panfrost: add some missing fallthrough comments to bi_pack.c
[mesa.git] / src / panfrost / midgard / mir.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
28 {
29 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
30 if (ins->src[i] == old)
31 ins->src[i] = new;
32 }
33 }
34
35 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
36 {
37 if (ins->dest == old)
38 ins->dest = new;
39 }
40
41 static void
42 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
43 {
44 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
45 if (ins->src[i] != old) continue;
46
47 ins->src[i] = new;
48 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
49 }
50 }
51
52 void
53 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
54 {
55 mir_foreach_instr_global(ctx, ins) {
56 mir_rewrite_index_src_single(ins, old, new);
57 }
58 }
59
60 void
61 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
62 {
63 mir_foreach_instr_global(ctx, ins) {
64 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
65 }
66 }
67
68 void
69 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
70 {
71 mir_foreach_instr_global(ctx, ins) {
72 mir_rewrite_index_dst_single(ins, old, new);
73 }
74
75 /* Implicitly written before the shader */
76 if (ctx->blend_input == old)
77 ctx->blend_input = new;
78 }
79
80 void
81 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
82 {
83 mir_rewrite_index_src(ctx, old, new);
84 mir_rewrite_index_dst(ctx, old, new);
85 }
86
87 unsigned
88 mir_use_count(compiler_context *ctx, unsigned value)
89 {
90 unsigned used_count = 0;
91
92 mir_foreach_instr_global(ctx, ins) {
93 if (mir_has_arg(ins, value))
94 ++used_count;
95 }
96
97 return used_count;
98 }
99
100 /* Checks if a value is used only once (or totally dead), which is an important
101 * heuristic to figure out if certain optimizations are Worth It (TM) */
102
103 bool
104 mir_single_use(compiler_context *ctx, unsigned value)
105 {
106 /* We can replicate constants in places so who cares */
107 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
108 return true;
109
110 return mir_use_count(ctx, value) <= 1;
111 }
112
113 bool
114 mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
115 {
116 bool is_int = midgard_is_integer_op(ins->alu.op);
117
118 if (is_int) {
119 if (ins->src_shift[i]) return true;
120 } else {
121 if (ins->src_neg[i]) return true;
122 if (ins->src_abs[i]) return true;
123 }
124
125 if (ins->dest_type != ins->src_types[i]) return true;
126
127 if (check_swizzle) {
128 for (unsigned c = 0; c < 16; ++c) {
129 if (!(ins->mask & (1 << c))) continue;
130 if (ins->swizzle[i][c] != c) return true;
131 }
132 }
133
134 return false;
135 }
136
137 bool
138 mir_nontrivial_outmod(midgard_instruction *ins)
139 {
140 bool is_int = midgard_is_integer_op(ins->alu.op);
141 unsigned mod = ins->alu.outmod;
142
143 if (ins->dest_type != ins->src_types[1])
144 return true;
145
146 if (is_int)
147 return mod != midgard_outmod_int_wrap;
148 else
149 return mod != midgard_outmod_none;
150 }
151
152 /* 128 / sz = exp2(log2(128 / sz))
153 * = exp2(log2(128) - log2(sz))
154 * = exp2(7 - log2(sz))
155 * = 1 << (7 - log2(sz))
156 */
157
158 static unsigned
159 mir_components_for_bits(unsigned bits)
160 {
161 return 1 << (7 - util_logbase2(bits));
162 }
163
164 unsigned
165 mir_components_for_type(nir_alu_type T)
166 {
167 unsigned sz = nir_alu_type_get_type_size(T);
168 return mir_components_for_bits(sz);
169 }
170
171 uint16_t
172 mir_from_bytemask(uint16_t bytemask, unsigned bits)
173 {
174 unsigned value = 0;
175 unsigned count = bits / 8;
176
177 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
178 bool a = (bytemask & (1 << c)) != 0;
179
180 for (unsigned q = c; q < count; ++q)
181 assert(((bytemask & (1 << q)) != 0) == a);
182
183 value |= (a << d);
184 }
185
186 return value;
187 }
188
189 /* Rounds up a bytemask to fill a given component count. Iterate each
190 * component, and check if any bytes in the component are masked on */
191
192 uint16_t
193 mir_round_bytemask_up(uint16_t mask, unsigned bits)
194 {
195 unsigned bytes = bits / 8;
196 unsigned maxmask = mask_of(bytes);
197 unsigned channels = mir_components_for_bits(bits);
198
199 for (unsigned c = 0; c < channels; ++c) {
200 unsigned submask = maxmask << (c * bytes);
201
202 if (mask & submask)
203 mask |= submask;
204 }
205
206 return mask;
207 }
208
209 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
210
211 uint16_t
212 mir_bytemask(midgard_instruction *ins)
213 {
214 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
215 return pan_to_bytemask(type_size, ins->mask);
216 }
217
218 void
219 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
220 {
221 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
222 ins->mask = mir_from_bytemask(bytemask, type_size);
223 }
224
225 /* Checks if we should use an upper destination override, rather than the lower
226 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
227
228 signed
229 mir_upper_override(midgard_instruction *ins, unsigned inst_size)
230 {
231 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
232
233 /* If the sizes are the same, there's nothing to override */
234 if (type_size == inst_size)
235 return -1;
236
237 /* There are 16 bytes per vector, so there are (16/bytes)
238 * components per vector. So the magic half is half of
239 * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
240 * */
241
242 unsigned threshold = mir_components_for_bits(type_size) >> 1;
243
244 /* How many components did we shift over? */
245 unsigned zeroes = __builtin_ctz(ins->mask);
246
247 /* Did we hit the threshold? */
248 return (zeroes >= threshold) ? threshold : 0;
249 }
250
251 /* Creates a mask of the components of a node read by an instruction, by
252 * analyzing the swizzle with respect to the instruction's mask. E.g.:
253 *
254 * fadd r0.xz, r1.yyyy, r2.zwyx
255 *
256 * will return a mask of Z/Y for r2
257 */
258
259 static uint16_t
260 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
261 {
262 unsigned cmask = 0;
263
264 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
265 if (!(inmask & (1 << c))) continue;
266 cmask |= (1 << swizzle[c]);
267 }
268
269 return pan_to_bytemask(bits, cmask);
270 }
271
272 uint16_t
273 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
274 {
275 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
276 if (ins->compact_branch && ins->branch.conditional && (i == 0))
277 return 0xF;
278
279 /* ALU ops act componentwise so we need to pay attention to
280 * their mask. Texture/ldst does not so we don't clamp source
281 * readmasks based on the writemask */
282 unsigned qmask = ~0;
283
284 /* Handle dot products and things */
285 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
286 unsigned props = alu_opcode_props[ins->alu.op].props;
287
288 unsigned channel_override = GET_CHANNEL_COUNT(props);
289
290 if (channel_override)
291 qmask = mask_of(channel_override);
292 else
293 qmask = ins->mask;
294 }
295
296 return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
297 nir_alu_type_get_type_size(ins->src_types[i]));
298 }
299
300 uint16_t
301 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
302 {
303 uint16_t mask = 0;
304
305 if (node == ~0)
306 return 0;
307
308 mir_foreach_src(ins, i) {
309 if (ins->src[i] != node) continue;
310 mask |= mir_bytemask_of_read_components_index(ins, i);
311 }
312
313 return mask;
314 }
315
316 /* Register allocation occurs after instruction scheduling, which is fine until
317 * we start needing to spill registers and therefore insert instructions into
318 * an already-scheduled program. We don't have to be terribly efficient about
319 * this, since spilling is already slow. So just semantically we need to insert
320 * the instruction into a new bundle before/after the bundle of the instruction
321 * in question */
322
323 static midgard_bundle
324 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
325 {
326 midgard_instruction *u = mir_upload_ins(ctx, ins);
327
328 midgard_bundle bundle = {
329 .tag = ins.type,
330 .instruction_count = 1,
331 .instructions = { u },
332 };
333
334 if (bundle.tag == TAG_ALU_4) {
335 assert(OP_IS_MOVE(u->alu.op));
336 u->unit = UNIT_VMUL;
337
338 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
339 bundle.padding = ~(bytes_emitted - 1) & 0xF;
340 bundle.control = ins.type | u->unit;
341 }
342
343 return bundle;
344 }
345
346 static unsigned
347 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
348 {
349 midgard_bundle *bundles =
350 (midgard_bundle *) block->bundles.data;
351
352 size_t count = (block->bundles.size / sizeof(midgard_bundle));
353
354 for (unsigned i = 0; i < count; ++i) {
355 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
356 if (bundles[i].instructions[j] == tag)
357 return i;
358 }
359 }
360
361 mir_print_instruction(tag);
362 unreachable("Instruction not scheduled in block");
363 }
364
365 void
366 mir_insert_instruction_before_scheduled(
367 compiler_context *ctx,
368 midgard_block *block,
369 midgard_instruction *tag,
370 midgard_instruction ins)
371 {
372 unsigned before = mir_bundle_idx_for_ins(tag, block);
373 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
374 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
375
376 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
377 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
378 midgard_bundle *before_bundle = bundles + before + 1;
379
380 midgard_bundle new = mir_bundle_for_op(ctx, ins);
381 memcpy(bundles + before, &new, sizeof(new));
382
383 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
384 block->quadword_count += midgard_tag_props[new.tag].size;
385 }
386
387 void
388 mir_insert_instruction_after_scheduled(
389 compiler_context *ctx,
390 midgard_block *block,
391 midgard_instruction *tag,
392 midgard_instruction ins)
393 {
394 /* We need to grow the bundles array to add our new bundle */
395 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
396 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
397
398 /* Find the bundle that we want to insert after */
399 unsigned after = mir_bundle_idx_for_ins(tag, block);
400
401 /* All the bundles after that one, we move ahead by one */
402 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
403 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
404 midgard_bundle *after_bundle = bundles + after;
405
406 midgard_bundle new = mir_bundle_for_op(ctx, ins);
407 memcpy(bundles + after + 1, &new, sizeof(new));
408 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
409 block->quadword_count += midgard_tag_props[new.tag].size;
410 }
411
412 /* Flip the first-two arguments of a (binary) op. Currently ALU
413 * only, no known uses for ldst/tex */
414
415 void
416 mir_flip(midgard_instruction *ins)
417 {
418 unsigned temp = ins->src[0];
419 ins->src[0] = ins->src[1];
420 ins->src[1] = temp;
421
422 assert(ins->type == TAG_ALU_4);
423
424 temp = ins->alu.src1;
425 ins->alu.src1 = ins->alu.src2;
426 ins->alu.src2 = temp;
427
428 temp = ins->src_types[0];
429 ins->src_types[0] = ins->src_types[1];
430 ins->src_types[1] = temp;
431
432 temp = ins->src_abs[0];
433 ins->src_abs[0] = ins->src_abs[1];
434 ins->src_abs[1] = temp;
435
436 temp = ins->src_neg[0];
437 ins->src_neg[0] = ins->src_neg[1];
438 ins->src_neg[1] = temp;
439
440 temp = ins->src_invert[0];
441 ins->src_invert[0] = ins->src_invert[1];
442 ins->src_invert[1] = temp;
443
444 unsigned temp_swizzle[16];
445 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
446 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
447 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
448 }
449
450 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
451
452 void
453 mir_compute_temp_count(compiler_context *ctx)
454 {
455 if (ctx->temp_count)
456 return;
457
458 unsigned max_dest = 0;
459
460 mir_foreach_instr_global(ctx, ins) {
461 if (ins->dest < SSA_FIXED_MINIMUM)
462 max_dest = MAX2(max_dest, ins->dest + 1);
463 }
464
465 ctx->temp_count = max_dest;
466 }