pan/mdg: Optimize pipelining logic
[mesa.git] / src / panfrost / midgard / mir.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
28 {
29 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
30 if (ins->src[i] == old)
31 ins->src[i] = new;
32 }
33 }
34
35 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
36 {
37 if (ins->dest == old)
38 ins->dest = new;
39 }
40
41 static midgard_vector_alu_src
42 mir_get_alu_src(midgard_instruction *ins, unsigned idx)
43 {
44 unsigned b = (idx == 0) ? ins->alu.src1 : ins->alu.src2;
45 return vector_alu_from_unsigned(b);
46 }
47
48 static void
49 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
50 {
51 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
52 if (ins->src[i] != old) continue;
53
54 ins->src[i] = new;
55 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
56 }
57 }
58
59 void
60 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
61 {
62 mir_foreach_instr_global(ctx, ins) {
63 mir_rewrite_index_src_single(ins, old, new);
64 }
65 }
66
67 void
68 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
69 {
70 mir_foreach_instr_global(ctx, ins) {
71 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
72 }
73 }
74
75 void
76 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
77 {
78 mir_foreach_instr_global(ctx, ins) {
79 mir_rewrite_index_dst_single(ins, old, new);
80 }
81 }
82
83 void
84 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
85 {
86 mir_rewrite_index_src(ctx, old, new);
87 mir_rewrite_index_dst(ctx, old, new);
88 }
89
90 unsigned
91 mir_use_count(compiler_context *ctx, unsigned value)
92 {
93 unsigned used_count = 0;
94
95 mir_foreach_instr_global(ctx, ins) {
96 if (mir_has_arg(ins, value))
97 ++used_count;
98 }
99
100 return used_count;
101 }
102
103 /* Checks if a value is used only once (or totally dead), which is an important
104 * heuristic to figure out if certain optimizations are Worth It (TM) */
105
106 bool
107 mir_single_use(compiler_context *ctx, unsigned value)
108 {
109 /* We can replicate constants in places so who cares */
110 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
111 return true;
112
113 return mir_use_count(ctx, value) <= 1;
114 }
115
116 static bool
117 mir_nontrivial_raw_mod(midgard_vector_alu_src src, bool is_int)
118 {
119 if (is_int)
120 return src.mod == midgard_int_shift;
121 else
122 return src.mod;
123 }
124
125 static bool
126 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask, unsigned *swizzle)
127 {
128 if (mir_nontrivial_raw_mod(src, is_int)) return true;
129
130 /* size-conversion */
131 if (src.half) return true;
132
133 for (unsigned c = 0; c < 16; ++c) {
134 if (!(mask & (1 << c))) continue;
135 if (swizzle[c] != c) return true;
136 }
137
138 return false;
139 }
140
141 bool
142 mir_nontrivial_source2_mod(midgard_instruction *ins)
143 {
144 bool is_int = midgard_is_integer_op(ins->alu.op);
145
146 midgard_vector_alu_src src2 =
147 vector_alu_from_unsigned(ins->alu.src2);
148
149 return mir_nontrivial_mod(src2, is_int, ins->mask, ins->swizzle[1]);
150 }
151
152 bool
153 mir_nontrivial_source2_mod_simple(midgard_instruction *ins)
154 {
155 bool is_int = midgard_is_integer_op(ins->alu.op);
156
157 midgard_vector_alu_src src2 =
158 vector_alu_from_unsigned(ins->alu.src2);
159
160 return mir_nontrivial_raw_mod(src2, is_int) || src2.half;
161 }
162
163 bool
164 mir_nontrivial_outmod(midgard_instruction *ins)
165 {
166 bool is_int = midgard_is_integer_op(ins->alu.op);
167 unsigned mod = ins->alu.outmod;
168
169 /* Type conversion is a sort of outmod */
170 if (ins->alu.dest_override != midgard_dest_override_none)
171 return true;
172
173 if (is_int)
174 return mod != midgard_outmod_int_wrap;
175 else
176 return mod != midgard_outmod_none;
177 }
178
179 /* Checks if an index will be used as a special register -- basically, if we're
180 * used as the input to a non-ALU op */
181
182 bool
183 mir_special_index(compiler_context *ctx, unsigned idx)
184 {
185 mir_foreach_instr_global(ctx, ins) {
186 bool is_ldst = ins->type == TAG_LOAD_STORE_4;
187 bool is_tex = ins->type == TAG_TEXTURE_4;
188 bool is_writeout = ins->compact_branch && ins->writeout;
189
190 if (!(is_ldst || is_tex || is_writeout))
191 continue;
192
193 if (mir_has_arg(ins, idx))
194 return true;
195 }
196
197 return false;
198 }
199
200 /* Grabs the type size. */
201
202 midgard_reg_mode
203 mir_typesize(midgard_instruction *ins)
204 {
205 if (ins->compact_branch)
206 return midgard_reg_mode_32;
207
208 /* TODO: Type sizes for texture */
209 if (ins->type == TAG_TEXTURE_4)
210 return midgard_reg_mode_32;
211
212 if (ins->type == TAG_LOAD_STORE_4)
213 return GET_LDST_SIZE(load_store_opcode_props[ins->load_store.op].props);
214
215 if (ins->type == TAG_ALU_4) {
216 midgard_reg_mode mode = ins->alu.reg_mode;
217
218 /* If we have an override, step down by half */
219 if (ins->alu.dest_override != midgard_dest_override_none) {
220 assert(mode > midgard_reg_mode_8);
221 mode--;
222 }
223
224 return mode;
225 }
226
227 unreachable("Invalid instruction type");
228 }
229
230 /* Grabs the size of a source */
231
232 midgard_reg_mode
233 mir_srcsize(midgard_instruction *ins, unsigned i)
234 {
235 if (ins->type == TAG_LOAD_STORE_4) {
236 if (OP_HAS_ADDRESS(ins->load_store.op)) {
237 if (i == 1)
238 return midgard_reg_mode_64;
239 else if (i == 2) {
240 bool zext = ins->load_store.arg_1 & 0x80;
241 return zext ? midgard_reg_mode_32 : midgard_reg_mode_64;
242 }
243 }
244 }
245
246 /* TODO: 16-bit textures/ldst */
247 if (ins->type == TAG_TEXTURE_4 || ins->type == TAG_LOAD_STORE_4)
248 return midgard_reg_mode_32;
249
250 /* TODO: 16-bit branches */
251 if (ins->compact_branch)
252 return midgard_reg_mode_32;
253
254 if (i >= 2) {
255 /* TODO: 16-bit conditions, ffma */
256 return midgard_reg_mode_32;
257 }
258
259 /* Default to type of the instruction */
260
261 midgard_reg_mode mode = ins->alu.reg_mode;
262
263 /* If we have a half modifier, step down by half */
264
265 if ((mir_get_alu_src(ins, i)).half) {
266 assert(mode > midgard_reg_mode_8);
267 mode--;
268 }
269
270 return mode;
271 }
272
273 midgard_reg_mode
274 mir_mode_for_destsize(unsigned size)
275 {
276 switch (size) {
277 case 8:
278 return midgard_reg_mode_8;
279 case 16:
280 return midgard_reg_mode_16;
281 case 32:
282 return midgard_reg_mode_32;
283 case 64:
284 return midgard_reg_mode_64;
285 default:
286 unreachable("Unknown destination size");
287 }
288 }
289
290 /* ...and the inverse */
291
292 unsigned
293 mir_bytes_for_mode(midgard_reg_mode mode)
294 {
295 switch (mode) {
296 case midgard_reg_mode_8:
297 return 1;
298 case midgard_reg_mode_16:
299 return 2;
300 case midgard_reg_mode_32:
301 return 4;
302 case midgard_reg_mode_64:
303 return 8;
304 default:
305 unreachable("Invalid register mode");
306 }
307 }
308
309 uint16_t
310 mir_from_bytemask(uint16_t bytemask, midgard_reg_mode mode)
311 {
312 unsigned value = 0;
313 unsigned count = mir_bytes_for_mode(mode);
314
315 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
316 bool a = (bytemask & (1 << c)) != 0;
317
318 for (unsigned q = c; q < count; ++q)
319 assert(((bytemask & (1 << q)) != 0) == a);
320
321 value |= (a << d);
322 }
323
324 return value;
325 }
326
327 /* Rounds up a bytemask to fill a given component count. Iterate each
328 * component, and check if any bytes in the component are masked on */
329
330 uint16_t
331 mir_round_bytemask_up(uint16_t mask, midgard_reg_mode mode)
332 {
333 unsigned bytes = mir_bytes_for_mode(mode);
334 unsigned maxmask = mask_of(bytes);
335 unsigned channels = 16 / bytes;
336
337 for (unsigned c = 0; c < channels; ++c) {
338 unsigned submask = maxmask << (c * bytes);
339
340 if (mask & submask)
341 mask |= submask;
342 }
343
344 return mask;
345 }
346
347 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
348
349 uint16_t
350 mir_bytemask(midgard_instruction *ins)
351 {
352 return pan_to_bytemask(mir_bytes_for_mode(mir_typesize(ins)) * 8, ins->mask);
353 }
354
355 void
356 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
357 {
358 ins->mask = mir_from_bytemask(bytemask, mir_typesize(ins));
359 }
360
361 /* Checks if we should use an upper destination override, rather than the lower
362 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
363
364 unsigned
365 mir_upper_override(midgard_instruction *ins)
366 {
367 /* If there is no override, there is no upper override, tautology */
368 if (ins->alu.dest_override == midgard_dest_override_none)
369 return 0;
370
371 /* Make sure we didn't already lower somehow */
372 assert(ins->alu.dest_override == midgard_dest_override_lower);
373
374 /* What is the mask in terms of currently? */
375 midgard_reg_mode type = mir_typesize(ins);
376
377 /* There are 16 bytes per vector, so there are (16/bytes)
378 * components per vector. So the magic half is half of
379 * (16/bytes), which simplifies to 8/bytes */
380
381 unsigned threshold = 8 / mir_bytes_for_mode(type);
382
383 /* How many components did we shift over? */
384 unsigned zeroes = __builtin_ctz(ins->mask);
385
386 /* Did we hit the threshold? */
387 return (zeroes >= threshold) ? threshold : 0;
388 }
389
390 /* Creates a mask of the components of a node read by an instruction, by
391 * analyzing the swizzle with respect to the instruction's mask. E.g.:
392 *
393 * fadd r0.xz, r1.yyyy, r2.zwyx
394 *
395 * will return a mask of Z/Y for r2
396 */
397
398 static uint16_t
399 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, midgard_reg_mode mode)
400 {
401 unsigned cmask = 0;
402
403 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
404 if (!(inmask & (1 << c))) continue;
405 cmask |= (1 << swizzle[c]);
406 }
407
408 return pan_to_bytemask(mir_bytes_for_mode(mode) * 8, cmask);
409 }
410
411 uint16_t
412 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
413 {
414 if (ins->compact_branch && ins->writeout && (i == 0)) {
415 /* Non-ZS writeout uses all components */
416 if (!ins->writeout_depth && !ins->writeout_stencil)
417 return 0xFFFF;
418
419 /* For ZS-writeout, if both Z and S are written we need two
420 * components, otherwise we only need one.
421 */
422 if (ins->writeout_depth && ins->writeout_stencil)
423 return 0xFF;
424 else
425 return 0xF;
426 }
427
428 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
429 if (ins->compact_branch && ins->branch.conditional && (i == 0))
430 return 0xF;
431
432 /* ALU ops act componentwise so we need to pay attention to
433 * their mask. Texture/ldst does not so we don't clamp source
434 * readmasks based on the writemask */
435 unsigned qmask = (ins->type == TAG_ALU_4) ? ins->mask : ~0;
436
437 /* Handle dot products and things */
438 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
439 unsigned props = alu_opcode_props[ins->alu.op].props;
440
441 unsigned channel_override = GET_CHANNEL_COUNT(props);
442
443 if (channel_override)
444 qmask = mask_of(channel_override);
445 }
446
447 return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, mir_srcsize(ins, i));
448 }
449
450 uint16_t
451 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
452 {
453 uint16_t mask = 0;
454
455 if (node == ~0)
456 return 0;
457
458 mir_foreach_src(ins, i) {
459 if (ins->src[i] != node) continue;
460 mask |= mir_bytemask_of_read_components_index(ins, i);
461 }
462
463 return mask;
464 }
465
466 /* Register allocation occurs after instruction scheduling, which is fine until
467 * we start needing to spill registers and therefore insert instructions into
468 * an already-scheduled program. We don't have to be terribly efficient about
469 * this, since spilling is already slow. So just semantically we need to insert
470 * the instruction into a new bundle before/after the bundle of the instruction
471 * in question */
472
473 static midgard_bundle
474 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
475 {
476 midgard_instruction *u = mir_upload_ins(ctx, ins);
477
478 midgard_bundle bundle = {
479 .tag = ins.type,
480 .instruction_count = 1,
481 .instructions = { u },
482 };
483
484 if (bundle.tag == TAG_ALU_4) {
485 assert(OP_IS_MOVE(u->alu.op));
486 u->unit = UNIT_VMUL;
487
488 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
489 bundle.padding = ~(bytes_emitted - 1) & 0xF;
490 bundle.control = ins.type | u->unit;
491 }
492
493 return bundle;
494 }
495
496 static unsigned
497 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
498 {
499 midgard_bundle *bundles =
500 (midgard_bundle *) block->bundles.data;
501
502 size_t count = (block->bundles.size / sizeof(midgard_bundle));
503
504 for (unsigned i = 0; i < count; ++i) {
505 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
506 if (bundles[i].instructions[j] == tag)
507 return i;
508 }
509 }
510
511 mir_print_instruction(tag);
512 unreachable("Instruction not scheduled in block");
513 }
514
515 void
516 mir_insert_instruction_before_scheduled(
517 compiler_context *ctx,
518 midgard_block *block,
519 midgard_instruction *tag,
520 midgard_instruction ins)
521 {
522 unsigned before = mir_bundle_idx_for_ins(tag, block);
523 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
524 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
525
526 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
527 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
528 midgard_bundle *before_bundle = bundles + before + 1;
529
530 midgard_bundle new = mir_bundle_for_op(ctx, ins);
531 memcpy(bundles + before, &new, sizeof(new));
532
533 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
534 block->quadword_count += midgard_tag_props[new.tag].size;
535 }
536
537 void
538 mir_insert_instruction_after_scheduled(
539 compiler_context *ctx,
540 midgard_block *block,
541 midgard_instruction *tag,
542 midgard_instruction ins)
543 {
544 /* We need to grow the bundles array to add our new bundle */
545 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
546 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
547
548 /* Find the bundle that we want to insert after */
549 unsigned after = mir_bundle_idx_for_ins(tag, block);
550
551 /* All the bundles after that one, we move ahead by one */
552 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
553 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
554 midgard_bundle *after_bundle = bundles + after;
555
556 midgard_bundle new = mir_bundle_for_op(ctx, ins);
557 memcpy(bundles + after + 1, &new, sizeof(new));
558 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
559 block->quadword_count += midgard_tag_props[new.tag].size;
560 }
561
562 /* Flip the first-two arguments of a (binary) op. Currently ALU
563 * only, no known uses for ldst/tex */
564
565 void
566 mir_flip(midgard_instruction *ins)
567 {
568 unsigned temp = ins->src[0];
569 ins->src[0] = ins->src[1];
570 ins->src[1] = temp;
571
572 assert(ins->type == TAG_ALU_4);
573
574 temp = ins->alu.src1;
575 ins->alu.src1 = ins->alu.src2;
576 ins->alu.src2 = temp;
577
578 unsigned temp_swizzle[16];
579 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
580 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
581 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
582 }
583
584 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
585
586 void
587 mir_compute_temp_count(compiler_context *ctx)
588 {
589 if (ctx->temp_count)
590 return;
591
592 unsigned max_dest = 0;
593
594 mir_foreach_instr_global(ctx, ins) {
595 if (ins->dest < SSA_FIXED_MINIMUM)
596 max_dest = MAX2(max_dest, ins->dest + 1);
597 }
598
599 ctx->temp_count = max_dest;
600 }