pan/mdg: Factor out mir_adjust_constant
[mesa.git] / src / panfrost / midgard / midgard_schedule.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26 #include "midgard_quirks.h"
27 #include "util/u_memory.h"
28 #include "util/u_math.h"
29
30 /* Scheduling for Midgard is complicated, to say the least. ALU instructions
31 * must be grouped into VLIW bundles according to following model:
32 *
33 * [VMUL] [SADD]
34 * [VADD] [SMUL] [VLUT]
35 *
36 * A given instruction can execute on some subset of the units (or a few can
37 * execute on all). Instructions can be either vector or scalar; only scalar
38 * instructions can execute on SADD/SMUL units. Units on a given line execute
39 * in parallel. Subsequent lines execute separately and can pass results
40 * directly via pipeline registers r24/r25, bypassing the register file.
41 *
42 * A bundle can optionally have 128-bits of embedded constants, shared across
43 * all of the instructions within a bundle.
44 *
45 * Instructions consuming conditionals (branches and conditional selects)
46 * require their condition to be written into the conditional register (r31)
47 * within the same bundle they are consumed.
48 *
49 * Fragment writeout requires its argument to be written in full within the
50 * same bundle as the branch, with no hanging dependencies.
51 *
52 * Load/store instructions are also in bundles of simply two instructions, and
53 * texture instructions have no bundling.
54 *
55 * -------------------------------------------------------------------------
56 *
57 */
58
59 /* We create the dependency graph with per-byte granularity */
60
61 #define BYTE_COUNT 16
62
63 static void
64 add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child)
65 {
66 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
67 if (!(mask & (1 << i)))
68 continue;
69
70 struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i];
71
72 util_dynarray_foreach(parents, unsigned, parent) {
73 BITSET_WORD *dependents = instructions[*parent]->dependents;
74
75 /* Already have the dependency */
76 if (BITSET_TEST(dependents, child))
77 continue;
78
79 BITSET_SET(dependents, child);
80 instructions[child]->nr_dependencies++;
81 }
82 }
83 }
84
85 static void
86 mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent)
87 {
88 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
89 if (!(mask & (1 << i)))
90 continue;
91
92 util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent);
93 }
94 }
95
96 static void
97 mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
98 {
99 size_t sz = node_count * BYTE_COUNT;
100
101 struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
102 struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
103
104 for (unsigned i = 0; i < sz; ++i) {
105 util_dynarray_init(&last_read[i], NULL);
106 util_dynarray_init(&last_write[i], NULL);
107 }
108
109 /* Initialize dependency graph */
110 for (unsigned i = 0; i < count; ++i) {
111 instructions[i]->dependents =
112 calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
113
114 instructions[i]->nr_dependencies = 0;
115 }
116
117 /* Populate dependency graph */
118 for (signed i = count - 1; i >= 0; --i) {
119 if (instructions[i]->compact_branch)
120 continue;
121
122 unsigned dest = instructions[i]->dest;
123 unsigned mask = mir_bytemask(instructions[i]);
124
125 mir_foreach_src((*instructions), s) {
126 unsigned src = instructions[i]->src[s];
127
128 if (src < node_count) {
129 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
130 add_dependency(last_write, src, readmask, instructions, i);
131 }
132 }
133
134 if (dest < node_count) {
135 add_dependency(last_read, dest, mask, instructions, i);
136 add_dependency(last_write, dest, mask, instructions, i);
137 mark_access(last_write, dest, mask, i);
138 }
139
140 mir_foreach_src((*instructions), s) {
141 unsigned src = instructions[i]->src[s];
142
143 if (src < node_count) {
144 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
145 mark_access(last_read, src, readmask, i);
146 }
147 }
148 }
149
150 /* If there is a branch, all instructions depend on it, as interblock
151 * execution must be purely in-order */
152
153 if (instructions[count - 1]->compact_branch) {
154 BITSET_WORD *dependents = instructions[count - 1]->dependents;
155
156 for (signed i = count - 2; i >= 0; --i) {
157 if (BITSET_TEST(dependents, i))
158 continue;
159
160 BITSET_SET(dependents, i);
161 instructions[i]->nr_dependencies++;
162 }
163 }
164
165 /* Free the intermediate structures */
166 for (unsigned i = 0; i < sz; ++i) {
167 util_dynarray_fini(&last_read[i]);
168 util_dynarray_fini(&last_write[i]);
169 }
170
171 free(last_read);
172 free(last_write);
173 }
174
175 /* Does the mask cover more than a scalar? */
176
177 static bool
178 is_single_component_mask(unsigned mask)
179 {
180 int components = 0;
181
182 for (int c = 0; c < 8; ++c) {
183 if (mask & (1 << c))
184 components++;
185 }
186
187 return components == 1;
188 }
189
190 /* Helpers for scheudling */
191
192 static bool
193 mir_is_scalar(midgard_instruction *ains)
194 {
195 /* Do we try to use it as a vector op? */
196 if (!is_single_component_mask(ains->mask))
197 return false;
198
199 /* Otherwise, check mode hazards */
200 bool could_scalar = true;
201 unsigned sz0 = nir_alu_type_get_type_size(ains->src_types[0]);
202 unsigned sz1 = nir_alu_type_get_type_size(ains->src_types[1]);
203
204 /* Only 16/32-bit can run on a scalar unit */
205 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
206 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
207
208 if (ains->src[0] != ~0)
209 could_scalar &= (sz0 == 16) || (sz0 == 32);
210
211 if (ains->src[1] != ~0)
212 could_scalar &= (sz1 == 16) || (sz1 == 32);
213
214 return could_scalar;
215 }
216
217 /* How many bytes does this ALU instruction add to the bundle? */
218
219 static unsigned
220 bytes_for_instruction(midgard_instruction *ains)
221 {
222 if (ains->unit & UNITS_ANY_VECTOR)
223 return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
224 else if (ains->unit == ALU_ENAB_BRANCH)
225 return sizeof(midgard_branch_extended);
226 else if (ains->compact_branch)
227 return sizeof(ains->br_compact);
228 else
229 return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
230 }
231
232 /* We would like to flatten the linked list of midgard_instructions in a bundle
233 * to an array of pointers on the heap for easy indexing */
234
235 static midgard_instruction **
236 flatten_mir(midgard_block *block, unsigned *len)
237 {
238 *len = list_length(&block->base.instructions);
239
240 if (!(*len))
241 return NULL;
242
243 midgard_instruction **instructions =
244 calloc(sizeof(midgard_instruction *), *len);
245
246 unsigned i = 0;
247
248 mir_foreach_instr_in_block(block, ins)
249 instructions[i++] = ins;
250
251 return instructions;
252 }
253
254 /* The worklist is the set of instructions that can be scheduled now; that is,
255 * the set of instructions with no remaining dependencies */
256
257 static void
258 mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
259 {
260 for (unsigned i = 0; i < count; ++i) {
261 if (instructions[i]->nr_dependencies == 0)
262 BITSET_SET(worklist, i);
263 }
264 }
265
266 /* Update the worklist after an instruction terminates. Remove its edges from
267 * the graph and if that causes any node to have no dependencies, add it to the
268 * worklist */
269
270 static void
271 mir_update_worklist(
272 BITSET_WORD *worklist, unsigned count,
273 midgard_instruction **instructions, midgard_instruction *done)
274 {
275 /* Sanity check: if no instruction terminated, there is nothing to do.
276 * If the instruction that terminated had dependencies, that makes no
277 * sense and means we messed up the worklist. Finally, as the purpose
278 * of this routine is to update dependents, we abort early if there are
279 * no dependents defined. */
280
281 if (!done)
282 return;
283
284 assert(done->nr_dependencies == 0);
285
286 if (!done->dependents)
287 return;
288
289 /* We have an instruction with dependents. Iterate each dependent to
290 * remove one dependency (`done`), adding dependents to the worklist
291 * where possible. */
292
293 unsigned i;
294 BITSET_FOREACH_SET(i, done->dependents, count) {
295 assert(instructions[i]->nr_dependencies);
296
297 if (!(--instructions[i]->nr_dependencies))
298 BITSET_SET(worklist, i);
299 }
300
301 free(done->dependents);
302 }
303
304 /* While scheduling, we need to choose instructions satisfying certain
305 * criteria. As we schedule backwards, we choose the *last* instruction in the
306 * worklist to simulate in-order scheduling. Chosen instructions must satisfy a
307 * given predicate. */
308
309 struct midgard_predicate {
310 /* TAG or ~0 for dont-care */
311 unsigned tag;
312
313 /* True if we want to pop off the chosen instruction */
314 bool destructive;
315
316 /* For ALU, choose only this unit */
317 unsigned unit;
318
319 /* State for bundle constants. constants is the actual constants
320 * for the bundle. constant_count is the number of bytes (up to
321 * 16) currently in use for constants. When picking in destructive
322 * mode, the constants array will be updated, and the instruction
323 * will be adjusted to index into the constants array */
324
325 midgard_constants *constants;
326 unsigned constant_mask;
327 bool blend_constant;
328
329 /* Exclude this destination (if not ~0) */
330 unsigned exclude;
331
332 /* Don't schedule instructions consuming conditionals (since we already
333 * scheduled one). Excludes conditional branches and csel */
334 bool no_cond;
335
336 /* Require a minimal mask and (if nonzero) given destination. Used for
337 * writeout optimizations */
338
339 unsigned mask;
340 unsigned dest;
341
342 /* For load/store: how many pipeline registers are in use? The two
343 * scheduled instructions cannot use more than the 256-bits of pipeline
344 * space available or RA will fail (as it would run out of pipeline
345 * registers and fail to spill without breaking the schedule) */
346
347 unsigned pipeline_count;
348 };
349
350 static bool
351 mir_adjust_constant(midgard_instruction *ins, unsigned src,
352 unsigned *bundle_constant_mask,
353 unsigned *comp_mapping,
354 uint8_t *bundle_constants)
355 {
356 unsigned type_size = nir_alu_type_get_type_size(ins->src_types[src]) / 8;
357 unsigned max_comp = 16 / type_size;
358 unsigned comp_mask = mir_from_bytemask(mir_round_bytemask_up(
359 mir_bytemask_of_read_components_index(ins, src),
360 type_size * 8),
361 type_size * 8);
362 unsigned type_mask = (1 << type_size) - 1;
363
364 for (unsigned comp = 0; comp < max_comp; comp++) {
365 if (!(comp_mask & (1 << comp)))
366 continue;
367
368 uint8_t *constantp = ins->constants.u8 + (type_size * comp);
369 unsigned best_reuse_bytes = 0;
370 signed best_place = -1;
371 unsigned i, j;
372
373 for (i = 0; i < 16; i += type_size) {
374 unsigned reuse_bytes = 0;
375
376 for (j = 0; j < type_size; j++) {
377 if (!(*bundle_constant_mask & (1 << (i + j))))
378 continue;
379 if (constantp[j] != bundle_constants[i + j])
380 break;
381
382 reuse_bytes++;
383 }
384
385 /* Select the place where existing bytes can be
386 * reused so we leave empty slots to others
387 */
388 if (j == type_size &&
389 (reuse_bytes > best_reuse_bytes || best_place < 0)) {
390 best_reuse_bytes = reuse_bytes;
391 best_place = i;
392 break;
393 }
394 }
395
396 /* This component couldn't fit in the remaining constant slot,
397 * no need check the remaining components, bail out now
398 */
399 if (best_place < 0)
400 return false;
401
402 memcpy(&bundle_constants[i], constantp, type_size);
403 *bundle_constant_mask |= type_mask << best_place;
404 comp_mapping[comp] = best_place / type_size;
405 }
406
407 return true;
408 }
409
410 /* For an instruction that can fit, adjust it to fit and update the constants
411 * array, in destructive mode. Returns whether the fitting was successful. */
412
413 static bool
414 mir_adjust_constants(midgard_instruction *ins,
415 struct midgard_predicate *pred,
416 bool destructive)
417 {
418 /* Blend constants dominate */
419 if (ins->has_blend_constant) {
420 if (pred->constant_mask)
421 return false;
422 else if (destructive) {
423 pred->blend_constant = true;
424 pred->constant_mask = 0xffff;
425 return true;
426 }
427 }
428
429 /* No constant, nothing to adjust */
430 if (!ins->has_constants)
431 return true;
432
433 unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
434 unsigned bundle_constant_mask = pred->constant_mask;
435 unsigned comp_mapping[2][16] = { };
436 uint8_t bundle_constants[16];
437
438 memcpy(bundle_constants, pred->constants, 16);
439
440 /* Let's try to find a place for each active component of the constant
441 * register.
442 */
443 for (unsigned src = 0; src < 2; ++src) {
444 if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT))
445 continue;
446
447 if (!mir_adjust_constant(ins, src, &bundle_constant_mask,
448 comp_mapping[src], bundle_constants))
449 return false;
450 }
451
452 /* If non-destructive, we're done */
453 if (!destructive)
454 return true;
455
456 /* Otherwise update the constant_mask and constant values */
457 pred->constant_mask = bundle_constant_mask;
458 memcpy(pred->constants, bundle_constants, 16);
459
460 /* Use comp_mapping as a swizzle */
461 mir_foreach_src(ins, s) {
462 if (ins->src[s] == r_constant)
463 mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]);
464 }
465
466 return true;
467 }
468
469 /* Conservative estimate of the pipeline registers required for load/store */
470
471 static unsigned
472 mir_pipeline_count(midgard_instruction *ins)
473 {
474 unsigned bytecount = 0;
475
476 mir_foreach_src(ins, i) {
477 /* Skip empty source */
478 if (ins->src[i] == ~0) continue;
479
480 unsigned bytemask = mir_bytemask_of_read_components_index(ins, i);
481
482 unsigned max = util_logbase2(bytemask) + 1;
483 bytecount += max;
484 }
485
486 return DIV_ROUND_UP(bytecount, 16);
487 }
488
489 static midgard_instruction *
490 mir_choose_instruction(
491 midgard_instruction **instructions,
492 BITSET_WORD *worklist, unsigned count,
493 struct midgard_predicate *predicate)
494 {
495 /* Parse the predicate */
496 unsigned tag = predicate->tag;
497 bool alu = tag == TAG_ALU_4;
498 bool ldst = tag == TAG_LOAD_STORE_4;
499 unsigned unit = predicate->unit;
500 bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
501 bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
502 bool no_cond = predicate->no_cond;
503
504 unsigned mask = predicate->mask;
505 unsigned dest = predicate->dest;
506 bool needs_dest = mask & 0xF;
507
508 /* Iterate to find the best instruction satisfying the predicate */
509 unsigned i;
510
511 signed best_index = -1;
512 bool best_conditional = false;
513
514 /* Enforce a simple metric limiting distance to keep down register
515 * pressure. TOOD: replace with liveness tracking for much better
516 * results */
517
518 unsigned max_active = 0;
519 unsigned max_distance = 6;
520
521 BITSET_FOREACH_SET(i, worklist, count) {
522 max_active = MAX2(max_active, i);
523 }
524
525 BITSET_FOREACH_SET(i, worklist, count) {
526 if ((max_active - i) >= max_distance)
527 continue;
528
529 if (tag != ~0 && instructions[i]->type != tag)
530 continue;
531
532 if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
533 continue;
534
535 if (alu && !branch && !(alu_opcode_props[instructions[i]->alu.op].props & unit))
536 continue;
537
538 if (branch && !instructions[i]->compact_branch)
539 continue;
540
541 if (alu && scalar && !mir_is_scalar(instructions[i]))
542 continue;
543
544 if (alu && !mir_adjust_constants(instructions[i], predicate, false))
545 continue;
546
547 if (needs_dest && instructions[i]->dest != dest)
548 continue;
549
550 if (mask && ((~instructions[i]->mask) & mask))
551 continue;
552
553 if (ldst && mir_pipeline_count(instructions[i]) + predicate->pipeline_count > 2)
554 continue;
555
556 bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->alu.op);
557 conditional |= (branch && instructions[i]->branch.conditional);
558
559 if (conditional && no_cond)
560 continue;
561
562 /* Simulate in-order scheduling */
563 if ((signed) i < best_index)
564 continue;
565
566 best_index = i;
567 best_conditional = conditional;
568 }
569
570
571 /* Did we find anything? */
572
573 if (best_index < 0)
574 return NULL;
575
576 /* If we found something, remove it from the worklist */
577 assert(best_index < count);
578
579 if (predicate->destructive) {
580 BITSET_CLEAR(worklist, best_index);
581
582 if (alu)
583 mir_adjust_constants(instructions[best_index], predicate, true);
584
585 if (ldst)
586 predicate->pipeline_count += mir_pipeline_count(instructions[best_index]);
587
588 /* Once we schedule a conditional, we can't again */
589 predicate->no_cond |= best_conditional;
590 }
591
592 return instructions[best_index];
593 }
594
595 /* Still, we don't choose instructions in a vacuum. We need a way to choose the
596 * best bundle type (ALU, load/store, texture). Nondestructive. */
597
598 static unsigned
599 mir_choose_bundle(
600 midgard_instruction **instructions,
601 BITSET_WORD *worklist, unsigned count)
602 {
603 /* At the moment, our algorithm is very simple - use the bundle of the
604 * best instruction, regardless of what else could be scheduled
605 * alongside it. This is not optimal but it works okay for in-order */
606
607 struct midgard_predicate predicate = {
608 .tag = ~0,
609 .destructive = false,
610 .exclude = ~0
611 };
612
613 midgard_instruction *chosen = mir_choose_instruction(instructions, worklist, count, &predicate);
614
615 if (chosen)
616 return chosen->type;
617 else
618 return ~0;
619 }
620
621 /* We want to choose an ALU instruction filling a given unit */
622 static void
623 mir_choose_alu(midgard_instruction **slot,
624 midgard_instruction **instructions,
625 BITSET_WORD *worklist, unsigned len,
626 struct midgard_predicate *predicate,
627 unsigned unit)
628 {
629 /* Did we already schedule to this slot? */
630 if ((*slot) != NULL)
631 return;
632
633 /* Try to schedule something, if not */
634 predicate->unit = unit;
635 *slot = mir_choose_instruction(instructions, worklist, len, predicate);
636
637 /* Store unit upon scheduling */
638 if (*slot && !((*slot)->compact_branch))
639 (*slot)->unit = unit;
640 }
641
642 /* When we are scheduling a branch/csel, we need the consumed condition in the
643 * same block as a pipeline register. There are two options to enable this:
644 *
645 * - Move the conditional into the bundle. Preferred, but only works if the
646 * conditional is used only once and is from this block.
647 * - Copy the conditional.
648 *
649 * We search for the conditional. If it's in this block, single-use, and
650 * without embedded constants, we schedule it immediately. Otherwise, we
651 * schedule a move for it.
652 *
653 * mir_comparison_mobile is a helper to find the moveable condition.
654 */
655
656 static unsigned
657 mir_comparison_mobile(
658 compiler_context *ctx,
659 midgard_instruction **instructions,
660 struct midgard_predicate *predicate,
661 unsigned count,
662 unsigned cond)
663 {
664 if (!mir_single_use(ctx, cond))
665 return ~0;
666
667 unsigned ret = ~0;
668
669 for (unsigned i = 0; i < count; ++i) {
670 if (instructions[i]->dest != cond)
671 continue;
672
673 /* Must fit in an ALU bundle */
674 if (instructions[i]->type != TAG_ALU_4)
675 return ~0;
676
677 /* If it would itself require a condition, that's recursive */
678 if (OP_IS_CSEL(instructions[i]->alu.op))
679 return ~0;
680
681 /* We'll need to rewrite to .w but that doesn't work for vector
682 * ops that don't replicate (ball/bany), so bail there */
683
684 if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->alu.op].props))
685 return ~0;
686
687 /* Ensure it will fit with constants */
688
689 if (!mir_adjust_constants(instructions[i], predicate, false))
690 return ~0;
691
692 /* Ensure it is written only once */
693
694 if (ret != ~0)
695 return ~0;
696 else
697 ret = i;
698 }
699
700 /* Inject constants now that we are sure we want to */
701 if (ret != ~0)
702 mir_adjust_constants(instructions[ret], predicate, true);
703
704 return ret;
705 }
706
707 /* Using the information about the moveable conditional itself, we either pop
708 * that condition off the worklist for use now, or create a move to
709 * artificially schedule instead as a fallback */
710
711 static midgard_instruction *
712 mir_schedule_comparison(
713 compiler_context *ctx,
714 midgard_instruction **instructions,
715 struct midgard_predicate *predicate,
716 BITSET_WORD *worklist, unsigned count,
717 unsigned cond, bool vector, unsigned *swizzle,
718 midgard_instruction *user)
719 {
720 /* TODO: swizzle when scheduling */
721 unsigned comp_i =
722 (!vector && (swizzle[0] == 0)) ?
723 mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0;
724
725 /* If we can, schedule the condition immediately */
726 if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
727 assert(comp_i < count);
728 BITSET_CLEAR(worklist, comp_i);
729 return instructions[comp_i];
730 }
731
732 /* Otherwise, we insert a move */
733
734 midgard_instruction mov = v_mov(cond, cond);
735 mov.mask = vector ? 0xF : 0x1;
736 memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1]));
737
738 return mir_insert_instruction_before(ctx, user, mov);
739 }
740
741 /* Most generally, we need instructions writing to r31 in the appropriate
742 * components */
743
744 static midgard_instruction *
745 mir_schedule_condition(compiler_context *ctx,
746 struct midgard_predicate *predicate,
747 BITSET_WORD *worklist, unsigned count,
748 midgard_instruction **instructions,
749 midgard_instruction *last)
750 {
751 /* For a branch, the condition is the only argument; for csel, third */
752 bool branch = last->compact_branch;
753 unsigned condition_index = branch ? 0 : 2;
754
755 /* csel_v is vector; otherwise, conditions are scalar */
756 bool vector = !branch && OP_IS_CSEL_V(last->alu.op);
757
758 /* Grab the conditional instruction */
759
760 midgard_instruction *cond = mir_schedule_comparison(
761 ctx, instructions, predicate, worklist, count, last->src[condition_index],
762 vector, last->swizzle[2], last);
763
764 /* We have exclusive reign over this (possibly move) conditional
765 * instruction. We can rewrite into a pipeline conditional register */
766
767 predicate->exclude = cond->dest;
768 cond->dest = SSA_FIXED_REGISTER(31);
769
770 if (!vector) {
771 cond->mask = (1 << COMPONENT_W);
772
773 mir_foreach_src(cond, s) {
774 if (cond->src[s] == ~0)
775 continue;
776
777 for (unsigned q = 0; q < 4; ++q)
778 cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q];
779 }
780 }
781
782 /* Schedule the unit: csel is always in the latter pipeline, so a csel
783 * condition must be in the former pipeline stage (vmul/sadd),
784 * depending on scalar/vector of the instruction itself. A branch must
785 * be written from the latter pipeline stage and a branch condition is
786 * always scalar, so it is always in smul (exception: ball/bany, which
787 * will be vadd) */
788
789 if (branch)
790 cond->unit = UNIT_SMUL;
791 else
792 cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
793
794 return cond;
795 }
796
797 /* Schedules a single bundle of the given type */
798
799 static midgard_bundle
800 mir_schedule_texture(
801 midgard_instruction **instructions,
802 BITSET_WORD *worklist, unsigned len)
803 {
804 struct midgard_predicate predicate = {
805 .tag = TAG_TEXTURE_4,
806 .destructive = true,
807 .exclude = ~0
808 };
809
810 midgard_instruction *ins =
811 mir_choose_instruction(instructions, worklist, len, &predicate);
812
813 mir_update_worklist(worklist, len, instructions, ins);
814
815 struct midgard_bundle out = {
816 .tag = ins->texture.op == TEXTURE_OP_BARRIER ?
817 TAG_TEXTURE_4_BARRIER : TAG_TEXTURE_4,
818 .instruction_count = 1,
819 .instructions = { ins }
820 };
821
822 return out;
823 }
824
825 static midgard_bundle
826 mir_schedule_ldst(
827 midgard_instruction **instructions,
828 BITSET_WORD *worklist, unsigned len)
829 {
830 struct midgard_predicate predicate = {
831 .tag = TAG_LOAD_STORE_4,
832 .destructive = true,
833 .exclude = ~0
834 };
835
836 /* Try to pick two load/store ops. Second not gauranteed to exist */
837
838 midgard_instruction *ins =
839 mir_choose_instruction(instructions, worklist, len, &predicate);
840
841 midgard_instruction *pair =
842 mir_choose_instruction(instructions, worklist, len, &predicate);
843
844 struct midgard_bundle out = {
845 .tag = TAG_LOAD_STORE_4,
846 .instruction_count = pair ? 2 : 1,
847 .instructions = { ins, pair }
848 };
849
850 /* We have to update the worklist atomically, since the two
851 * instructions run concurrently (TODO: verify it's not pipelined) */
852
853 mir_update_worklist(worklist, len, instructions, ins);
854 mir_update_worklist(worklist, len, instructions, pair);
855
856 return out;
857 }
858
859 static midgard_bundle
860 mir_schedule_alu(
861 compiler_context *ctx,
862 midgard_instruction **instructions,
863 BITSET_WORD *worklist, unsigned len)
864 {
865 struct midgard_bundle bundle = {};
866
867 unsigned bytes_emitted = sizeof(bundle.control);
868
869 struct midgard_predicate predicate = {
870 .tag = TAG_ALU_4,
871 .destructive = true,
872 .exclude = ~0,
873 .constants = &bundle.constants
874 };
875
876 midgard_instruction *vmul = NULL;
877 midgard_instruction *vadd = NULL;
878 midgard_instruction *vlut = NULL;
879 midgard_instruction *smul = NULL;
880 midgard_instruction *sadd = NULL;
881 midgard_instruction *branch = NULL;
882
883 mir_choose_alu(&branch, instructions, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
884 mir_update_worklist(worklist, len, instructions, branch);
885 bool writeout = branch && branch->writeout;
886 bool zs_writeout = writeout && (branch->writeout_depth | branch->writeout_stencil);
887
888 if (branch && branch->branch.conditional) {
889 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
890
891 if (cond->unit == UNIT_VADD)
892 vadd = cond;
893 else if (cond->unit == UNIT_SMUL)
894 smul = cond;
895 else
896 unreachable("Bad condition");
897 }
898
899 /* If we have a render target reference, schedule a move for it. Since
900 * this will be in sadd, we boost this to prevent scheduling csel into
901 * smul */
902
903 if (writeout && (branch->constants.u32[0] || ctx->is_blend)) {
904 sadd = ralloc(ctx, midgard_instruction);
905 *sadd = v_mov(~0, make_compiler_temp(ctx));
906 sadd->unit = UNIT_SADD;
907 sadd->mask = 0x1;
908 sadd->has_inline_constant = true;
909 sadd->inline_constant = branch->constants.u32[0];
910 branch->src[1] = sadd->dest;
911 branch->src_types[1] = sadd->dest_type;
912
913 /* Mask off any conditionals. Could be optimized to just scalar
914 * conditionals TODO */
915 predicate.no_cond = true;
916 }
917
918 mir_choose_alu(&smul, instructions, worklist, len, &predicate, UNIT_SMUL);
919
920 if (!writeout) {
921 mir_choose_alu(&vlut, instructions, worklist, len, &predicate, UNIT_VLUT);
922 } else {
923 /* Propagate up */
924 bundle.last_writeout = branch->last_writeout;
925 }
926
927 if (writeout && !zs_writeout) {
928 vadd = ralloc(ctx, midgard_instruction);
929 *vadd = v_mov(~0, make_compiler_temp(ctx));
930
931 if (!ctx->is_blend) {
932 vadd->alu.op = midgard_alu_op_iadd;
933 vadd->src[0] = SSA_FIXED_REGISTER(31);
934 vadd->src_types[0] = nir_type_uint32;
935
936 for (unsigned c = 0; c < 16; ++c)
937 vadd->swizzle[0][c] = COMPONENT_X;
938
939 vadd->has_inline_constant = true;
940 vadd->inline_constant = 0;
941 } else {
942 vadd->src[1] = SSA_FIXED_REGISTER(1);
943 vadd->src_types[0] = nir_type_uint32;
944
945 for (unsigned c = 0; c < 16; ++c)
946 vadd->swizzle[1][c] = COMPONENT_W;
947 }
948
949 vadd->unit = UNIT_VADD;
950 vadd->mask = 0x1;
951 branch->src[2] = vadd->dest;
952 branch->src_types[2] = vadd->dest_type;
953 }
954
955 mir_choose_alu(&vadd, instructions, worklist, len, &predicate, UNIT_VADD);
956
957 mir_update_worklist(worklist, len, instructions, vlut);
958 mir_update_worklist(worklist, len, instructions, vadd);
959 mir_update_worklist(worklist, len, instructions, smul);
960
961 bool vadd_csel = vadd && OP_IS_CSEL(vadd->alu.op);
962 bool smul_csel = smul && OP_IS_CSEL(smul->alu.op);
963
964 if (vadd_csel || smul_csel) {
965 midgard_instruction *ins = vadd_csel ? vadd : smul;
966 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
967
968 if (cond->unit == UNIT_VMUL)
969 vmul = cond;
970 else if (cond->unit == UNIT_SADD)
971 sadd = cond;
972 else
973 unreachable("Bad condition");
974 }
975
976 /* Stage 2, let's schedule sadd before vmul for writeout */
977 mir_choose_alu(&sadd, instructions, worklist, len, &predicate, UNIT_SADD);
978
979 /* Check if writeout reads its own register */
980
981 if (writeout) {
982 midgard_instruction *stages[] = { sadd, vadd, smul };
983 unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(zs_writeout ? 1 : 0) : branch->src[0];
984 unsigned writeout_mask = 0x0;
985 bool bad_writeout = false;
986
987 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
988 if (!stages[i])
989 continue;
990
991 if (stages[i]->dest != src)
992 continue;
993
994 writeout_mask |= stages[i]->mask;
995 bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
996 }
997
998 /* It's possible we'll be able to schedule something into vmul
999 * to fill r0/r1. Let's peak into the future, trying to schedule
1000 * vmul specially that way. */
1001
1002 unsigned full_mask = zs_writeout ?
1003 (1 << (branch->writeout_depth + branch->writeout_stencil)) - 1 :
1004 0xF;
1005
1006 if (!bad_writeout && writeout_mask != full_mask) {
1007 predicate.unit = UNIT_VMUL;
1008 predicate.dest = src;
1009 predicate.mask = writeout_mask ^ full_mask;
1010
1011 struct midgard_instruction *peaked =
1012 mir_choose_instruction(instructions, worklist, len, &predicate);
1013
1014 if (peaked) {
1015 vmul = peaked;
1016 vmul->unit = UNIT_VMUL;
1017 writeout_mask |= predicate.mask;
1018 assert(writeout_mask == full_mask);
1019 }
1020
1021 /* Cleanup */
1022 predicate.dest = predicate.mask = 0;
1023 }
1024
1025 /* Finally, add a move if necessary */
1026 if (bad_writeout || writeout_mask != full_mask) {
1027 unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(zs_writeout ? 1 : 0) : make_compiler_temp(ctx);
1028
1029 vmul = ralloc(ctx, midgard_instruction);
1030 *vmul = v_mov(src, temp);
1031 vmul->unit = UNIT_VMUL;
1032 vmul->mask = full_mask ^ writeout_mask;
1033
1034 /* Rewrite to use our temp */
1035
1036 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1037 if (stages[i])
1038 mir_rewrite_index_dst_single(stages[i], src, temp);
1039 }
1040
1041 mir_rewrite_index_src_single(branch, src, temp);
1042 }
1043 }
1044
1045 mir_choose_alu(&vmul, instructions, worklist, len, &predicate, UNIT_VMUL);
1046
1047 mir_update_worklist(worklist, len, instructions, vmul);
1048 mir_update_worklist(worklist, len, instructions, sadd);
1049
1050 bundle.has_blend_constant = predicate.blend_constant;
1051 bundle.has_embedded_constants = predicate.constant_mask != 0;
1052
1053 unsigned padding = 0;
1054
1055 /* Now that we have finished scheduling, build up the bundle */
1056 midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
1057
1058 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1059 if (stages[i]) {
1060 bundle.control |= stages[i]->unit;
1061 bytes_emitted += bytes_for_instruction(stages[i]);
1062 bundle.instructions[bundle.instruction_count++] = stages[i];
1063
1064 /* If we branch, we can't spill to TLS since the store
1065 * instruction will never get executed. We could try to
1066 * break the bundle but this is probably easier for
1067 * now. */
1068
1069 if (branch)
1070 stages[i]->no_spill |= (1 << REG_CLASS_WORK);
1071 }
1072 }
1073
1074 /* Pad ALU op to nearest word */
1075
1076 if (bytes_emitted & 15) {
1077 padding = 16 - (bytes_emitted & 15);
1078 bytes_emitted += padding;
1079 }
1080
1081 /* Constants must always be quadwords */
1082 if (bundle.has_embedded_constants)
1083 bytes_emitted += 16;
1084
1085 /* Size ALU instruction for tag */
1086 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
1087
1088 /* MRT capable GPUs use a special writeout procedure */
1089 if (writeout && !(ctx->quirks & MIDGARD_NO_UPPER_ALU))
1090 bundle.tag += 4;
1091
1092 bundle.padding = padding;
1093 bundle.control |= bundle.tag;
1094
1095 return bundle;
1096 }
1097
1098 /* Schedule a single block by iterating its instruction to create bundles.
1099 * While we go, tally about the bundle sizes to compute the block size. */
1100
1101
1102 static void
1103 schedule_block(compiler_context *ctx, midgard_block *block)
1104 {
1105 /* Copy list to dynamic array */
1106 unsigned len = 0;
1107 midgard_instruction **instructions = flatten_mir(block, &len);
1108
1109 if (!len)
1110 return;
1111
1112 /* Calculate dependencies and initial worklist */
1113 unsigned node_count = ctx->temp_count + 1;
1114 mir_create_dependency_graph(instructions, len, node_count);
1115
1116 /* Allocate the worklist */
1117 size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
1118 BITSET_WORD *worklist = calloc(sz, 1);
1119 mir_initialize_worklist(worklist, instructions, len);
1120
1121 struct util_dynarray bundles;
1122 util_dynarray_init(&bundles, NULL);
1123
1124 block->quadword_count = 0;
1125 unsigned blend_offset = 0;
1126
1127 for (;;) {
1128 unsigned tag = mir_choose_bundle(instructions, worklist, len);
1129 midgard_bundle bundle;
1130
1131 if (tag == TAG_TEXTURE_4)
1132 bundle = mir_schedule_texture(instructions, worklist, len);
1133 else if (tag == TAG_LOAD_STORE_4)
1134 bundle = mir_schedule_ldst(instructions, worklist, len);
1135 else if (tag == TAG_ALU_4)
1136 bundle = mir_schedule_alu(ctx, instructions, worklist, len);
1137 else
1138 break;
1139
1140 util_dynarray_append(&bundles, midgard_bundle, bundle);
1141
1142 if (bundle.has_blend_constant)
1143 blend_offset = block->quadword_count;
1144
1145 block->quadword_count += midgard_tag_props[bundle.tag].size;
1146 }
1147
1148 /* We emitted bundles backwards; copy into the block in reverse-order */
1149
1150 util_dynarray_init(&block->bundles, block);
1151 util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
1152 util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
1153 }
1154 util_dynarray_fini(&bundles);
1155
1156 /* Blend constant was backwards as well. blend_offset if set is
1157 * strictly positive, as an offset of zero would imply constants before
1158 * any instructions which is invalid in Midgard. TODO: blend constants
1159 * are broken if you spill since then quadword_count becomes invalid
1160 * XXX */
1161
1162 if (blend_offset)
1163 ctx->blend_constant_offset = ((ctx->quadword_count + block->quadword_count) - blend_offset - 1) * 0x10;
1164
1165 block->scheduled = true;
1166 ctx->quadword_count += block->quadword_count;
1167
1168 /* Reorder instructions to match bundled. First remove existing
1169 * instructions and then recreate the list */
1170
1171 mir_foreach_instr_in_block_safe(block, ins) {
1172 list_del(&ins->link);
1173 }
1174
1175 mir_foreach_instr_in_block_scheduled_rev(block, ins) {
1176 list_add(&ins->link, &block->base.instructions);
1177 }
1178
1179 free(instructions); /* Allocated by flatten_mir() */
1180 free(worklist);
1181 }
1182
1183 void
1184 midgard_schedule_program(compiler_context *ctx)
1185 {
1186 midgard_promote_uniforms(ctx);
1187
1188 /* Must be lowered right before scheduling */
1189 mir_squeeze_index(ctx);
1190 mir_lower_special_reads(ctx);
1191 mir_squeeze_index(ctx);
1192
1193 /* Lowering can introduce some dead moves */
1194
1195 mir_foreach_block(ctx, _block) {
1196 midgard_block *block = (midgard_block *) _block;
1197 midgard_opt_dead_move_eliminate(ctx, block);
1198 schedule_block(ctx, block);
1199 }
1200
1201 }