meson: use gnu_symbol_visibility argument
[mesa.git] / src / panfrost / util / pan_lower_framebuffer.c
1 /*
2 * Copyright (C) 2020 Collabora, Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 /**
28 * Implements framebuffer format conversions in software for Midgard/Bifrost
29 * blend shaders. This pass is designed for a single render target; Midgard
30 * duplicates blend shaders for MRT to simplify everything. A particular
31 * framebuffer format may be categorized as 1) typed load available, 2) typed
32 * unpack available, or 3) software unpack only, and likewise for stores. The
33 * first two types are handled in the compiler backend directly, so this module
34 * is responsible for identifying type 3 formats (hardware dependent) and
35 * inserting appropriate ALU code to perform the conversion from the packed
36 * type to a designated unpacked type, and vice versa.
37 *
38 * The unpacked type depends on the format:
39 *
40 * - For 32-bit float formats, 32-bit floats.
41 * - For other floats, 16-bit floats.
42 * - For 32-bit ints, 32-bit ints.
43 * - For 8-bit ints, 8-bit ints.
44 * - For other ints, 16-bit ints.
45 *
46 * The rationale is to optimize blending and logic op instructions by using the
47 * smallest precision necessary to store the pixel losslessly.
48 */
49
50 #include "compiler/nir/nir.h"
51 #include "compiler/nir/nir_builder.h"
52 #include "compiler/nir/nir_format_convert.h"
53 #include "util/format/u_format.h"
54 #include "pan_lower_framebuffer.h"
55 #include "panfrost-quirks.h"
56
57 /* Determines the unpacked type best suiting a given format, so the rest of the
58 * pipeline may be adjusted accordingly */
59
60 nir_alu_type
61 pan_unpacked_type_for_format(const struct util_format_description *desc)
62 {
63 int c = util_format_get_first_non_void_channel(desc->format);
64
65 if (c == -1)
66 unreachable("Void format not renderable");
67
68 bool large = (desc->channel[c].size > 16);
69 bool bit8 = (desc->channel[c].size == 8);
70 assert(desc->channel[c].size <= 32);
71
72 if (desc->channel[c].normalized)
73 return large ? nir_type_float32 : nir_type_float16;
74
75 switch (desc->channel[c].type) {
76 case UTIL_FORMAT_TYPE_UNSIGNED:
77 return bit8 ? nir_type_uint8 :
78 large ? nir_type_uint32 : nir_type_uint16;
79 case UTIL_FORMAT_TYPE_SIGNED:
80 return bit8 ? nir_type_int8 :
81 large ? nir_type_int32 : nir_type_int16;
82 case UTIL_FORMAT_TYPE_FLOAT:
83 return large ? nir_type_float32 : nir_type_float16;
84 default:
85 unreachable("Format not renderable");
86 }
87 }
88
89 enum pan_format_class
90 pan_format_class_load(const struct util_format_description *desc, unsigned quirks)
91 {
92 /* Check if we can do anything better than software architecturally */
93 if (quirks & MIDGARD_NO_TYPED_BLEND_LOADS) {
94 return (quirks & NO_BLEND_PACKS)
95 ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
96 }
97
98 /* Some formats are missing as typed on some GPUs but have unpacks */
99 if (quirks & MIDGARD_MISSING_LOADS) {
100 switch (desc->format) {
101 case PIPE_FORMAT_R11G11B10_FLOAT:
102 case PIPE_FORMAT_R10G10B10A2_UNORM:
103 case PIPE_FORMAT_B10G10R10A2_UNORM:
104 case PIPE_FORMAT_R10G10B10X2_UNORM:
105 case PIPE_FORMAT_B10G10R10X2_UNORM:
106 case PIPE_FORMAT_R10G10B10A2_UINT:
107 return PAN_FORMAT_PACK;
108 default:
109 return PAN_FORMAT_NATIVE;
110 }
111 }
112
113 /* Otherwise, we can do native */
114 return PAN_FORMAT_NATIVE;
115 }
116
117 enum pan_format_class
118 pan_format_class_store(const struct util_format_description *desc, unsigned quirks)
119 {
120 /* Check if we can do anything better than software architecturally */
121 if (quirks & MIDGARD_NO_TYPED_BLEND_STORES) {
122 return (quirks & NO_BLEND_PACKS)
123 ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
124 }
125
126 return PAN_FORMAT_NATIVE;
127 }
128
129 /* Software packs/unpacks, by format class. Packs take in the pixel value typed
130 * as `pan_unpacked_type_for_format` of the format and return an i32vec4
131 * suitable for storing (with components replicated to fill). Unpacks do the
132 * reverse but cannot rely on replication.
133 *
134 * Pure 32 formats (R32F ... RGBA32F) are 32 unpacked, so just need to
135 * replicate to fill */
136
137 static nir_ssa_def *
138 pan_pack_pure_32(nir_builder *b, nir_ssa_def *v)
139 {
140 nir_ssa_def *replicated[4];
141
142 for (unsigned i = 0; i < 4; ++i)
143 replicated[i] = nir_channel(b, v, i % v->num_components);
144
145 return nir_vec(b, replicated, 4);
146 }
147
148 static nir_ssa_def *
149 pan_unpack_pure_32(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
150 {
151 return nir_channels(b, pack, (1 << num_components) - 1);
152 }
153
154 /* Pure x16 formats are x16 unpacked, so it's similar, but we need to pack
155 * upper/lower halves of course */
156
157 static nir_ssa_def *
158 pan_pack_pure_16(nir_builder *b, nir_ssa_def *v)
159 {
160 nir_ssa_def *replicated[4];
161
162 for (unsigned i = 0; i < 4; ++i) {
163 unsigned c = 2 * i;
164
165 nir_ssa_def *parts[2] = {
166 nir_channel(b, v, (c + 0) % v->num_components),
167 nir_channel(b, v, (c + 1) % v->num_components)
168 };
169
170 replicated[i] = nir_pack_32_2x16(b, nir_vec(b, parts, 2));
171 }
172
173 return nir_vec(b, replicated, 4);
174 }
175
176 static nir_ssa_def *
177 pan_unpack_pure_16(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
178 {
179 nir_ssa_def *unpacked[4];
180
181 assert(num_components <= 4);
182
183 for (unsigned i = 0; i < num_components; i += 2) {
184 nir_ssa_def *halves =
185 nir_unpack_32_2x16(b, nir_channel(b, pack, i >> 1));
186
187 unpacked[i + 0] = nir_channel(b, halves, 0);
188 unpacked[i + 1] = nir_channel(b, halves, 1);
189 }
190
191 for (unsigned i = num_components; i < 4; ++i)
192 unpacked[i] = nir_imm_intN_t(b, 0, 16);
193
194 return nir_vec(b, unpacked, 4);
195 }
196
197 /* And likewise for x8. pan_fill_4 fills a 4-channel vector with a n-channel
198 * vector (n <= 4), replicating as needed. pan_replicate_4 constructs a
199 * 4-channel vector from a scalar via replication */
200
201 static nir_ssa_def *
202 pan_fill_4(nir_builder *b, nir_ssa_def *v)
203 {
204 nir_ssa_def *q[4];
205 assert(v->num_components <= 4);
206
207 for (unsigned j = 0; j < 4; ++j)
208 q[j] = nir_channel(b, v, j % v->num_components);
209
210 return nir_vec(b, q, 4);
211 }
212
213 static nir_ssa_def *
214 pan_replicate_4(nir_builder *b, nir_ssa_def *v)
215 {
216 nir_ssa_def *replicated[4] = { v, v, v, v };
217 return nir_vec(b, replicated, 4);
218 }
219
220 static nir_ssa_def *
221 pan_pack_pure_8(nir_builder *b, nir_ssa_def *v)
222 {
223 return pan_replicate_4(b, nir_pack_32_4x8(b, pan_fill_4(b, v)));
224 }
225
226 static nir_ssa_def *
227 pan_unpack_pure_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
228 {
229 assert(num_components <= 4);
230 nir_ssa_def *unpacked = nir_unpack_32_4x8(b, nir_channel(b, pack, 0));
231 return nir_channels(b, unpacked, (1 << num_components) - 1);
232 }
233
234 /* UNORM 8 is unpacked to f16 vec4. We could directly use the un/pack_unorm_4x8
235 * ops provided we replicate appropriately, but for packing we'd rather stay in
236 * 8/16-bit whereas the NIR op forces 32-bit, so we do it manually */
237
238 static nir_ssa_def *
239 pan_pack_unorm_8(nir_builder *b, nir_ssa_def *v)
240 {
241 return pan_replicate_4(b, nir_pack_32_4x8(b,
242 nir_f2u8(b, nir_fround_even(b, nir_fmul(b, nir_fsat(b,
243 pan_fill_4(b, v)), nir_imm_float16(b, 255.0))))));
244 }
245
246 static nir_ssa_def *
247 pan_unpack_unorm_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
248 {
249 assert(num_components <= 4);
250 nir_ssa_def *unpacked = nir_unpack_unorm_4x8(b, nir_channel(b, pack, 0));
251 return nir_f2f16(b, unpacked);
252 }
253
254 /* UNORM 4 is also unpacked to f16, which prevents us from using the shared
255 * unpack which strongly assumes fp32. However, on the tilebuffer it is actually packed as:
256 *
257 * [AAAA] [0000] [BBBB] [0000] [GGGG] [0000] [RRRR] [0000]
258 *
259 * In other words, spacing it out so we're aligned to bytes and on top. So
260 * pack as:
261 *
262 * pack_32_4x8(f2u8_rte(v * 15.0) << 4)
263 */
264
265 static nir_ssa_def *
266 pan_pack_unorm_small(nir_builder *b, nir_ssa_def *v,
267 nir_ssa_def *scales, nir_ssa_def *shifts)
268 {
269 nir_ssa_def *f = nir_fmul(b, nir_fsat(b, pan_fill_4(b, v)), scales);
270 nir_ssa_def *u8 = nir_f2u8(b, nir_fround_even(b, f));
271 nir_ssa_def *s = nir_ishl(b, u8, shifts);
272 nir_ssa_def *repl = nir_pack_32_4x8(b, s);
273
274 return pan_replicate_4(b, repl);
275 }
276
277 static nir_ssa_def *
278 pan_unpack_unorm_small(nir_builder *b, nir_ssa_def *pack,
279 nir_ssa_def *scales, nir_ssa_def *shifts)
280 {
281 nir_ssa_def *channels = nir_unpack_32_4x8(b, nir_channel(b, pack, 0));
282 nir_ssa_def *raw = nir_ushr(b, nir_u2u16(b, channels), shifts);
283 return nir_fmul(b, nir_u2f16(b, raw), scales);
284 }
285
286 static nir_ssa_def *
287 pan_pack_unorm_4(nir_builder *b, nir_ssa_def *v)
288 {
289 return pan_pack_unorm_small(b, v,
290 nir_imm_vec4_16(b, 15.0, 15.0, 15.0, 15.0),
291 nir_imm_ivec4(b, 4, 4, 4, 4));
292 }
293
294 static nir_ssa_def *
295 pan_unpack_unorm_4(nir_builder *b, nir_ssa_def *v)
296 {
297 return pan_unpack_unorm_small(b, v,
298 nir_imm_vec4_16(b, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0, 1.0 / 15.0),
299 nir_imm_ivec4(b, 4, 4, 4, 4));
300 }
301
302 /* UNORM RGB5_A1 and RGB565 are similar */
303
304 static nir_ssa_def *
305 pan_pack_unorm_5551(nir_builder *b, nir_ssa_def *v)
306 {
307 return pan_pack_unorm_small(b, v,
308 nir_imm_vec4_16(b, 31.0, 31.0, 31.0, 1.0),
309 nir_imm_ivec4(b, 3, 3, 3, 7));
310 }
311
312 static nir_ssa_def *
313 pan_unpack_unorm_5551(nir_builder *b, nir_ssa_def *v)
314 {
315 return pan_unpack_unorm_small(b, v,
316 nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 31.0, 1.0 / 31.0, 1.0),
317 nir_imm_ivec4(b, 3, 3, 3, 7));
318 }
319
320 static nir_ssa_def *
321 pan_pack_unorm_565(nir_builder *b, nir_ssa_def *v)
322 {
323 return pan_pack_unorm_small(b, v,
324 nir_imm_vec4_16(b, 31.0, 63.0, 31.0, 0.0),
325 nir_imm_ivec4(b, 3, 2, 3, 0));
326 }
327
328 static nir_ssa_def *
329 pan_unpack_unorm_565(nir_builder *b, nir_ssa_def *v)
330 {
331 return pan_unpack_unorm_small(b, v,
332 nir_imm_vec4_16(b, 1.0 / 31.0, 1.0 / 63.0, 1.0 / 31.0, 0.0),
333 nir_imm_ivec4(b, 3, 2, 3, 0));
334 }
335
336 /* RGB10_A2 is packed in the tilebuffer as the bottom 3 bytes being the top
337 * 8-bits of RGB and the top byte being RGBA as 2-bits packed. As imirkin
338 * pointed out, this means free conversion to RGBX8 */
339
340 static nir_ssa_def *
341 pan_pack_unorm_1010102(nir_builder *b, nir_ssa_def *v)
342 {
343 nir_ssa_def *scale = nir_imm_vec4_16(b, 1023.0, 1023.0, 1023.0, 3.0);
344 nir_ssa_def *s = nir_f2u32(b, nir_fround_even(b, nir_f2f32(b, nir_fmul(b, nir_fsat(b, v), scale))));
345
346 nir_ssa_def *top8 = nir_ushr(b, s, nir_imm_ivec4(b, 0x2, 0x2, 0x2, 0x2));
347 nir_ssa_def *top8_rgb = nir_pack_32_4x8(b, nir_u2u8(b, top8));
348
349 nir_ssa_def *bottom2 = nir_iand(b, s, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3));
350
351 nir_ssa_def *top =
352 nir_ior(b,
353 nir_ior(b,
354 nir_ishl(b, nir_channel(b, bottom2, 0), nir_imm_int(b, 24 + 0)),
355 nir_ishl(b, nir_channel(b, bottom2, 1), nir_imm_int(b, 24 + 2))),
356 nir_ior(b,
357 nir_ishl(b, nir_channel(b, bottom2, 2), nir_imm_int(b, 24 + 4)),
358 nir_ishl(b, nir_channel(b, bottom2, 3), nir_imm_int(b, 24 + 6))));
359
360 nir_ssa_def *p = nir_ior(b, top, top8_rgb);
361 return pan_replicate_4(b, p);
362 }
363
364 static nir_ssa_def *
365 pan_unpack_unorm_1010102(nir_builder *b, nir_ssa_def *packed)
366 {
367 nir_ssa_def *p = nir_channel(b, packed, 0);
368 nir_ssa_def *bytes = nir_unpack_32_4x8(b, p);
369 nir_ssa_def *ubytes = nir_u2u16(b, bytes);
370
371 nir_ssa_def *shifts = nir_ushr(b, pan_replicate_4(b, nir_channel(b, ubytes, 3)),
372 nir_imm_ivec4(b, 0, 2, 4, 6));
373 nir_ssa_def *precision = nir_iand(b, shifts,
374 nir_i2i16(b, nir_imm_ivec4(b, 0x3, 0x3, 0x3, 0x3)));
375
376 nir_ssa_def *top_rgb = nir_ishl(b, nir_channels(b, ubytes, 0x7), nir_imm_int(b, 2));
377 top_rgb = nir_ior(b, nir_channels(b, precision, 0x7), top_rgb);
378
379 nir_ssa_def *chans [4] = {
380 nir_channel(b, top_rgb, 0),
381 nir_channel(b, top_rgb, 1),
382 nir_channel(b, top_rgb, 2),
383 nir_channel(b, precision, 3)
384 };
385
386 nir_ssa_def *scale = nir_imm_vec4(b, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 1023.0, 1.0 / 3.0);
387 return nir_f2f16(b, nir_fmul(b, nir_u2f32(b, nir_vec(b, chans, 4)), scale));
388 }
389
390 /* On the other hand, the pure int RGB10_A2 is identical to the spec */
391
392 static nir_ssa_def *
393 pan_pack_uint_1010102(nir_builder *b, nir_ssa_def *v)
394 {
395 nir_ssa_def *shift = nir_ishl(b, nir_u2u32(b, v),
396 nir_imm_ivec4(b, 0, 10, 20, 30));
397
398 nir_ssa_def *p = nir_ior(b,
399 nir_ior(b, nir_channel(b, shift, 0), nir_channel(b, shift, 1)),
400 nir_ior(b, nir_channel(b, shift, 2), nir_channel(b, shift, 3)));
401
402 return pan_replicate_4(b, p);
403 }
404
405 static nir_ssa_def *
406 pan_unpack_uint_1010102(nir_builder *b, nir_ssa_def *packed)
407 {
408 nir_ssa_def *chan = nir_channel(b, packed, 0);
409
410 nir_ssa_def *shift = nir_ushr(b, pan_replicate_4(b, chan),
411 nir_imm_ivec4(b, 0, 10, 20, 30));
412
413 nir_ssa_def *mask = nir_iand(b, shift,
414 nir_imm_ivec4(b, 0x3ff, 0x3ff, 0x3ff, 0x3));
415
416 return nir_u2u16(b, mask);
417 }
418
419 /* NIR means we can *finally* catch a break */
420
421 static nir_ssa_def *
422 pan_pack_r11g11b10(nir_builder *b, nir_ssa_def *v)
423 {
424 return pan_replicate_4(b, nir_format_pack_11f11f10f(b,
425 nir_f2f32(b, v)));
426 }
427
428 static nir_ssa_def *
429 pan_unpack_r11g11b10(nir_builder *b, nir_ssa_def *v)
430 {
431 nir_ssa_def *f32 = nir_format_unpack_11f11f10f(b, nir_channel(b, v, 0));
432 nir_ssa_def *f16 = nir_f2f16(b, f32);
433
434 /* Extend to vec4 with alpha */
435 nir_ssa_def *components[4] = {
436 nir_channel(b, f16, 0),
437 nir_channel(b, f16, 1),
438 nir_channel(b, f16, 2),
439 nir_imm_float16(b, 1.0)
440 };
441
442 return nir_vec(b, components, 4);
443 }
444
445 /* Wrapper around sRGB conversion */
446
447 static nir_ssa_def *
448 pan_linear_to_srgb(nir_builder *b, nir_ssa_def *linear)
449 {
450 nir_ssa_def *rgb = nir_channels(b, linear, 0x7);
451
452 /* TODO: fp16 native conversion */
453 nir_ssa_def *srgb = nir_f2f16(b,
454 nir_format_linear_to_srgb(b, nir_f2f32(b, rgb)));
455
456 nir_ssa_def *comp[4] = {
457 nir_channel(b, srgb, 0),
458 nir_channel(b, srgb, 1),
459 nir_channel(b, srgb, 2),
460 nir_channel(b, linear, 3),
461 };
462
463 return nir_vec(b, comp, 4);
464 }
465
466 static nir_ssa_def *
467 pan_srgb_to_linear(nir_builder *b, nir_ssa_def *srgb)
468 {
469 nir_ssa_def *rgb = nir_channels(b, srgb, 0x7);
470
471 /* TODO: fp16 native conversion */
472 nir_ssa_def *linear = nir_f2f16(b,
473 nir_format_srgb_to_linear(b, nir_f2f32(b, rgb)));
474
475 nir_ssa_def *comp[4] = {
476 nir_channel(b, linear, 0),
477 nir_channel(b, linear, 1),
478 nir_channel(b, linear, 2),
479 nir_channel(b, srgb, 3),
480 };
481
482 return nir_vec(b, comp, 4);
483 }
484
485
486
487 /* Generic dispatches for un/pack regardless of format */
488
489 static bool
490 pan_is_unorm4(const struct util_format_description *desc)
491 {
492 switch (desc->format) {
493 case PIPE_FORMAT_B4G4R4A4_UNORM:
494 case PIPE_FORMAT_B4G4R4X4_UNORM:
495 case PIPE_FORMAT_A4R4_UNORM:
496 case PIPE_FORMAT_R4A4_UNORM:
497 case PIPE_FORMAT_A4B4G4R4_UNORM:
498 return true;
499 default:
500 return false;
501 }
502
503 }
504
505 static nir_ssa_def *
506 pan_unpack(nir_builder *b,
507 const struct util_format_description *desc,
508 nir_ssa_def *packed)
509 {
510 if (util_format_is_unorm8(desc))
511 return pan_unpack_unorm_8(b, packed, desc->nr_channels);
512
513 if (pan_is_unorm4(desc))
514 return pan_unpack_unorm_4(b, packed);
515
516 if (desc->is_array) {
517 int c = util_format_get_first_non_void_channel(desc->format);
518 assert(c >= 0);
519 struct util_format_channel_description d = desc->channel[c];
520
521 if (d.size == 32 || d.size == 16) {
522 assert(!d.normalized);
523 assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
524
525 return d.size == 32 ? pan_unpack_pure_32(b, packed, desc->nr_channels) :
526 pan_unpack_pure_16(b, packed, desc->nr_channels);
527 } else if (d.size == 8) {
528 assert(d.pure_integer);
529 return pan_unpack_pure_8(b, packed, desc->nr_channels);
530 } else {
531 unreachable("Unrenderable size");
532 }
533 }
534
535 switch (desc->format) {
536 case PIPE_FORMAT_B5G5R5A1_UNORM:
537 return pan_unpack_unorm_5551(b, packed);
538 case PIPE_FORMAT_B5G6R5_UNORM:
539 return pan_unpack_unorm_565(b, packed);
540 case PIPE_FORMAT_R10G10B10A2_UNORM:
541 return pan_unpack_unorm_1010102(b, packed);
542 case PIPE_FORMAT_R10G10B10A2_UINT:
543 return pan_unpack_uint_1010102(b, packed);
544 case PIPE_FORMAT_R11G11B10_FLOAT:
545 return pan_unpack_r11g11b10(b, packed);
546 default:
547 break;
548 }
549
550 fprintf(stderr, "%s\n", desc->name);
551 unreachable("Unknown format");
552 }
553
554 static nir_ssa_def *
555 pan_pack(nir_builder *b,
556 const struct util_format_description *desc,
557 nir_ssa_def *unpacked)
558 {
559 if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB)
560 unpacked = pan_linear_to_srgb(b, unpacked);
561
562 if (util_format_is_unorm8(desc))
563 return pan_pack_unorm_8(b, unpacked);
564
565 if (pan_is_unorm4(desc))
566 return pan_pack_unorm_4(b, unpacked);
567
568 if (desc->is_array) {
569 int c = util_format_get_first_non_void_channel(desc->format);
570 assert(c >= 0);
571 struct util_format_channel_description d = desc->channel[c];
572
573 if (d.size == 32 || d.size == 16) {
574 assert(!d.normalized);
575 assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
576
577 return d.size == 32 ? pan_pack_pure_32(b, unpacked) :
578 pan_pack_pure_16(b, unpacked);
579 } else if (d.size == 8) {
580 assert(d.pure_integer);
581 return pan_pack_pure_8(b, unpacked);
582 } else {
583 unreachable("Unrenderable size");
584 }
585 }
586
587 switch (desc->format) {
588 case PIPE_FORMAT_B5G5R5A1_UNORM:
589 return pan_pack_unorm_5551(b, unpacked);
590 case PIPE_FORMAT_B5G6R5_UNORM:
591 return pan_pack_unorm_565(b, unpacked);
592 case PIPE_FORMAT_R10G10B10A2_UNORM:
593 return pan_pack_unorm_1010102(b, unpacked);
594 case PIPE_FORMAT_R10G10B10A2_UINT:
595 return pan_pack_uint_1010102(b, unpacked);
596 case PIPE_FORMAT_R11G11B10_FLOAT:
597 return pan_pack_r11g11b10(b, unpacked);
598 default:
599 break;
600 }
601
602 fprintf(stderr, "%s\n", desc->name);
603 unreachable("Unknown format");
604 }
605
606 static void
607 pan_lower_fb_store(nir_shader *shader,
608 nir_builder *b,
609 nir_intrinsic_instr *intr,
610 const struct util_format_description *desc,
611 unsigned quirks)
612 {
613 /* For stores, add conversion before */
614 nir_ssa_def *unpacked = nir_ssa_for_src(b, intr->src[1], 4);
615 nir_ssa_def *packed = pan_pack(b, desc, unpacked);
616
617 nir_intrinsic_instr *new =
618 nir_intrinsic_instr_create(shader, nir_intrinsic_store_raw_output_pan);
619 new->src[0] = nir_src_for_ssa(packed);
620 new->num_components = 4;
621 nir_builder_instr_insert(b, &new->instr);
622 }
623
624 static void
625 pan_lower_fb_load(nir_shader *shader,
626 nir_builder *b,
627 nir_intrinsic_instr *intr,
628 const struct util_format_description *desc,
629 unsigned quirks)
630 {
631 nir_intrinsic_instr *new = nir_intrinsic_instr_create(shader,
632 nir_intrinsic_load_raw_output_pan);
633 new->num_components = 4;
634
635 nir_ssa_dest_init(&new->instr, &new->dest, 4, 32, NULL);
636 nir_builder_instr_insert(b, &new->instr);
637
638 /* Convert the raw value */
639 nir_ssa_def *packed = &new->dest.ssa;
640 nir_ssa_def *unpacked = pan_unpack(b, desc, packed);
641
642 if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB)
643 unpacked = pan_srgb_to_linear(b, unpacked);
644
645 nir_src rewritten = nir_src_for_ssa(unpacked);
646 nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, rewritten, &intr->instr);
647 }
648
649 void
650 pan_lower_framebuffer(nir_shader *shader,
651 const struct util_format_description *desc,
652 unsigned quirks)
653 {
654 /* Blend shaders are represented as special fragment shaders */
655 assert(shader->info.stage == MESA_SHADER_FRAGMENT);
656
657 nir_foreach_function(func, shader) {
658 nir_foreach_block(block, func->impl) {
659 nir_foreach_instr_safe(instr, block) {
660 if (instr->type != nir_instr_type_intrinsic)
661 continue;
662
663 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
664
665 bool is_load = intr->intrinsic == nir_intrinsic_load_deref;
666 bool is_store = intr->intrinsic == nir_intrinsic_store_deref;
667
668 if (!(is_load || is_store))
669 continue;
670
671 /* Don't worry about MRT */
672 nir_variable *var = nir_intrinsic_get_var(intr, 0);
673
674 if (var->data.location != FRAG_RESULT_COLOR)
675 continue;
676
677 nir_builder b;
678 nir_builder_init(&b, func->impl);
679
680 if (is_store) {
681 b.cursor = nir_before_instr(instr);
682 pan_lower_fb_store(shader, &b, intr, desc, quirks);
683 } else {
684 b.cursor = nir_after_instr(instr);
685 pan_lower_fb_load(shader, &b, intr, desc, quirks);
686 }
687
688 nir_instr_remove(instr);
689 }
690 }
691
692 nir_metadata_preserve(func->impl, nir_metadata_block_index |
693 nir_metadata_dominance);
694 }
695 }