b88fe0e03c74f01819d3618059051ce517823978
[mesa.git] / src / panfrost / midgard / midgard_schedule.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26 #include "midgard_quirks.h"
27 #include "util/u_memory.h"
28
29 /* Scheduling for Midgard is complicated, to say the least. ALU instructions
30 * must be grouped into VLIW bundles according to following model:
31 *
32 * [VMUL] [SADD]
33 * [VADD] [SMUL] [VLUT]
34 *
35 * A given instruction can execute on some subset of the units (or a few can
36 * execute on all). Instructions can be either vector or scalar; only scalar
37 * instructions can execute on SADD/SMUL units. Units on a given line execute
38 * in parallel. Subsequent lines execute separately and can pass results
39 * directly via pipeline registers r24/r25, bypassing the register file.
40 *
41 * A bundle can optionally have 128-bits of embedded constants, shared across
42 * all of the instructions within a bundle.
43 *
44 * Instructions consuming conditionals (branches and conditional selects)
45 * require their condition to be written into the conditional register (r31)
46 * within the same bundle they are consumed.
47 *
48 * Fragment writeout requires its argument to be written in full within the
49 * same bundle as the branch, with no hanging dependencies.
50 *
51 * Load/store instructions are also in bundles of simply two instructions, and
52 * texture instructions have no bundling.
53 *
54 * -------------------------------------------------------------------------
55 *
56 */
57
58 /* We create the dependency graph with per-byte granularity */
59
60 #define BYTE_COUNT 16
61
62 static void
63 add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child)
64 {
65 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
66 if (!(mask & (1 << i)))
67 continue;
68
69 struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i];
70
71 util_dynarray_foreach(parents, unsigned, parent) {
72 BITSET_WORD *dependents = instructions[*parent]->dependents;
73
74 /* Already have the dependency */
75 if (BITSET_TEST(dependents, child))
76 continue;
77
78 BITSET_SET(dependents, child);
79 instructions[child]->nr_dependencies++;
80 }
81 }
82 }
83
84 static void
85 mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent)
86 {
87 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
88 if (!(mask & (1 << i)))
89 continue;
90
91 util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent);
92 }
93 }
94
95 static void
96 mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
97 {
98 size_t sz = node_count * BYTE_COUNT;
99
100 struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
101 struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
102
103 for (unsigned i = 0; i < sz; ++i) {
104 util_dynarray_init(&last_read[i], NULL);
105 util_dynarray_init(&last_write[i], NULL);
106 }
107
108 /* Initialize dependency graph */
109 for (unsigned i = 0; i < count; ++i) {
110 instructions[i]->dependents =
111 calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
112
113 instructions[i]->nr_dependencies = 0;
114 }
115
116 /* Populate dependency graph */
117 for (signed i = count - 1; i >= 0; --i) {
118 if (instructions[i]->compact_branch)
119 continue;
120
121 unsigned dest = instructions[i]->dest;
122 unsigned mask = mir_bytemask(instructions[i]);
123
124 mir_foreach_src((*instructions), s) {
125 unsigned src = instructions[i]->src[s];
126
127 if (src < node_count) {
128 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
129 add_dependency(last_write, src, readmask, instructions, i);
130 }
131 }
132
133 if (dest < node_count) {
134 add_dependency(last_read, dest, mask, instructions, i);
135 add_dependency(last_write, dest, mask, instructions, i);
136 mark_access(last_write, dest, mask, i);
137 }
138
139 mir_foreach_src((*instructions), s) {
140 unsigned src = instructions[i]->src[s];
141
142 if (src < node_count) {
143 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
144 mark_access(last_read, src, readmask, i);
145 }
146 }
147 }
148
149 /* If there is a branch, all instructions depend on it, as interblock
150 * execution must be purely in-order */
151
152 if (instructions[count - 1]->compact_branch) {
153 BITSET_WORD *dependents = instructions[count - 1]->dependents;
154
155 for (signed i = count - 2; i >= 0; --i) {
156 if (BITSET_TEST(dependents, i))
157 continue;
158
159 BITSET_SET(dependents, i);
160 instructions[i]->nr_dependencies++;
161 }
162 }
163
164 /* Free the intermediate structures */
165 for (unsigned i = 0; i < sz; ++i) {
166 util_dynarray_fini(&last_read[i]);
167 util_dynarray_fini(&last_write[i]);
168 }
169
170 free(last_read);
171 free(last_write);
172 }
173
174 /* Does the mask cover more than a scalar? */
175
176 static bool
177 is_single_component_mask(unsigned mask)
178 {
179 int components = 0;
180
181 for (int c = 0; c < 8; ++c) {
182 if (mask & (1 << c))
183 components++;
184 }
185
186 return components == 1;
187 }
188
189 /* Helpers for scheudling */
190
191 static bool
192 mir_is_scalar(midgard_instruction *ains)
193 {
194 /* Do we try to use it as a vector op? */
195 if (!is_single_component_mask(ains->mask))
196 return false;
197
198 /* Otherwise, check mode hazards */
199 bool could_scalar = true;
200
201 /* Only 16/32-bit can run on a scalar unit */
202 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
203 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
204 could_scalar &= ains->alu.dest_override == midgard_dest_override_none;
205
206 if (ains->alu.reg_mode == midgard_reg_mode_16) {
207 /* If we're running in 16-bit mode, we
208 * can't have any 8-bit sources on the
209 * scalar unit (since the scalar unit
210 * doesn't understand 8-bit) */
211
212 midgard_vector_alu_src s1 =
213 vector_alu_from_unsigned(ains->alu.src1);
214
215 could_scalar &= !s1.half;
216
217 midgard_vector_alu_src s2 =
218 vector_alu_from_unsigned(ains->alu.src2);
219
220 could_scalar &= !s2.half;
221 }
222
223 return could_scalar;
224 }
225
226 /* How many bytes does this ALU instruction add to the bundle? */
227
228 static unsigned
229 bytes_for_instruction(midgard_instruction *ains)
230 {
231 if (ains->unit & UNITS_ANY_VECTOR)
232 return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
233 else if (ains->unit == ALU_ENAB_BRANCH)
234 return sizeof(midgard_branch_extended);
235 else if (ains->compact_branch)
236 return sizeof(ains->br_compact);
237 else
238 return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
239 }
240
241 /* We would like to flatten the linked list of midgard_instructions in a bundle
242 * to an array of pointers on the heap for easy indexing */
243
244 static midgard_instruction **
245 flatten_mir(midgard_block *block, unsigned *len)
246 {
247 *len = list_length(&block->instructions);
248
249 if (!(*len))
250 return NULL;
251
252 midgard_instruction **instructions =
253 calloc(sizeof(midgard_instruction *), *len);
254
255 unsigned i = 0;
256
257 mir_foreach_instr_in_block(block, ins)
258 instructions[i++] = ins;
259
260 return instructions;
261 }
262
263 /* The worklist is the set of instructions that can be scheduled now; that is,
264 * the set of instructions with no remaining dependencies */
265
266 static void
267 mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
268 {
269 for (unsigned i = 0; i < count; ++i) {
270 if (instructions[i]->nr_dependencies == 0)
271 BITSET_SET(worklist, i);
272 }
273 }
274
275 /* Update the worklist after an instruction terminates. Remove its edges from
276 * the graph and if that causes any node to have no dependencies, add it to the
277 * worklist */
278
279 static void
280 mir_update_worklist(
281 BITSET_WORD *worklist, unsigned count,
282 midgard_instruction **instructions, midgard_instruction *done)
283 {
284 /* Sanity check: if no instruction terminated, there is nothing to do.
285 * If the instruction that terminated had dependencies, that makes no
286 * sense and means we messed up the worklist. Finally, as the purpose
287 * of this routine is to update dependents, we abort early if there are
288 * no dependents defined. */
289
290 if (!done)
291 return;
292
293 assert(done->nr_dependencies == 0);
294
295 if (!done->dependents)
296 return;
297
298 /* We have an instruction with dependents. Iterate each dependent to
299 * remove one dependency (`done`), adding dependents to the worklist
300 * where possible. */
301
302 unsigned i;
303 BITSET_WORD tmp;
304 BITSET_FOREACH_SET(i, tmp, done->dependents, count) {
305 assert(instructions[i]->nr_dependencies);
306
307 if (!(--instructions[i]->nr_dependencies))
308 BITSET_SET(worklist, i);
309 }
310
311 free(done->dependents);
312 }
313
314 /* While scheduling, we need to choose instructions satisfying certain
315 * criteria. As we schedule backwards, we choose the *last* instruction in the
316 * worklist to simulate in-order scheduling. Chosen instructions must satisfy a
317 * given predicate. */
318
319 struct midgard_predicate {
320 /* TAG or ~0 for dont-care */
321 unsigned tag;
322
323 /* True if we want to pop off the chosen instruction */
324 bool destructive;
325
326 /* For ALU, choose only this unit */
327 unsigned unit;
328
329 /* State for bundle constants. constants is the actual constants
330 * for the bundle. constant_count is the number of bytes (up to
331 * 16) currently in use for constants. When picking in destructive
332 * mode, the constants array will be updated, and the instruction
333 * will be adjusted to index into the constants array */
334
335 midgard_constants *constants;
336 unsigned constant_mask;
337 bool blend_constant;
338
339 /* Exclude this destination (if not ~0) */
340 unsigned exclude;
341
342 /* Don't schedule instructions consuming conditionals (since we already
343 * scheduled one). Excludes conditional branches and csel */
344 bool no_cond;
345
346 /* Require a minimal mask and (if nonzero) given destination. Used for
347 * writeout optimizations */
348
349 unsigned mask;
350 unsigned dest;
351 };
352
353 /* For an instruction that can fit, adjust it to fit and update the constants
354 * array, in destructive mode. Returns whether the fitting was successful. */
355
356 static bool
357 mir_adjust_constants(midgard_instruction *ins,
358 struct midgard_predicate *pred,
359 bool destructive)
360 {
361 /* Blend constants dominate */
362 if (ins->has_blend_constant) {
363 if (pred->constant_mask)
364 return false;
365 else if (destructive) {
366 pred->blend_constant = true;
367 pred->constant_mask = 0xffff;
368 return true;
369 }
370 }
371
372 /* No constant, nothing to adjust */
373 if (!ins->has_constants)
374 return true;
375
376 unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
377 midgard_reg_mode reg_mode = ins->alu.reg_mode;
378
379 midgard_vector_alu_src const_src = { };
380
381 if (ins->src[0] == r_constant)
382 const_src = vector_alu_from_unsigned(ins->alu.src1);
383 else if (ins->src[1] == r_constant)
384 const_src = vector_alu_from_unsigned(ins->alu.src2);
385
386 unsigned type_size = mir_bytes_for_mode(reg_mode);
387
388 /* If the ALU is converting up we need to divide type_size by 2 */
389 if (const_src.half)
390 type_size /= 2;
391
392 unsigned max_comp = 16 / type_size;
393 unsigned comp_mask = mir_from_bytemask(mir_bytemask_of_read_components(ins, r_constant),
394 reg_mode);
395 unsigned type_mask = (1 << type_size) - 1;
396 unsigned bundle_constant_mask = pred->constant_mask;
397 unsigned comp_mapping[16] = { };
398 uint8_t bundle_constants[16];
399
400 memcpy(bundle_constants, pred->constants, 16);
401
402 /* Let's try to find a place for each active component of the constant
403 * register.
404 */
405 for (unsigned comp = 0; comp < max_comp; comp++) {
406 if (!(comp_mask & (1 << comp)))
407 continue;
408
409 uint8_t *constantp = ins->constants.u8 + (type_size * comp);
410 unsigned best_reuse_bytes = 0;
411 signed best_place = -1;
412 unsigned i, j;
413
414 for (i = 0; i < 16; i += type_size) {
415 unsigned reuse_bytes = 0;
416
417 for (j = 0; j < type_size; j++) {
418 if (!(bundle_constant_mask & (1 << (i + j))))
419 continue;
420 if (constantp[j] != bundle_constants[i + j])
421 break;
422
423 reuse_bytes++;
424 }
425
426 /* Select the place where existing bytes can be
427 * reused so we leave empty slots to others
428 */
429 if (j == type_size &&
430 (reuse_bytes > best_reuse_bytes || best_place < 0)) {
431 best_reuse_bytes = reuse_bytes;
432 best_place = i;
433 break;
434 }
435 }
436
437 /* This component couldn't fit in the remaining constant slot,
438 * no need check the remaining components, bail out now
439 */
440 if (best_place < 0)
441 return false;
442
443 memcpy(&bundle_constants[i], constantp, type_size);
444 bundle_constant_mask |= type_mask << best_place;
445 comp_mapping[comp] = best_place / type_size;
446 }
447
448 /* If non-destructive, we're done */
449 if (!destructive)
450 return true;
451
452 /* Otherwise update the constant_mask and constant values */
453 pred->constant_mask = bundle_constant_mask;
454 memcpy(pred->constants, bundle_constants, 16);
455
456 /* Use comp_mapping as a swizzle */
457 mir_foreach_src(ins, s) {
458 if (ins->src[s] == r_constant)
459 mir_compose_swizzle(ins->swizzle[s], comp_mapping, ins->swizzle[s]);
460 }
461
462 return true;
463 }
464
465 static midgard_instruction *
466 mir_choose_instruction(
467 midgard_instruction **instructions,
468 BITSET_WORD *worklist, unsigned count,
469 struct midgard_predicate *predicate)
470 {
471 /* Parse the predicate */
472 unsigned tag = predicate->tag;
473 bool alu = tag == TAG_ALU_4;
474 unsigned unit = predicate->unit;
475 bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
476 bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
477 bool no_cond = predicate->no_cond;
478
479 unsigned mask = predicate->mask;
480 unsigned dest = predicate->dest;
481 bool needs_dest = mask & 0xF;
482
483 /* Iterate to find the best instruction satisfying the predicate */
484 unsigned i;
485 BITSET_WORD tmp;
486
487 signed best_index = -1;
488 bool best_conditional = false;
489
490 /* Enforce a simple metric limiting distance to keep down register
491 * pressure. TOOD: replace with liveness tracking for much better
492 * results */
493
494 unsigned max_active = 0;
495 unsigned max_distance = 6;
496
497 BITSET_FOREACH_SET(i, tmp, worklist, count) {
498 max_active = MAX2(max_active, i);
499 }
500
501 BITSET_FOREACH_SET(i, tmp, worklist, count) {
502 if ((max_active - i) >= max_distance)
503 continue;
504
505 if (tag != ~0 && instructions[i]->type != tag)
506 continue;
507
508 if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
509 continue;
510
511 if (alu && !branch && !(alu_opcode_props[instructions[i]->alu.op].props & unit))
512 continue;
513
514 if (branch && !instructions[i]->compact_branch)
515 continue;
516
517 if (alu && scalar && !mir_is_scalar(instructions[i]))
518 continue;
519
520 if (alu && !mir_adjust_constants(instructions[i], predicate, false))
521 continue;
522
523 if (needs_dest && instructions[i]->dest != dest)
524 continue;
525
526 if (mask && ((~instructions[i]->mask) & mask))
527 continue;
528
529 bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->alu.op);
530 conditional |= (branch && instructions[i]->branch.conditional);
531
532 if (conditional && no_cond)
533 continue;
534
535 /* Simulate in-order scheduling */
536 if ((signed) i < best_index)
537 continue;
538
539 best_index = i;
540 best_conditional = conditional;
541 }
542
543
544 /* Did we find anything? */
545
546 if (best_index < 0)
547 return NULL;
548
549 /* If we found something, remove it from the worklist */
550 assert(best_index < count);
551
552 if (predicate->destructive) {
553 BITSET_CLEAR(worklist, best_index);
554
555 if (alu)
556 mir_adjust_constants(instructions[best_index], predicate, true);
557
558 /* Once we schedule a conditional, we can't again */
559 predicate->no_cond |= best_conditional;
560 }
561
562 return instructions[best_index];
563 }
564
565 /* Still, we don't choose instructions in a vacuum. We need a way to choose the
566 * best bundle type (ALU, load/store, texture). Nondestructive. */
567
568 static unsigned
569 mir_choose_bundle(
570 midgard_instruction **instructions,
571 BITSET_WORD *worklist, unsigned count)
572 {
573 /* At the moment, our algorithm is very simple - use the bundle of the
574 * best instruction, regardless of what else could be scheduled
575 * alongside it. This is not optimal but it works okay for in-order */
576
577 struct midgard_predicate predicate = {
578 .tag = ~0,
579 .destructive = false,
580 .exclude = ~0
581 };
582
583 midgard_instruction *chosen = mir_choose_instruction(instructions, worklist, count, &predicate);
584
585 if (chosen)
586 return chosen->type;
587 else
588 return ~0;
589 }
590
591 /* We want to choose an ALU instruction filling a given unit */
592 static void
593 mir_choose_alu(midgard_instruction **slot,
594 midgard_instruction **instructions,
595 BITSET_WORD *worklist, unsigned len,
596 struct midgard_predicate *predicate,
597 unsigned unit)
598 {
599 /* Did we already schedule to this slot? */
600 if ((*slot) != NULL)
601 return;
602
603 /* Try to schedule something, if not */
604 predicate->unit = unit;
605 *slot = mir_choose_instruction(instructions, worklist, len, predicate);
606
607 /* Store unit upon scheduling */
608 if (*slot && !((*slot)->compact_branch))
609 (*slot)->unit = unit;
610 }
611
612 /* When we are scheduling a branch/csel, we need the consumed condition in the
613 * same block as a pipeline register. There are two options to enable this:
614 *
615 * - Move the conditional into the bundle. Preferred, but only works if the
616 * conditional is used only once and is from this block.
617 * - Copy the conditional.
618 *
619 * We search for the conditional. If it's in this block, single-use, and
620 * without embedded constants, we schedule it immediately. Otherwise, we
621 * schedule a move for it.
622 *
623 * mir_comparison_mobile is a helper to find the moveable condition.
624 */
625
626 static unsigned
627 mir_comparison_mobile(
628 compiler_context *ctx,
629 midgard_instruction **instructions,
630 struct midgard_predicate *predicate,
631 unsigned count,
632 unsigned cond)
633 {
634 if (!mir_single_use(ctx, cond))
635 return ~0;
636
637 unsigned ret = ~0;
638
639 for (unsigned i = 0; i < count; ++i) {
640 if (instructions[i]->dest != cond)
641 continue;
642
643 /* Must fit in an ALU bundle */
644 if (instructions[i]->type != TAG_ALU_4)
645 return ~0;
646
647 /* If it would itself require a condition, that's recursive */
648 if (OP_IS_CSEL(instructions[i]->alu.op))
649 return ~0;
650
651 /* We'll need to rewrite to .w but that doesn't work for vector
652 * ops that don't replicate (ball/bany), so bail there */
653
654 if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->alu.op].props))
655 return ~0;
656
657 /* Ensure it will fit with constants */
658
659 if (!mir_adjust_constants(instructions[i], predicate, false))
660 return ~0;
661
662 /* Ensure it is written only once */
663
664 if (ret != ~0)
665 return ~0;
666 else
667 ret = i;
668 }
669
670 /* Inject constants now that we are sure we want to */
671 if (ret != ~0)
672 mir_adjust_constants(instructions[ret], predicate, true);
673
674 return ret;
675 }
676
677 /* Using the information about the moveable conditional itself, we either pop
678 * that condition off the worklist for use now, or create a move to
679 * artificially schedule instead as a fallback */
680
681 static midgard_instruction *
682 mir_schedule_comparison(
683 compiler_context *ctx,
684 midgard_instruction **instructions,
685 struct midgard_predicate *predicate,
686 BITSET_WORD *worklist, unsigned count,
687 unsigned cond, bool vector, unsigned *swizzle,
688 midgard_instruction *user)
689 {
690 /* TODO: swizzle when scheduling */
691 unsigned comp_i =
692 (!vector && (swizzle[0] == 0)) ?
693 mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0;
694
695 /* If we can, schedule the condition immediately */
696 if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
697 assert(comp_i < count);
698 BITSET_CLEAR(worklist, comp_i);
699 return instructions[comp_i];
700 }
701
702 /* Otherwise, we insert a move */
703
704 midgard_instruction mov = v_mov(cond, cond);
705 mov.mask = vector ? 0xF : 0x1;
706 memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1]));
707
708 return mir_insert_instruction_before(ctx, user, mov);
709 }
710
711 /* Most generally, we need instructions writing to r31 in the appropriate
712 * components */
713
714 static midgard_instruction *
715 mir_schedule_condition(compiler_context *ctx,
716 struct midgard_predicate *predicate,
717 BITSET_WORD *worklist, unsigned count,
718 midgard_instruction **instructions,
719 midgard_instruction *last)
720 {
721 /* For a branch, the condition is the only argument; for csel, third */
722 bool branch = last->compact_branch;
723 unsigned condition_index = branch ? 0 : 2;
724
725 /* csel_v is vector; otherwise, conditions are scalar */
726 bool vector = !branch && OP_IS_CSEL_V(last->alu.op);
727
728 /* Grab the conditional instruction */
729
730 midgard_instruction *cond = mir_schedule_comparison(
731 ctx, instructions, predicate, worklist, count, last->src[condition_index],
732 vector, last->swizzle[2], last);
733
734 /* We have exclusive reign over this (possibly move) conditional
735 * instruction. We can rewrite into a pipeline conditional register */
736
737 predicate->exclude = cond->dest;
738 cond->dest = SSA_FIXED_REGISTER(31);
739
740 if (!vector) {
741 cond->mask = (1 << COMPONENT_W);
742
743 mir_foreach_src(cond, s) {
744 if (cond->src[s] == ~0)
745 continue;
746
747 for (unsigned q = 0; q < 4; ++q)
748 cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q];
749 }
750 }
751
752 /* Schedule the unit: csel is always in the latter pipeline, so a csel
753 * condition must be in the former pipeline stage (vmul/sadd),
754 * depending on scalar/vector of the instruction itself. A branch must
755 * be written from the latter pipeline stage and a branch condition is
756 * always scalar, so it is always in smul (exception: ball/bany, which
757 * will be vadd) */
758
759 if (branch)
760 cond->unit = UNIT_SMUL;
761 else
762 cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
763
764 return cond;
765 }
766
767 /* Schedules a single bundle of the given type */
768
769 static midgard_bundle
770 mir_schedule_texture(
771 midgard_instruction **instructions,
772 BITSET_WORD *worklist, unsigned len)
773 {
774 struct midgard_predicate predicate = {
775 .tag = TAG_TEXTURE_4,
776 .destructive = true,
777 .exclude = ~0
778 };
779
780 midgard_instruction *ins =
781 mir_choose_instruction(instructions, worklist, len, &predicate);
782
783 mir_update_worklist(worklist, len, instructions, ins);
784
785 struct midgard_bundle out = {
786 .tag = TAG_TEXTURE_4,
787 .instruction_count = 1,
788 .instructions = { ins }
789 };
790
791 return out;
792 }
793
794 static midgard_bundle
795 mir_schedule_ldst(
796 midgard_instruction **instructions,
797 BITSET_WORD *worklist, unsigned len)
798 {
799 struct midgard_predicate predicate = {
800 .tag = TAG_LOAD_STORE_4,
801 .destructive = true,
802 .exclude = ~0
803 };
804
805 /* Try to pick two load/store ops. Second not gauranteed to exist */
806
807 midgard_instruction *ins =
808 mir_choose_instruction(instructions, worklist, len, &predicate);
809
810 midgard_instruction *pair =
811 mir_choose_instruction(instructions, worklist, len, &predicate);
812
813 struct midgard_bundle out = {
814 .tag = TAG_LOAD_STORE_4,
815 .instruction_count = pair ? 2 : 1,
816 .instructions = { ins, pair }
817 };
818
819 /* We have to update the worklist atomically, since the two
820 * instructions run concurrently (TODO: verify it's not pipelined) */
821
822 mir_update_worklist(worklist, len, instructions, ins);
823 mir_update_worklist(worklist, len, instructions, pair);
824
825 return out;
826 }
827
828 static midgard_bundle
829 mir_schedule_alu(
830 compiler_context *ctx,
831 midgard_instruction **instructions,
832 BITSET_WORD *worklist, unsigned len)
833 {
834 struct midgard_bundle bundle = {};
835
836 unsigned bytes_emitted = sizeof(bundle.control);
837
838 struct midgard_predicate predicate = {
839 .tag = TAG_ALU_4,
840 .destructive = true,
841 .exclude = ~0,
842 .constants = &bundle.constants
843 };
844
845 midgard_instruction *vmul = NULL;
846 midgard_instruction *vadd = NULL;
847 midgard_instruction *vlut = NULL;
848 midgard_instruction *smul = NULL;
849 midgard_instruction *sadd = NULL;
850 midgard_instruction *branch = NULL;
851
852 mir_choose_alu(&branch, instructions, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
853 mir_update_worklist(worklist, len, instructions, branch);
854 bool writeout = branch && branch->writeout;
855
856 if (branch && branch->branch.conditional) {
857 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
858
859 if (cond->unit == UNIT_VADD)
860 vadd = cond;
861 else if (cond->unit == UNIT_SMUL)
862 smul = cond;
863 else
864 unreachable("Bad condition");
865 }
866
867 mir_choose_alu(&smul, instructions, worklist, len, &predicate, UNIT_SMUL);
868
869 if (!writeout)
870 mir_choose_alu(&vlut, instructions, worklist, len, &predicate, UNIT_VLUT);
871
872 if (writeout) {
873 /* Propagate up */
874 bundle.last_writeout = branch->last_writeout;
875
876 midgard_instruction add = v_mov(~0, make_compiler_temp(ctx));
877
878 if (!ctx->is_blend) {
879 add.alu.op = midgard_alu_op_iadd;
880 add.src[0] = SSA_FIXED_REGISTER(31);
881
882 for (unsigned c = 0; c < 16; ++c)
883 add.swizzle[0][c] = COMPONENT_X;
884
885 add.has_inline_constant = true;
886 add.inline_constant = 0;
887 } else {
888 add.src[1] = SSA_FIXED_REGISTER(1);
889
890 for (unsigned c = 0; c < 16; ++c)
891 add.swizzle[1][c] = COMPONENT_W;
892 }
893
894 vadd = mem_dup(&add, sizeof(midgard_instruction));
895
896 vadd->unit = UNIT_VADD;
897 vadd->mask = 0x1;
898 branch->src[2] = add.dest;
899 }
900
901 mir_choose_alu(&vadd, instructions, worklist, len, &predicate, UNIT_VADD);
902
903 mir_update_worklist(worklist, len, instructions, vlut);
904 mir_update_worklist(worklist, len, instructions, vadd);
905 mir_update_worklist(worklist, len, instructions, smul);
906
907 bool vadd_csel = vadd && OP_IS_CSEL(vadd->alu.op);
908 bool smul_csel = smul && OP_IS_CSEL(smul->alu.op);
909
910 if (vadd_csel || smul_csel) {
911 midgard_instruction *ins = vadd_csel ? vadd : smul;
912 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
913
914 if (cond->unit == UNIT_VMUL)
915 vmul = cond;
916 else if (cond->unit == UNIT_SADD)
917 sadd = cond;
918 else
919 unreachable("Bad condition");
920 }
921
922 /* If we have a render target reference, schedule a move for it */
923
924 if (branch && branch->writeout && (branch->constants.u32[0] || ctx->is_blend)) {
925 midgard_instruction mov = v_mov(~0, make_compiler_temp(ctx));
926 sadd = mem_dup(&mov, sizeof(midgard_instruction));
927 sadd->unit = UNIT_SADD;
928 sadd->mask = 0x1;
929 sadd->has_inline_constant = true;
930 sadd->inline_constant = branch->constants.u32[0];
931 branch->src[1] = mov.dest;
932 /* TODO: Don't leak */
933 }
934
935 /* Stage 2, let's schedule sadd before vmul for writeout */
936 mir_choose_alu(&sadd, instructions, worklist, len, &predicate, UNIT_SADD);
937
938 /* Check if writeout reads its own register */
939
940 if (branch && branch->writeout) {
941 midgard_instruction *stages[] = { sadd, vadd, smul };
942 unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0];
943 unsigned writeout_mask = 0x0;
944 bool bad_writeout = false;
945
946 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
947 if (!stages[i])
948 continue;
949
950 if (stages[i]->dest != src)
951 continue;
952
953 writeout_mask |= stages[i]->mask;
954 bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
955 }
956
957 /* It's possible we'll be able to schedule something into vmul
958 * to fill r0. Let's peak into the future, trying to schedule
959 * vmul specially that way. */
960
961 if (!bad_writeout && writeout_mask != 0xF) {
962 predicate.unit = UNIT_VMUL;
963 predicate.dest = src;
964 predicate.mask = writeout_mask ^ 0xF;
965
966 struct midgard_instruction *peaked =
967 mir_choose_instruction(instructions, worklist, len, &predicate);
968
969 if (peaked) {
970 vmul = peaked;
971 vmul->unit = UNIT_VMUL;
972 writeout_mask |= predicate.mask;
973 assert(writeout_mask == 0xF);
974 }
975
976 /* Cleanup */
977 predicate.dest = predicate.mask = 0;
978 }
979
980 /* Finally, add a move if necessary */
981 if (bad_writeout || writeout_mask != 0xF) {
982 unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx);
983 midgard_instruction mov = v_mov(src, temp);
984 vmul = mem_dup(&mov, sizeof(midgard_instruction));
985 vmul->unit = UNIT_VMUL;
986 vmul->mask = 0xF ^ writeout_mask;
987 /* TODO: Don't leak */
988
989 /* Rewrite to use our temp */
990
991 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
992 if (stages[i])
993 mir_rewrite_index_dst_single(stages[i], src, temp);
994 }
995
996 mir_rewrite_index_src_single(branch, src, temp);
997 }
998 }
999
1000 mir_choose_alu(&vmul, instructions, worklist, len, &predicate, UNIT_VMUL);
1001
1002 mir_update_worklist(worklist, len, instructions, vmul);
1003 mir_update_worklist(worklist, len, instructions, sadd);
1004
1005 bundle.has_blend_constant = predicate.blend_constant;
1006 bundle.has_embedded_constants = predicate.constant_mask != 0;
1007
1008 unsigned padding = 0;
1009
1010 /* Now that we have finished scheduling, build up the bundle */
1011 midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
1012
1013 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1014 if (stages[i]) {
1015 bundle.control |= stages[i]->unit;
1016 bytes_emitted += bytes_for_instruction(stages[i]);
1017 bundle.instructions[bundle.instruction_count++] = stages[i];
1018 }
1019 }
1020
1021 /* Pad ALU op to nearest word */
1022
1023 if (bytes_emitted & 15) {
1024 padding = 16 - (bytes_emitted & 15);
1025 bytes_emitted += padding;
1026 }
1027
1028 /* Constants must always be quadwords */
1029 if (bundle.has_embedded_constants)
1030 bytes_emitted += 16;
1031
1032 /* Size ALU instruction for tag */
1033 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
1034
1035 /* MRT capable GPUs use a special writeout procedure */
1036 if (writeout && !(ctx->quirks & MIDGARD_NO_UPPER_ALU))
1037 bundle.tag += 4;
1038
1039 bundle.padding = padding;
1040 bundle.control |= bundle.tag;
1041
1042 return bundle;
1043 }
1044
1045 /* Schedule a single block by iterating its instruction to create bundles.
1046 * While we go, tally about the bundle sizes to compute the block size. */
1047
1048
1049 static void
1050 schedule_block(compiler_context *ctx, midgard_block *block)
1051 {
1052 /* Copy list to dynamic array */
1053 unsigned len = 0;
1054 midgard_instruction **instructions = flatten_mir(block, &len);
1055
1056 if (!len)
1057 return;
1058
1059 /* Calculate dependencies and initial worklist */
1060 unsigned node_count = ctx->temp_count + 1;
1061 mir_create_dependency_graph(instructions, len, node_count);
1062
1063 /* Allocate the worklist */
1064 size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
1065 BITSET_WORD *worklist = calloc(sz, 1);
1066 mir_initialize_worklist(worklist, instructions, len);
1067
1068 struct util_dynarray bundles;
1069 util_dynarray_init(&bundles, NULL);
1070
1071 block->quadword_count = 0;
1072 unsigned blend_offset = 0;
1073
1074 for (;;) {
1075 unsigned tag = mir_choose_bundle(instructions, worklist, len);
1076 midgard_bundle bundle;
1077
1078 if (tag == TAG_TEXTURE_4)
1079 bundle = mir_schedule_texture(instructions, worklist, len);
1080 else if (tag == TAG_LOAD_STORE_4)
1081 bundle = mir_schedule_ldst(instructions, worklist, len);
1082 else if (tag == TAG_ALU_4)
1083 bundle = mir_schedule_alu(ctx, instructions, worklist, len);
1084 else
1085 break;
1086
1087 util_dynarray_append(&bundles, midgard_bundle, bundle);
1088
1089 if (bundle.has_blend_constant)
1090 blend_offset = block->quadword_count;
1091
1092 block->quadword_count += midgard_word_size[bundle.tag];
1093 }
1094
1095 /* We emitted bundles backwards; copy into the block in reverse-order */
1096
1097 util_dynarray_init(&block->bundles, NULL);
1098 util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
1099 util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
1100 }
1101
1102 /* Blend constant was backwards as well. blend_offset if set is
1103 * strictly positive, as an offset of zero would imply constants before
1104 * any instructions which is invalid in Midgard. TODO: blend constants
1105 * are broken if you spill since then quadword_count becomes invalid
1106 * XXX */
1107
1108 if (blend_offset)
1109 ctx->blend_constant_offset = ((ctx->quadword_count + block->quadword_count) - blend_offset - 1) * 0x10;
1110
1111 block->is_scheduled = true;
1112 ctx->quadword_count += block->quadword_count;
1113
1114 /* Reorder instructions to match bundled. First remove existing
1115 * instructions and then recreate the list */
1116
1117 mir_foreach_instr_in_block_safe(block, ins) {
1118 list_del(&ins->link);
1119 }
1120
1121 mir_foreach_instr_in_block_scheduled_rev(block, ins) {
1122 list_add(&ins->link, &block->instructions);
1123 }
1124
1125 free(instructions); /* Allocated by flatten_mir() */
1126 free(worklist);
1127 }
1128
1129 void
1130 midgard_schedule_program(compiler_context *ctx)
1131 {
1132 midgard_promote_uniforms(ctx);
1133
1134 /* Must be lowered right before scheduling */
1135 mir_squeeze_index(ctx);
1136 mir_lower_special_reads(ctx);
1137 mir_squeeze_index(ctx);
1138
1139 /* Lowering can introduce some dead moves */
1140
1141 mir_foreach_block(ctx, block) {
1142 midgard_opt_dead_move_eliminate(ctx, block);
1143 schedule_block(ctx, block);
1144 }
1145
1146 }