pan/midgard: Stop leaking instruction objects in mir_schedule_alu()
[mesa.git] / src / panfrost / midgard / midgard_schedule.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26 #include "midgard_quirks.h"
27 #include "util/u_memory.h"
28
29 /* Scheduling for Midgard is complicated, to say the least. ALU instructions
30 * must be grouped into VLIW bundles according to following model:
31 *
32 * [VMUL] [SADD]
33 * [VADD] [SMUL] [VLUT]
34 *
35 * A given instruction can execute on some subset of the units (or a few can
36 * execute on all). Instructions can be either vector or scalar; only scalar
37 * instructions can execute on SADD/SMUL units. Units on a given line execute
38 * in parallel. Subsequent lines execute separately and can pass results
39 * directly via pipeline registers r24/r25, bypassing the register file.
40 *
41 * A bundle can optionally have 128-bits of embedded constants, shared across
42 * all of the instructions within a bundle.
43 *
44 * Instructions consuming conditionals (branches and conditional selects)
45 * require their condition to be written into the conditional register (r31)
46 * within the same bundle they are consumed.
47 *
48 * Fragment writeout requires its argument to be written in full within the
49 * same bundle as the branch, with no hanging dependencies.
50 *
51 * Load/store instructions are also in bundles of simply two instructions, and
52 * texture instructions have no bundling.
53 *
54 * -------------------------------------------------------------------------
55 *
56 */
57
58 /* We create the dependency graph with per-byte granularity */
59
60 #define BYTE_COUNT 16
61
62 static void
63 add_dependency(struct util_dynarray *table, unsigned index, uint16_t mask, midgard_instruction **instructions, unsigned child)
64 {
65 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
66 if (!(mask & (1 << i)))
67 continue;
68
69 struct util_dynarray *parents = &table[(BYTE_COUNT * index) + i];
70
71 util_dynarray_foreach(parents, unsigned, parent) {
72 BITSET_WORD *dependents = instructions[*parent]->dependents;
73
74 /* Already have the dependency */
75 if (BITSET_TEST(dependents, child))
76 continue;
77
78 BITSET_SET(dependents, child);
79 instructions[child]->nr_dependencies++;
80 }
81 }
82 }
83
84 static void
85 mark_access(struct util_dynarray *table, unsigned index, uint16_t mask, unsigned parent)
86 {
87 for (unsigned i = 0; i < BYTE_COUNT; ++i) {
88 if (!(mask & (1 << i)))
89 continue;
90
91 util_dynarray_append(&table[(BYTE_COUNT * index) + i], unsigned, parent);
92 }
93 }
94
95 static void
96 mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count)
97 {
98 size_t sz = node_count * BYTE_COUNT;
99
100 struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz);
101 struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz);
102
103 for (unsigned i = 0; i < sz; ++i) {
104 util_dynarray_init(&last_read[i], NULL);
105 util_dynarray_init(&last_write[i], NULL);
106 }
107
108 /* Initialize dependency graph */
109 for (unsigned i = 0; i < count; ++i) {
110 instructions[i]->dependents =
111 calloc(BITSET_WORDS(count), sizeof(BITSET_WORD));
112
113 instructions[i]->nr_dependencies = 0;
114 }
115
116 /* Populate dependency graph */
117 for (signed i = count - 1; i >= 0; --i) {
118 if (instructions[i]->compact_branch)
119 continue;
120
121 unsigned dest = instructions[i]->dest;
122 unsigned mask = mir_bytemask(instructions[i]);
123
124 mir_foreach_src((*instructions), s) {
125 unsigned src = instructions[i]->src[s];
126
127 if (src < node_count) {
128 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
129 add_dependency(last_write, src, readmask, instructions, i);
130 }
131 }
132
133 if (dest < node_count) {
134 add_dependency(last_read, dest, mask, instructions, i);
135 add_dependency(last_write, dest, mask, instructions, i);
136 mark_access(last_write, dest, mask, i);
137 }
138
139 mir_foreach_src((*instructions), s) {
140 unsigned src = instructions[i]->src[s];
141
142 if (src < node_count) {
143 unsigned readmask = mir_bytemask_of_read_components(instructions[i], src);
144 mark_access(last_read, src, readmask, i);
145 }
146 }
147 }
148
149 /* If there is a branch, all instructions depend on it, as interblock
150 * execution must be purely in-order */
151
152 if (instructions[count - 1]->compact_branch) {
153 BITSET_WORD *dependents = instructions[count - 1]->dependents;
154
155 for (signed i = count - 2; i >= 0; --i) {
156 if (BITSET_TEST(dependents, i))
157 continue;
158
159 BITSET_SET(dependents, i);
160 instructions[i]->nr_dependencies++;
161 }
162 }
163
164 /* Free the intermediate structures */
165 for (unsigned i = 0; i < sz; ++i) {
166 util_dynarray_fini(&last_read[i]);
167 util_dynarray_fini(&last_write[i]);
168 }
169
170 free(last_read);
171 free(last_write);
172 }
173
174 /* Does the mask cover more than a scalar? */
175
176 static bool
177 is_single_component_mask(unsigned mask)
178 {
179 int components = 0;
180
181 for (int c = 0; c < 8; ++c) {
182 if (mask & (1 << c))
183 components++;
184 }
185
186 return components == 1;
187 }
188
189 /* Helpers for scheudling */
190
191 static bool
192 mir_is_scalar(midgard_instruction *ains)
193 {
194 /* Do we try to use it as a vector op? */
195 if (!is_single_component_mask(ains->mask))
196 return false;
197
198 /* Otherwise, check mode hazards */
199 bool could_scalar = true;
200
201 /* Only 16/32-bit can run on a scalar unit */
202 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
203 could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
204 could_scalar &= ains->alu.dest_override == midgard_dest_override_none;
205
206 if (ains->alu.reg_mode == midgard_reg_mode_16) {
207 /* If we're running in 16-bit mode, we
208 * can't have any 8-bit sources on the
209 * scalar unit (since the scalar unit
210 * doesn't understand 8-bit) */
211
212 midgard_vector_alu_src s1 =
213 vector_alu_from_unsigned(ains->alu.src1);
214
215 could_scalar &= !s1.half;
216
217 midgard_vector_alu_src s2 =
218 vector_alu_from_unsigned(ains->alu.src2);
219
220 could_scalar &= !s2.half;
221 }
222
223 return could_scalar;
224 }
225
226 /* How many bytes does this ALU instruction add to the bundle? */
227
228 static unsigned
229 bytes_for_instruction(midgard_instruction *ains)
230 {
231 if (ains->unit & UNITS_ANY_VECTOR)
232 return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
233 else if (ains->unit == ALU_ENAB_BRANCH)
234 return sizeof(midgard_branch_extended);
235 else if (ains->compact_branch)
236 return sizeof(ains->br_compact);
237 else
238 return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu);
239 }
240
241 /* We would like to flatten the linked list of midgard_instructions in a bundle
242 * to an array of pointers on the heap for easy indexing */
243
244 static midgard_instruction **
245 flatten_mir(midgard_block *block, unsigned *len)
246 {
247 *len = list_length(&block->instructions);
248
249 if (!(*len))
250 return NULL;
251
252 midgard_instruction **instructions =
253 calloc(sizeof(midgard_instruction *), *len);
254
255 unsigned i = 0;
256
257 mir_foreach_instr_in_block(block, ins)
258 instructions[i++] = ins;
259
260 return instructions;
261 }
262
263 /* The worklist is the set of instructions that can be scheduled now; that is,
264 * the set of instructions with no remaining dependencies */
265
266 static void
267 mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count)
268 {
269 for (unsigned i = 0; i < count; ++i) {
270 if (instructions[i]->nr_dependencies == 0)
271 BITSET_SET(worklist, i);
272 }
273 }
274
275 /* Update the worklist after an instruction terminates. Remove its edges from
276 * the graph and if that causes any node to have no dependencies, add it to the
277 * worklist */
278
279 static void
280 mir_update_worklist(
281 BITSET_WORD *worklist, unsigned count,
282 midgard_instruction **instructions, midgard_instruction *done)
283 {
284 /* Sanity check: if no instruction terminated, there is nothing to do.
285 * If the instruction that terminated had dependencies, that makes no
286 * sense and means we messed up the worklist. Finally, as the purpose
287 * of this routine is to update dependents, we abort early if there are
288 * no dependents defined. */
289
290 if (!done)
291 return;
292
293 assert(done->nr_dependencies == 0);
294
295 if (!done->dependents)
296 return;
297
298 /* We have an instruction with dependents. Iterate each dependent to
299 * remove one dependency (`done`), adding dependents to the worklist
300 * where possible. */
301
302 unsigned i;
303 BITSET_FOREACH_SET(i, done->dependents, count) {
304 assert(instructions[i]->nr_dependencies);
305
306 if (!(--instructions[i]->nr_dependencies))
307 BITSET_SET(worklist, i);
308 }
309
310 free(done->dependents);
311 }
312
313 /* While scheduling, we need to choose instructions satisfying certain
314 * criteria. As we schedule backwards, we choose the *last* instruction in the
315 * worklist to simulate in-order scheduling. Chosen instructions must satisfy a
316 * given predicate. */
317
318 struct midgard_predicate {
319 /* TAG or ~0 for dont-care */
320 unsigned tag;
321
322 /* True if we want to pop off the chosen instruction */
323 bool destructive;
324
325 /* For ALU, choose only this unit */
326 unsigned unit;
327
328 /* State for bundle constants. constants is the actual constants
329 * for the bundle. constant_count is the number of bytes (up to
330 * 16) currently in use for constants. When picking in destructive
331 * mode, the constants array will be updated, and the instruction
332 * will be adjusted to index into the constants array */
333
334 midgard_constants *constants;
335 unsigned constant_mask;
336 bool blend_constant;
337
338 /* Exclude this destination (if not ~0) */
339 unsigned exclude;
340
341 /* Don't schedule instructions consuming conditionals (since we already
342 * scheduled one). Excludes conditional branches and csel */
343 bool no_cond;
344
345 /* Require a minimal mask and (if nonzero) given destination. Used for
346 * writeout optimizations */
347
348 unsigned mask;
349 unsigned dest;
350 };
351
352 /* For an instruction that can fit, adjust it to fit and update the constants
353 * array, in destructive mode. Returns whether the fitting was successful. */
354
355 static bool
356 mir_adjust_constants(midgard_instruction *ins,
357 struct midgard_predicate *pred,
358 bool destructive)
359 {
360 /* Blend constants dominate */
361 if (ins->has_blend_constant) {
362 if (pred->constant_mask)
363 return false;
364 else if (destructive) {
365 pred->blend_constant = true;
366 pred->constant_mask = 0xffff;
367 return true;
368 }
369 }
370
371 /* No constant, nothing to adjust */
372 if (!ins->has_constants)
373 return true;
374
375 unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
376 midgard_reg_mode dst_mode = mir_typesize(ins);
377
378 unsigned bundle_constant_mask = pred->constant_mask;
379 unsigned comp_mapping[2][16] = { };
380 uint8_t bundle_constants[16];
381
382 memcpy(bundle_constants, pred->constants, 16);
383
384 /* Let's try to find a place for each active component of the constant
385 * register.
386 */
387 for (unsigned src = 0; src < 2; ++src) {
388 if (ins->src[src] != SSA_FIXED_REGISTER(REGISTER_CONSTANT))
389 continue;
390
391 midgard_reg_mode src_mode = mir_srcsize(ins, src);
392 unsigned type_size = mir_bytes_for_mode(src_mode);
393 unsigned max_comp = 16 / type_size;
394 unsigned comp_mask = mir_from_bytemask(mir_bytemask_of_read_components_index(ins, src),
395 dst_mode);
396 unsigned type_mask = (1 << type_size) - 1;
397
398 for (unsigned comp = 0; comp < max_comp; comp++) {
399 if (!(comp_mask & (1 << comp)))
400 continue;
401
402 uint8_t *constantp = ins->constants.u8 + (type_size * comp);
403 unsigned best_reuse_bytes = 0;
404 signed best_place = -1;
405 unsigned i, j;
406
407 for (i = 0; i < 16; i += type_size) {
408 unsigned reuse_bytes = 0;
409
410 for (j = 0; j < type_size; j++) {
411 if (!(bundle_constant_mask & (1 << (i + j))))
412 continue;
413 if (constantp[j] != bundle_constants[i + j])
414 break;
415
416 reuse_bytes++;
417 }
418
419 /* Select the place where existing bytes can be
420 * reused so we leave empty slots to others
421 */
422 if (j == type_size &&
423 (reuse_bytes > best_reuse_bytes || best_place < 0)) {
424 best_reuse_bytes = reuse_bytes;
425 best_place = i;
426 break;
427 }
428 }
429
430 /* This component couldn't fit in the remaining constant slot,
431 * no need check the remaining components, bail out now
432 */
433 if (best_place < 0)
434 return false;
435
436 memcpy(&bundle_constants[i], constantp, type_size);
437 bundle_constant_mask |= type_mask << best_place;
438 comp_mapping[src][comp] = best_place / type_size;
439 }
440 }
441
442 /* If non-destructive, we're done */
443 if (!destructive)
444 return true;
445
446 /* Otherwise update the constant_mask and constant values */
447 pred->constant_mask = bundle_constant_mask;
448 memcpy(pred->constants, bundle_constants, 16);
449
450 /* Use comp_mapping as a swizzle */
451 mir_foreach_src(ins, s) {
452 if (ins->src[s] == r_constant)
453 mir_compose_swizzle(ins->swizzle[s], comp_mapping[s], ins->swizzle[s]);
454 }
455
456 return true;
457 }
458
459 static midgard_instruction *
460 mir_choose_instruction(
461 midgard_instruction **instructions,
462 BITSET_WORD *worklist, unsigned count,
463 struct midgard_predicate *predicate)
464 {
465 /* Parse the predicate */
466 unsigned tag = predicate->tag;
467 bool alu = tag == TAG_ALU_4;
468 unsigned unit = predicate->unit;
469 bool branch = alu && (unit == ALU_ENAB_BR_COMPACT);
470 bool scalar = (unit != ~0) && (unit & UNITS_SCALAR);
471 bool no_cond = predicate->no_cond;
472
473 unsigned mask = predicate->mask;
474 unsigned dest = predicate->dest;
475 bool needs_dest = mask & 0xF;
476
477 /* Iterate to find the best instruction satisfying the predicate */
478 unsigned i;
479
480 signed best_index = -1;
481 bool best_conditional = false;
482
483 /* Enforce a simple metric limiting distance to keep down register
484 * pressure. TOOD: replace with liveness tracking for much better
485 * results */
486
487 unsigned max_active = 0;
488 unsigned max_distance = 6;
489
490 BITSET_FOREACH_SET(i, worklist, count) {
491 max_active = MAX2(max_active, i);
492 }
493
494 BITSET_FOREACH_SET(i, worklist, count) {
495 if ((max_active - i) >= max_distance)
496 continue;
497
498 if (tag != ~0 && instructions[i]->type != tag)
499 continue;
500
501 if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude)
502 continue;
503
504 if (alu && !branch && !(alu_opcode_props[instructions[i]->alu.op].props & unit))
505 continue;
506
507 if (branch && !instructions[i]->compact_branch)
508 continue;
509
510 if (alu && scalar && !mir_is_scalar(instructions[i]))
511 continue;
512
513 if (alu && !mir_adjust_constants(instructions[i], predicate, false))
514 continue;
515
516 if (needs_dest && instructions[i]->dest != dest)
517 continue;
518
519 if (mask && ((~instructions[i]->mask) & mask))
520 continue;
521
522 bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->alu.op);
523 conditional |= (branch && instructions[i]->branch.conditional);
524
525 if (conditional && no_cond)
526 continue;
527
528 /* Simulate in-order scheduling */
529 if ((signed) i < best_index)
530 continue;
531
532 best_index = i;
533 best_conditional = conditional;
534 }
535
536
537 /* Did we find anything? */
538
539 if (best_index < 0)
540 return NULL;
541
542 /* If we found something, remove it from the worklist */
543 assert(best_index < count);
544
545 if (predicate->destructive) {
546 BITSET_CLEAR(worklist, best_index);
547
548 if (alu)
549 mir_adjust_constants(instructions[best_index], predicate, true);
550
551 /* Once we schedule a conditional, we can't again */
552 predicate->no_cond |= best_conditional;
553 }
554
555 return instructions[best_index];
556 }
557
558 /* Still, we don't choose instructions in a vacuum. We need a way to choose the
559 * best bundle type (ALU, load/store, texture). Nondestructive. */
560
561 static unsigned
562 mir_choose_bundle(
563 midgard_instruction **instructions,
564 BITSET_WORD *worklist, unsigned count)
565 {
566 /* At the moment, our algorithm is very simple - use the bundle of the
567 * best instruction, regardless of what else could be scheduled
568 * alongside it. This is not optimal but it works okay for in-order */
569
570 struct midgard_predicate predicate = {
571 .tag = ~0,
572 .destructive = false,
573 .exclude = ~0
574 };
575
576 midgard_instruction *chosen = mir_choose_instruction(instructions, worklist, count, &predicate);
577
578 if (chosen)
579 return chosen->type;
580 else
581 return ~0;
582 }
583
584 /* We want to choose an ALU instruction filling a given unit */
585 static void
586 mir_choose_alu(midgard_instruction **slot,
587 midgard_instruction **instructions,
588 BITSET_WORD *worklist, unsigned len,
589 struct midgard_predicate *predicate,
590 unsigned unit)
591 {
592 /* Did we already schedule to this slot? */
593 if ((*slot) != NULL)
594 return;
595
596 /* Try to schedule something, if not */
597 predicate->unit = unit;
598 *slot = mir_choose_instruction(instructions, worklist, len, predicate);
599
600 /* Store unit upon scheduling */
601 if (*slot && !((*slot)->compact_branch))
602 (*slot)->unit = unit;
603 }
604
605 /* When we are scheduling a branch/csel, we need the consumed condition in the
606 * same block as a pipeline register. There are two options to enable this:
607 *
608 * - Move the conditional into the bundle. Preferred, but only works if the
609 * conditional is used only once and is from this block.
610 * - Copy the conditional.
611 *
612 * We search for the conditional. If it's in this block, single-use, and
613 * without embedded constants, we schedule it immediately. Otherwise, we
614 * schedule a move for it.
615 *
616 * mir_comparison_mobile is a helper to find the moveable condition.
617 */
618
619 static unsigned
620 mir_comparison_mobile(
621 compiler_context *ctx,
622 midgard_instruction **instructions,
623 struct midgard_predicate *predicate,
624 unsigned count,
625 unsigned cond)
626 {
627 if (!mir_single_use(ctx, cond))
628 return ~0;
629
630 unsigned ret = ~0;
631
632 for (unsigned i = 0; i < count; ++i) {
633 if (instructions[i]->dest != cond)
634 continue;
635
636 /* Must fit in an ALU bundle */
637 if (instructions[i]->type != TAG_ALU_4)
638 return ~0;
639
640 /* If it would itself require a condition, that's recursive */
641 if (OP_IS_CSEL(instructions[i]->alu.op))
642 return ~0;
643
644 /* We'll need to rewrite to .w but that doesn't work for vector
645 * ops that don't replicate (ball/bany), so bail there */
646
647 if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->alu.op].props))
648 return ~0;
649
650 /* Ensure it will fit with constants */
651
652 if (!mir_adjust_constants(instructions[i], predicate, false))
653 return ~0;
654
655 /* Ensure it is written only once */
656
657 if (ret != ~0)
658 return ~0;
659 else
660 ret = i;
661 }
662
663 /* Inject constants now that we are sure we want to */
664 if (ret != ~0)
665 mir_adjust_constants(instructions[ret], predicate, true);
666
667 return ret;
668 }
669
670 /* Using the information about the moveable conditional itself, we either pop
671 * that condition off the worklist for use now, or create a move to
672 * artificially schedule instead as a fallback */
673
674 static midgard_instruction *
675 mir_schedule_comparison(
676 compiler_context *ctx,
677 midgard_instruction **instructions,
678 struct midgard_predicate *predicate,
679 BITSET_WORD *worklist, unsigned count,
680 unsigned cond, bool vector, unsigned *swizzle,
681 midgard_instruction *user)
682 {
683 /* TODO: swizzle when scheduling */
684 unsigned comp_i =
685 (!vector && (swizzle[0] == 0)) ?
686 mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0;
687
688 /* If we can, schedule the condition immediately */
689 if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) {
690 assert(comp_i < count);
691 BITSET_CLEAR(worklist, comp_i);
692 return instructions[comp_i];
693 }
694
695 /* Otherwise, we insert a move */
696
697 midgard_instruction mov = v_mov(cond, cond);
698 mov.mask = vector ? 0xF : 0x1;
699 memcpy(mov.swizzle[1], swizzle, sizeof(mov.swizzle[1]));
700
701 return mir_insert_instruction_before(ctx, user, mov);
702 }
703
704 /* Most generally, we need instructions writing to r31 in the appropriate
705 * components */
706
707 static midgard_instruction *
708 mir_schedule_condition(compiler_context *ctx,
709 struct midgard_predicate *predicate,
710 BITSET_WORD *worklist, unsigned count,
711 midgard_instruction **instructions,
712 midgard_instruction *last)
713 {
714 /* For a branch, the condition is the only argument; for csel, third */
715 bool branch = last->compact_branch;
716 unsigned condition_index = branch ? 0 : 2;
717
718 /* csel_v is vector; otherwise, conditions are scalar */
719 bool vector = !branch && OP_IS_CSEL_V(last->alu.op);
720
721 /* Grab the conditional instruction */
722
723 midgard_instruction *cond = mir_schedule_comparison(
724 ctx, instructions, predicate, worklist, count, last->src[condition_index],
725 vector, last->swizzle[2], last);
726
727 /* We have exclusive reign over this (possibly move) conditional
728 * instruction. We can rewrite into a pipeline conditional register */
729
730 predicate->exclude = cond->dest;
731 cond->dest = SSA_FIXED_REGISTER(31);
732
733 if (!vector) {
734 cond->mask = (1 << COMPONENT_W);
735
736 mir_foreach_src(cond, s) {
737 if (cond->src[s] == ~0)
738 continue;
739
740 for (unsigned q = 0; q < 4; ++q)
741 cond->swizzle[s][q + COMPONENT_W] = cond->swizzle[s][q];
742 }
743 }
744
745 /* Schedule the unit: csel is always in the latter pipeline, so a csel
746 * condition must be in the former pipeline stage (vmul/sadd),
747 * depending on scalar/vector of the instruction itself. A branch must
748 * be written from the latter pipeline stage and a branch condition is
749 * always scalar, so it is always in smul (exception: ball/bany, which
750 * will be vadd) */
751
752 if (branch)
753 cond->unit = UNIT_SMUL;
754 else
755 cond->unit = vector ? UNIT_VMUL : UNIT_SADD;
756
757 return cond;
758 }
759
760 /* Schedules a single bundle of the given type */
761
762 static midgard_bundle
763 mir_schedule_texture(
764 midgard_instruction **instructions,
765 BITSET_WORD *worklist, unsigned len)
766 {
767 struct midgard_predicate predicate = {
768 .tag = TAG_TEXTURE_4,
769 .destructive = true,
770 .exclude = ~0
771 };
772
773 midgard_instruction *ins =
774 mir_choose_instruction(instructions, worklist, len, &predicate);
775
776 mir_update_worklist(worklist, len, instructions, ins);
777
778 struct midgard_bundle out = {
779 .tag = TAG_TEXTURE_4,
780 .instruction_count = 1,
781 .instructions = { ins }
782 };
783
784 return out;
785 }
786
787 static midgard_bundle
788 mir_schedule_ldst(
789 midgard_instruction **instructions,
790 BITSET_WORD *worklist, unsigned len)
791 {
792 struct midgard_predicate predicate = {
793 .tag = TAG_LOAD_STORE_4,
794 .destructive = true,
795 .exclude = ~0
796 };
797
798 /* Try to pick two load/store ops. Second not gauranteed to exist */
799
800 midgard_instruction *ins =
801 mir_choose_instruction(instructions, worklist, len, &predicate);
802
803 midgard_instruction *pair =
804 mir_choose_instruction(instructions, worklist, len, &predicate);
805
806 struct midgard_bundle out = {
807 .tag = TAG_LOAD_STORE_4,
808 .instruction_count = pair ? 2 : 1,
809 .instructions = { ins, pair }
810 };
811
812 /* We have to update the worklist atomically, since the two
813 * instructions run concurrently (TODO: verify it's not pipelined) */
814
815 mir_update_worklist(worklist, len, instructions, ins);
816 mir_update_worklist(worklist, len, instructions, pair);
817
818 return out;
819 }
820
821 static midgard_bundle
822 mir_schedule_alu(
823 compiler_context *ctx,
824 midgard_instruction **instructions,
825 BITSET_WORD *worklist, unsigned len)
826 {
827 struct midgard_bundle bundle = {};
828
829 unsigned bytes_emitted = sizeof(bundle.control);
830
831 struct midgard_predicate predicate = {
832 .tag = TAG_ALU_4,
833 .destructive = true,
834 .exclude = ~0,
835 .constants = &bundle.constants
836 };
837
838 midgard_instruction *vmul = NULL;
839 midgard_instruction *vadd = NULL;
840 midgard_instruction *vlut = NULL;
841 midgard_instruction *smul = NULL;
842 midgard_instruction *sadd = NULL;
843 midgard_instruction *branch = NULL;
844
845 mir_choose_alu(&branch, instructions, worklist, len, &predicate, ALU_ENAB_BR_COMPACT);
846 mir_update_worklist(worklist, len, instructions, branch);
847 bool writeout = branch && branch->writeout;
848
849 if (branch && branch->branch.conditional) {
850 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch);
851
852 if (cond->unit == UNIT_VADD)
853 vadd = cond;
854 else if (cond->unit == UNIT_SMUL)
855 smul = cond;
856 else
857 unreachable("Bad condition");
858 }
859
860 mir_choose_alu(&smul, instructions, worklist, len, &predicate, UNIT_SMUL);
861
862 if (!writeout)
863 mir_choose_alu(&vlut, instructions, worklist, len, &predicate, UNIT_VLUT);
864
865 if (writeout) {
866 /* Propagate up */
867 bundle.last_writeout = branch->last_writeout;
868
869 vadd = ralloc(ctx, midgard_instruction);
870 *vadd = v_mov(~0, make_compiler_temp(ctx));
871
872 if (!ctx->is_blend) {
873 vadd->alu.op = midgard_alu_op_iadd;
874 vadd->src[0] = SSA_FIXED_REGISTER(31);
875
876 for (unsigned c = 0; c < 16; ++c)
877 vadd->swizzle[0][c] = COMPONENT_X;
878
879 vadd->has_inline_constant = true;
880 vadd->inline_constant = 0;
881 } else {
882 vadd->src[1] = SSA_FIXED_REGISTER(1);
883
884 for (unsigned c = 0; c < 16; ++c)
885 vadd->swizzle[1][c] = COMPONENT_W;
886 }
887
888 vadd->unit = UNIT_VADD;
889 vadd->mask = 0x1;
890 branch->src[2] = vadd->dest;
891 }
892
893 mir_choose_alu(&vadd, instructions, worklist, len, &predicate, UNIT_VADD);
894
895 mir_update_worklist(worklist, len, instructions, vlut);
896 mir_update_worklist(worklist, len, instructions, vadd);
897 mir_update_worklist(worklist, len, instructions, smul);
898
899 bool vadd_csel = vadd && OP_IS_CSEL(vadd->alu.op);
900 bool smul_csel = smul && OP_IS_CSEL(smul->alu.op);
901
902 if (vadd_csel || smul_csel) {
903 midgard_instruction *ins = vadd_csel ? vadd : smul;
904 midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins);
905
906 if (cond->unit == UNIT_VMUL)
907 vmul = cond;
908 else if (cond->unit == UNIT_SADD)
909 sadd = cond;
910 else
911 unreachable("Bad condition");
912 }
913
914 /* If we have a render target reference, schedule a move for it */
915
916 if (writeout && (branch->constants.u32[0] || ctx->is_blend)) {
917 sadd = ralloc(ctx, midgard_instruction);
918 *sadd = v_mov(~0, make_compiler_temp(ctx));
919 sadd->unit = UNIT_SADD;
920 sadd->mask = 0x1;
921 sadd->has_inline_constant = true;
922 sadd->inline_constant = branch->constants.u32[0];
923 branch->src[1] = sadd->dest;
924 }
925
926 /* Stage 2, let's schedule sadd before vmul for writeout */
927 mir_choose_alu(&sadd, instructions, worklist, len, &predicate, UNIT_SADD);
928
929 /* Check if writeout reads its own register */
930
931 if (branch && branch->writeout) {
932 midgard_instruction *stages[] = { sadd, vadd, smul };
933 unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0];
934 unsigned writeout_mask = 0x0;
935 bool bad_writeout = false;
936
937 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
938 if (!stages[i])
939 continue;
940
941 if (stages[i]->dest != src)
942 continue;
943
944 writeout_mask |= stages[i]->mask;
945 bad_writeout |= mir_has_arg(stages[i], branch->src[0]);
946 }
947
948 /* It's possible we'll be able to schedule something into vmul
949 * to fill r0. Let's peak into the future, trying to schedule
950 * vmul specially that way. */
951
952 if (!bad_writeout && writeout_mask != 0xF) {
953 predicate.unit = UNIT_VMUL;
954 predicate.dest = src;
955 predicate.mask = writeout_mask ^ 0xF;
956
957 struct midgard_instruction *peaked =
958 mir_choose_instruction(instructions, worklist, len, &predicate);
959
960 if (peaked) {
961 vmul = peaked;
962 vmul->unit = UNIT_VMUL;
963 writeout_mask |= predicate.mask;
964 assert(writeout_mask == 0xF);
965 }
966
967 /* Cleanup */
968 predicate.dest = predicate.mask = 0;
969 }
970
971 /* Finally, add a move if necessary */
972 if (bad_writeout || writeout_mask != 0xF) {
973 unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx);
974
975 vmul = ralloc(ctx, midgard_instruction);
976 *vmul = v_mov(src, temp);
977 vmul->unit = UNIT_VMUL;
978 vmul->mask = 0xF ^ writeout_mask;
979
980 /* Rewrite to use our temp */
981
982 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
983 if (stages[i])
984 mir_rewrite_index_dst_single(stages[i], src, temp);
985 }
986
987 mir_rewrite_index_src_single(branch, src, temp);
988 }
989 }
990
991 mir_choose_alu(&vmul, instructions, worklist, len, &predicate, UNIT_VMUL);
992
993 mir_update_worklist(worklist, len, instructions, vmul);
994 mir_update_worklist(worklist, len, instructions, sadd);
995
996 bundle.has_blend_constant = predicate.blend_constant;
997 bundle.has_embedded_constants = predicate.constant_mask != 0;
998
999 unsigned padding = 0;
1000
1001 /* Now that we have finished scheduling, build up the bundle */
1002 midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch };
1003
1004 for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) {
1005 if (stages[i]) {
1006 bundle.control |= stages[i]->unit;
1007 bytes_emitted += bytes_for_instruction(stages[i]);
1008 bundle.instructions[bundle.instruction_count++] = stages[i];
1009 }
1010 }
1011
1012 /* Pad ALU op to nearest word */
1013
1014 if (bytes_emitted & 15) {
1015 padding = 16 - (bytes_emitted & 15);
1016 bytes_emitted += padding;
1017 }
1018
1019 /* Constants must always be quadwords */
1020 if (bundle.has_embedded_constants)
1021 bytes_emitted += 16;
1022
1023 /* Size ALU instruction for tag */
1024 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
1025
1026 /* MRT capable GPUs use a special writeout procedure */
1027 if (writeout && !(ctx->quirks & MIDGARD_NO_UPPER_ALU))
1028 bundle.tag += 4;
1029
1030 bundle.padding = padding;
1031 bundle.control |= bundle.tag;
1032
1033 return bundle;
1034 }
1035
1036 /* Schedule a single block by iterating its instruction to create bundles.
1037 * While we go, tally about the bundle sizes to compute the block size. */
1038
1039
1040 static void
1041 schedule_block(compiler_context *ctx, midgard_block *block)
1042 {
1043 /* Copy list to dynamic array */
1044 unsigned len = 0;
1045 midgard_instruction **instructions = flatten_mir(block, &len);
1046
1047 if (!len)
1048 return;
1049
1050 /* Calculate dependencies and initial worklist */
1051 unsigned node_count = ctx->temp_count + 1;
1052 mir_create_dependency_graph(instructions, len, node_count);
1053
1054 /* Allocate the worklist */
1055 size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD);
1056 BITSET_WORD *worklist = calloc(sz, 1);
1057 mir_initialize_worklist(worklist, instructions, len);
1058
1059 struct util_dynarray bundles;
1060 util_dynarray_init(&bundles, NULL);
1061
1062 block->quadword_count = 0;
1063 unsigned blend_offset = 0;
1064
1065 for (;;) {
1066 unsigned tag = mir_choose_bundle(instructions, worklist, len);
1067 midgard_bundle bundle;
1068
1069 if (tag == TAG_TEXTURE_4)
1070 bundle = mir_schedule_texture(instructions, worklist, len);
1071 else if (tag == TAG_LOAD_STORE_4)
1072 bundle = mir_schedule_ldst(instructions, worklist, len);
1073 else if (tag == TAG_ALU_4)
1074 bundle = mir_schedule_alu(ctx, instructions, worklist, len);
1075 else
1076 break;
1077
1078 util_dynarray_append(&bundles, midgard_bundle, bundle);
1079
1080 if (bundle.has_blend_constant)
1081 blend_offset = block->quadword_count;
1082
1083 block->quadword_count += midgard_word_size[bundle.tag];
1084 }
1085
1086 /* We emitted bundles backwards; copy into the block in reverse-order */
1087
1088 util_dynarray_init(&block->bundles, block);
1089 util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) {
1090 util_dynarray_append(&block->bundles, midgard_bundle, *bundle);
1091 }
1092 util_dynarray_fini(&bundles);
1093
1094 /* Blend constant was backwards as well. blend_offset if set is
1095 * strictly positive, as an offset of zero would imply constants before
1096 * any instructions which is invalid in Midgard. TODO: blend constants
1097 * are broken if you spill since then quadword_count becomes invalid
1098 * XXX */
1099
1100 if (blend_offset)
1101 ctx->blend_constant_offset = ((ctx->quadword_count + block->quadword_count) - blend_offset - 1) * 0x10;
1102
1103 block->is_scheduled = true;
1104 ctx->quadword_count += block->quadword_count;
1105
1106 /* Reorder instructions to match bundled. First remove existing
1107 * instructions and then recreate the list */
1108
1109 mir_foreach_instr_in_block_safe(block, ins) {
1110 list_del(&ins->link);
1111 }
1112
1113 mir_foreach_instr_in_block_scheduled_rev(block, ins) {
1114 list_add(&ins->link, &block->instructions);
1115 }
1116
1117 free(instructions); /* Allocated by flatten_mir() */
1118 free(worklist);
1119 }
1120
1121 void
1122 midgard_schedule_program(compiler_context *ctx)
1123 {
1124 midgard_promote_uniforms(ctx);
1125
1126 /* Must be lowered right before scheduling */
1127 mir_squeeze_index(ctx);
1128 mir_lower_special_reads(ctx);
1129 mir_squeeze_index(ctx);
1130
1131 /* Lowering can introduce some dead moves */
1132
1133 mir_foreach_block(ctx, block) {
1134 midgard_opt_dead_move_eliminate(ctx, block);
1135 schedule_block(ctx, block);
1136 }
1137
1138 }