989
990 if (iter_count <= 0) {
991 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
992 assert(0);
993 }
994
995 /* Report spilling information. spill_count is in 128-bit slots (vec4 x
996 * fp32), but tls_size is in bytes, so multiply by 16 */
997
998 ctx->tls_size = spill_count * 16;
999
1000 install_registers(ctx, l);
1001
1002 lcra_free(l);
1003 }