pan/mdg: Prepare for modifier helpers
[mesa.git] / src / panfrost / midgard / mir.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
28 {
29 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
30 if (ins->src[i] == old)
31 ins->src[i] = new;
32 }
33 }
34
35 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
36 {
37 if (ins->dest == old)
38 ins->dest = new;
39 }
40
41 static midgard_vector_alu_src
42 mir_get_alu_src(midgard_instruction *ins, unsigned idx)
43 {
44 unsigned b = (idx == 0) ? ins->alu.src1 : ins->alu.src2;
45 return vector_alu_from_unsigned(b);
46 }
47
48 static void
49 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
50 {
51 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
52 if (ins->src[i] != old) continue;
53
54 ins->src[i] = new;
55 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
56 }
57 }
58
59 void
60 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
61 {
62 mir_foreach_instr_global(ctx, ins) {
63 mir_rewrite_index_src_single(ins, old, new);
64 }
65 }
66
67 void
68 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
69 {
70 mir_foreach_instr_global(ctx, ins) {
71 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
72 }
73 }
74
75 void
76 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
77 {
78 mir_foreach_instr_global(ctx, ins) {
79 mir_rewrite_index_dst_single(ins, old, new);
80 }
81 }
82
83 void
84 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
85 {
86 mir_rewrite_index_src(ctx, old, new);
87 mir_rewrite_index_dst(ctx, old, new);
88 }
89
90 unsigned
91 mir_use_count(compiler_context *ctx, unsigned value)
92 {
93 unsigned used_count = 0;
94
95 mir_foreach_instr_global(ctx, ins) {
96 if (mir_has_arg(ins, value))
97 ++used_count;
98 }
99
100 return used_count;
101 }
102
103 /* Checks if a value is used only once (or totally dead), which is an important
104 * heuristic to figure out if certain optimizations are Worth It (TM) */
105
106 bool
107 mir_single_use(compiler_context *ctx, unsigned value)
108 {
109 /* We can replicate constants in places so who cares */
110 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
111 return true;
112
113 return mir_use_count(ctx, value) <= 1;
114 }
115
116 static bool
117 mir_nontrivial_raw_mod(midgard_vector_alu_src src, bool is_int)
118 {
119 if (is_int)
120 return src.mod == midgard_int_shift;
121 else
122 return src.mod;
123 }
124
125 static bool
126 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask, unsigned *swizzle)
127 {
128 if (mir_nontrivial_raw_mod(src, is_int)) return true;
129
130 /* size-conversion */
131 if (src.half) return true;
132
133 for (unsigned c = 0; c < 16; ++c) {
134 if (!(mask & (1 << c))) continue;
135 if (swizzle[c] != c) return true;
136 }
137
138 return false;
139 }
140
141 bool
142 mir_nontrivial_source2_mod(midgard_instruction *ins)
143 {
144 bool is_int = midgard_is_integer_op(ins->alu.op);
145
146 midgard_vector_alu_src src2 =
147 vector_alu_from_unsigned(ins->alu.src2);
148
149 return mir_nontrivial_mod(src2, is_int, ins->mask, ins->swizzle[1]);
150 }
151
152 bool
153 mir_nontrivial_source2_mod_simple(midgard_instruction *ins)
154 {
155 bool is_int = midgard_is_integer_op(ins->alu.op);
156
157 midgard_vector_alu_src src2 =
158 vector_alu_from_unsigned(ins->alu.src2);
159
160 return mir_nontrivial_raw_mod(src2, is_int) || src2.half;
161 }
162
163 bool
164 mir_nontrivial_outmod(midgard_instruction *ins)
165 {
166 bool is_int = midgard_is_integer_op(ins->alu.op);
167 unsigned mod = ins->alu.outmod;
168
169 /* Pseudo-outmod */
170 if (ins->invert)
171 return true;
172
173 /* Type conversion is a sort of outmod */
174 if (ins->alu.dest_override != midgard_dest_override_none)
175 return true;
176
177 if (is_int)
178 return mod != midgard_outmod_int_wrap;
179 else
180 return mod != midgard_outmod_none;
181 }
182
183 /* Checks if an index will be used as a special register -- basically, if we're
184 * used as the input to a non-ALU op */
185
186 bool
187 mir_special_index(compiler_context *ctx, unsigned idx)
188 {
189 mir_foreach_instr_global(ctx, ins) {
190 bool is_ldst = ins->type == TAG_LOAD_STORE_4;
191 bool is_tex = ins->type == TAG_TEXTURE_4;
192 bool is_writeout = ins->compact_branch && ins->writeout;
193
194 if (!(is_ldst || is_tex || is_writeout))
195 continue;
196
197 if (mir_has_arg(ins, idx))
198 return true;
199 }
200
201 return false;
202 }
203
204 /* Is a node written before a given instruction? */
205
206 bool
207 mir_is_written_before(compiler_context *ctx, midgard_instruction *ins, unsigned node)
208 {
209 if (node >= SSA_FIXED_MINIMUM)
210 return true;
211
212 mir_foreach_instr_global(ctx, q) {
213 if (q == ins)
214 break;
215
216 if (q->dest == node)
217 return true;
218 }
219
220 return false;
221 }
222
223 /* Grabs the type size. */
224
225 midgard_reg_mode
226 mir_typesize(midgard_instruction *ins)
227 {
228 if (ins->compact_branch)
229 return midgard_reg_mode_32;
230
231 /* TODO: Type sizes for texture */
232 if (ins->type == TAG_TEXTURE_4)
233 return midgard_reg_mode_32;
234
235 if (ins->type == TAG_LOAD_STORE_4)
236 return GET_LDST_SIZE(load_store_opcode_props[ins->load_store.op].props);
237
238 if (ins->type == TAG_ALU_4) {
239 midgard_reg_mode mode = ins->alu.reg_mode;
240
241 /* If we have an override, step down by half */
242 if (ins->alu.dest_override != midgard_dest_override_none) {
243 assert(mode > midgard_reg_mode_8);
244 mode--;
245 }
246
247 return mode;
248 }
249
250 unreachable("Invalid instruction type");
251 }
252
253 /* Grabs the size of a source */
254
255 midgard_reg_mode
256 mir_srcsize(midgard_instruction *ins, unsigned i)
257 {
258 if (ins->type == TAG_LOAD_STORE_4) {
259 if (OP_HAS_ADDRESS(ins->load_store.op)) {
260 if (i == 1)
261 return midgard_reg_mode_64;
262 else if (i == 2) {
263 bool zext = ins->load_store.arg_1 & 0x80;
264 return zext ? midgard_reg_mode_32 : midgard_reg_mode_64;
265 }
266 }
267 }
268
269 /* TODO: 16-bit textures/ldst */
270 if (ins->type == TAG_TEXTURE_4 || ins->type == TAG_LOAD_STORE_4)
271 return midgard_reg_mode_32;
272
273 /* TODO: 16-bit branches */
274 if (ins->compact_branch)
275 return midgard_reg_mode_32;
276
277 if (i >= 2) {
278 /* TODO: 16-bit conditions, ffma */
279 return midgard_reg_mode_32;
280 }
281
282 /* Default to type of the instruction */
283
284 midgard_reg_mode mode = ins->alu.reg_mode;
285
286 /* If we have a half modifier, step down by half */
287
288 if ((mir_get_alu_src(ins, i)).half) {
289 assert(mode > midgard_reg_mode_8);
290 mode--;
291 }
292
293 return mode;
294 }
295
296 midgard_reg_mode
297 mir_mode_for_destsize(unsigned size)
298 {
299 switch (size) {
300 case 8:
301 return midgard_reg_mode_8;
302 case 16:
303 return midgard_reg_mode_16;
304 case 32:
305 return midgard_reg_mode_32;
306 case 64:
307 return midgard_reg_mode_64;
308 default:
309 unreachable("Unknown destination size");
310 }
311 }
312
313 /* ...and the inverse */
314
315 unsigned
316 mir_bytes_for_mode(midgard_reg_mode mode)
317 {
318 switch (mode) {
319 case midgard_reg_mode_8:
320 return 1;
321 case midgard_reg_mode_16:
322 return 2;
323 case midgard_reg_mode_32:
324 return 4;
325 case midgard_reg_mode_64:
326 return 8;
327 default:
328 unreachable("Invalid register mode");
329 }
330 }
331
332 uint16_t
333 mir_from_bytemask(uint16_t bytemask, midgard_reg_mode mode)
334 {
335 unsigned value = 0;
336 unsigned count = mir_bytes_for_mode(mode);
337
338 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
339 bool a = (bytemask & (1 << c)) != 0;
340
341 for (unsigned q = c; q < count; ++q)
342 assert(((bytemask & (1 << q)) != 0) == a);
343
344 value |= (a << d);
345 }
346
347 return value;
348 }
349
350 /* Rounds up a bytemask to fill a given component count. Iterate each
351 * component, and check if any bytes in the component are masked on */
352
353 uint16_t
354 mir_round_bytemask_up(uint16_t mask, midgard_reg_mode mode)
355 {
356 unsigned bytes = mir_bytes_for_mode(mode);
357 unsigned maxmask = mask_of(bytes);
358 unsigned channels = 16 / bytes;
359
360 for (unsigned c = 0; c < channels; ++c) {
361 unsigned submask = maxmask << (c * bytes);
362
363 if (mask & submask)
364 mask |= submask;
365 }
366
367 return mask;
368 }
369
370 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
371
372 uint16_t
373 mir_bytemask(midgard_instruction *ins)
374 {
375 return pan_to_bytemask(mir_bytes_for_mode(mir_typesize(ins)) * 8, ins->mask);
376 }
377
378 void
379 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
380 {
381 ins->mask = mir_from_bytemask(bytemask, mir_typesize(ins));
382 }
383
384 /* Checks if we should use an upper destination override, rather than the lower
385 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
386
387 unsigned
388 mir_upper_override(midgard_instruction *ins)
389 {
390 /* If there is no override, there is no upper override, tautology */
391 if (ins->alu.dest_override == midgard_dest_override_none)
392 return 0;
393
394 /* Make sure we didn't already lower somehow */
395 assert(ins->alu.dest_override == midgard_dest_override_lower);
396
397 /* What is the mask in terms of currently? */
398 midgard_reg_mode type = mir_typesize(ins);
399
400 /* There are 16 bytes per vector, so there are (16/bytes)
401 * components per vector. So the magic half is half of
402 * (16/bytes), which simplifies to 8/bytes */
403
404 unsigned threshold = 8 / mir_bytes_for_mode(type);
405
406 /* How many components did we shift over? */
407 unsigned zeroes = __builtin_ctz(ins->mask);
408
409 /* Did we hit the threshold? */
410 return (zeroes >= threshold) ? threshold : 0;
411 }
412
413 /* Creates a mask of the components of a node read by an instruction, by
414 * analyzing the swizzle with respect to the instruction's mask. E.g.:
415 *
416 * fadd r0.xz, r1.yyyy, r2.zwyx
417 *
418 * will return a mask of Z/Y for r2
419 */
420
421 static uint16_t
422 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, midgard_reg_mode mode)
423 {
424 unsigned cmask = 0;
425
426 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
427 if (!(inmask & (1 << c))) continue;
428 cmask |= (1 << swizzle[c]);
429 }
430
431 return pan_to_bytemask(mir_bytes_for_mode(mode) * 8, cmask);
432 }
433
434 uint16_t
435 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
436 {
437 if (ins->compact_branch && ins->writeout && (i == 0)) {
438 /* Non-ZS writeout uses all components */
439 if (!ins->writeout_depth && !ins->writeout_stencil)
440 return 0xFFFF;
441
442 /* For ZS-writeout, if both Z and S are written we need two
443 * components, otherwise we only need one.
444 */
445 if (ins->writeout_depth && ins->writeout_stencil)
446 return 0xFF;
447 else
448 return 0xF;
449 }
450
451 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
452 if (ins->compact_branch && ins->branch.conditional && (i == 0))
453 return 0xF;
454
455 /* ALU ops act componentwise so we need to pay attention to
456 * their mask. Texture/ldst does not so we don't clamp source
457 * readmasks based on the writemask */
458 unsigned qmask = (ins->type == TAG_ALU_4) ? ins->mask : ~0;
459
460 /* Handle dot products and things */
461 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
462 unsigned props = alu_opcode_props[ins->alu.op].props;
463
464 unsigned channel_override = GET_CHANNEL_COUNT(props);
465
466 if (channel_override)
467 qmask = mask_of(channel_override);
468 }
469
470 return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, mir_srcsize(ins, i));
471 }
472
473 uint16_t
474 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
475 {
476 uint16_t mask = 0;
477
478 if (node == ~0)
479 return 0;
480
481 mir_foreach_src(ins, i) {
482 if (ins->src[i] != node) continue;
483 mask |= mir_bytemask_of_read_components_index(ins, i);
484 }
485
486 return mask;
487 }
488
489 /* Register allocation occurs after instruction scheduling, which is fine until
490 * we start needing to spill registers and therefore insert instructions into
491 * an already-scheduled program. We don't have to be terribly efficient about
492 * this, since spilling is already slow. So just semantically we need to insert
493 * the instruction into a new bundle before/after the bundle of the instruction
494 * in question */
495
496 static midgard_bundle
497 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
498 {
499 midgard_instruction *u = mir_upload_ins(ctx, ins);
500
501 midgard_bundle bundle = {
502 .tag = ins.type,
503 .instruction_count = 1,
504 .instructions = { u },
505 };
506
507 if (bundle.tag == TAG_ALU_4) {
508 assert(OP_IS_MOVE(u->alu.op));
509 u->unit = UNIT_VMUL;
510
511 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
512 bundle.padding = ~(bytes_emitted - 1) & 0xF;
513 bundle.control = ins.type | u->unit;
514 }
515
516 return bundle;
517 }
518
519 static unsigned
520 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
521 {
522 midgard_bundle *bundles =
523 (midgard_bundle *) block->bundles.data;
524
525 size_t count = (block->bundles.size / sizeof(midgard_bundle));
526
527 for (unsigned i = 0; i < count; ++i) {
528 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
529 if (bundles[i].instructions[j] == tag)
530 return i;
531 }
532 }
533
534 mir_print_instruction(tag);
535 unreachable("Instruction not scheduled in block");
536 }
537
538 void
539 mir_insert_instruction_before_scheduled(
540 compiler_context *ctx,
541 midgard_block *block,
542 midgard_instruction *tag,
543 midgard_instruction ins)
544 {
545 unsigned before = mir_bundle_idx_for_ins(tag, block);
546 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
547 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
548
549 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
550 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
551 midgard_bundle *before_bundle = bundles + before + 1;
552
553 midgard_bundle new = mir_bundle_for_op(ctx, ins);
554 memcpy(bundles + before, &new, sizeof(new));
555
556 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
557 block->quadword_count += midgard_tag_props[new.tag].size;
558 }
559
560 void
561 mir_insert_instruction_after_scheduled(
562 compiler_context *ctx,
563 midgard_block *block,
564 midgard_instruction *tag,
565 midgard_instruction ins)
566 {
567 /* We need to grow the bundles array to add our new bundle */
568 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
569 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
570
571 /* Find the bundle that we want to insert after */
572 unsigned after = mir_bundle_idx_for_ins(tag, block);
573
574 /* All the bundles after that one, we move ahead by one */
575 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
576 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
577 midgard_bundle *after_bundle = bundles + after;
578
579 midgard_bundle new = mir_bundle_for_op(ctx, ins);
580 memcpy(bundles + after + 1, &new, sizeof(new));
581 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
582 block->quadword_count += midgard_tag_props[new.tag].size;
583 }
584
585 /* Flip the first-two arguments of a (binary) op. Currently ALU
586 * only, no known uses for ldst/tex */
587
588 void
589 mir_flip(midgard_instruction *ins)
590 {
591 unsigned temp = ins->src[0];
592 ins->src[0] = ins->src[1];
593 ins->src[1] = temp;
594
595 assert(ins->type == TAG_ALU_4);
596
597 temp = ins->alu.src1;
598 ins->alu.src1 = ins->alu.src2;
599 ins->alu.src2 = temp;
600
601 unsigned temp_swizzle[16];
602 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
603 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
604 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
605 }
606
607 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
608
609 void
610 mir_compute_temp_count(compiler_context *ctx)
611 {
612 if (ctx->temp_count)
613 return;
614
615 unsigned max_dest = 0;
616
617 mir_foreach_instr_global(ctx, ins) {
618 if (ins->dest < SSA_FIXED_MINIMUM)
619 max_dest = MAX2(max_dest, ins->dest + 1);
620 }
621
622 ctx->temp_count = max_dest;
623 }