panfrost: Flesh out dispatch
[mesa.git] / src / panfrost / util / pan_lower_framebuffer.c
1 /*
2 * Copyright (C) 2020 Collabora, Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 /**
28 * Implements framebuffer format conversions in software for Midgard/Bifrost
29 * blend shaders. This pass is designed for a single render target; Midgard
30 * duplicates blend shaders for MRT to simplify everything. A particular
31 * framebuffer format may be categorized as 1) typed load available, 2) typed
32 * unpack available, or 3) software unpack only, and likewise for stores. The
33 * first two types are handled in the compiler backend directly, so this module
34 * is responsible for identifying type 3 formats (hardware dependent) and
35 * inserting appropriate ALU code to perform the conversion from the packed
36 * type to a designated unpacked type, and vice versa.
37 *
38 * The unpacked type depends on the format:
39 *
40 * - For 32-bit float formats, 32-bit floats.
41 * - For other floats, 16-bit floats.
42 * - For 32-bit ints, 32-bit ints.
43 * - For 8-bit ints, 8-bit ints.
44 * - For other ints, 16-bit ints.
45 *
46 * The rationale is to optimize blending and logic op instructions by using the
47 * smallest precision necessary to store the pixel losslessly.
48 */
49
50 #include "compiler/nir/nir.h"
51 #include "compiler/nir/nir_builder.h"
52 #include "compiler/nir/nir_format_convert.h"
53 #include "util/format/u_format.h"
54 #include "pan_lower_framebuffer.h"
55 #include "panfrost-quirks.h"
56
57 /* Determines the unpacked type best suiting a given format, so the rest of the
58 * pipeline may be adjusted accordingly */
59
60 nir_alu_type
61 pan_unpacked_type_for_format(const struct util_format_description *desc)
62 {
63 int c = util_format_get_first_non_void_channel(desc->format);
64
65 if (c == -1)
66 unreachable("Void format not renderable");
67
68 bool large = (desc->channel[c].size > 16);
69 bool bit8 = (desc->channel[c].size == 8);
70 assert(desc->channel[c].size <= 32);
71
72 if (desc->channel[c].normalized)
73 return large ? nir_type_float32 : nir_type_float16;
74
75 switch (desc->channel[c].type) {
76 case UTIL_FORMAT_TYPE_UNSIGNED:
77 return bit8 ? nir_type_uint8 :
78 large ? nir_type_uint32 : nir_type_uint16;
79 case UTIL_FORMAT_TYPE_SIGNED:
80 return bit8 ? nir_type_int8 :
81 large ? nir_type_int32 : nir_type_int16;
82 case UTIL_FORMAT_TYPE_FLOAT:
83 return large ? nir_type_float32 : nir_type_float16;
84 default:
85 unreachable("Format not renderable");
86 }
87 }
88
89 enum pan_format_class
90 pan_format_class_load(const struct util_format_description *desc, unsigned quirks)
91 {
92 /* Check if we can do anything better than software architecturally */
93 if (quirks & MIDGARD_NO_TYPED_BLEND_LOADS) {
94 return (quirks & NO_BLEND_PACKS)
95 ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
96 }
97
98 /* Some formats are missing as typed on some GPUs but have unpacks */
99 if (quirks & MIDGARD_MISSING_LOADS) {
100 switch (desc->format) {
101 case PIPE_FORMAT_R11G11B10_FLOAT:
102 case PIPE_FORMAT_R10G10B10A2_UNORM:
103 case PIPE_FORMAT_B10G10R10A2_UNORM:
104 case PIPE_FORMAT_R10G10B10X2_UNORM:
105 case PIPE_FORMAT_B10G10R10X2_UNORM:
106 case PIPE_FORMAT_R10G10B10A2_UINT:
107 return PAN_FORMAT_PACK;
108 default:
109 return PAN_FORMAT_NATIVE;
110 }
111 }
112
113 /* Otherwise, we can do native */
114 return PAN_FORMAT_NATIVE;
115 }
116
117 enum pan_format_class
118 pan_format_class_store(const struct util_format_description *desc, unsigned quirks)
119 {
120 /* Check if we can do anything better than software architecturally */
121 if (quirks & MIDGARD_NO_TYPED_BLEND_STORES) {
122 return (quirks & NO_BLEND_PACKS)
123 ? PAN_FORMAT_SOFTWARE : PAN_FORMAT_PACK;
124 }
125
126 return PAN_FORMAT_NATIVE;
127 }
128
129 /* Software packs/unpacks, by format class. Packs take in the pixel value typed
130 * as `pan_unpacked_type_for_format` of the format and return an i32vec4
131 * suitable for storing (with components replicated to fill). Unpacks do the
132 * reverse but cannot rely on replication.
133 *
134 * Pure 32 formats (R32F ... RGBA32F) are 32 unpacked, so just need to
135 * replicate to fill */
136
137 static nir_ssa_def *
138 pan_pack_pure_32(nir_builder *b, nir_ssa_def *v)
139 {
140 nir_ssa_def *replicated[4];
141
142 for (unsigned i = 0; i < 4; ++i)
143 replicated[i] = nir_channel(b, v, i % v->num_components);
144
145 return nir_vec(b, replicated, 4);
146 }
147
148 static nir_ssa_def *
149 pan_unpack_pure_32(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
150 {
151 return nir_channels(b, pack, (1 << num_components) - 1);
152 }
153
154 /* Pure x16 formats are x16 unpacked, so it's similar, but we need to pack
155 * upper/lower halves of course */
156
157 static nir_ssa_def *
158 pan_pack_pure_16(nir_builder *b, nir_ssa_def *v)
159 {
160 nir_ssa_def *replicated[4];
161
162 for (unsigned i = 0; i < 4; ++i) {
163 unsigned c = 2 * i;
164
165 nir_ssa_def *parts[2] = {
166 nir_channel(b, v, (c + 0) % v->num_components),
167 nir_channel(b, v, (c + 1) % v->num_components)
168 };
169
170 replicated[i] = nir_pack_32_2x16(b, nir_vec(b, parts, 2));
171 }
172
173 return nir_vec(b, replicated, 4);
174 }
175
176 static nir_ssa_def *
177 pan_unpack_pure_16(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
178 {
179 nir_ssa_def *unpacked[4];
180
181 assert(num_components <= 4);
182
183 for (unsigned i = 0; i < num_components; i += 2) {
184 nir_ssa_def *halves =
185 nir_unpack_32_2x16(b, nir_channel(b, pack, i >> 1));
186
187 unpacked[i + 0] = nir_channel(b, halves, 0);
188 unpacked[i + 1] = nir_channel(b, halves, 1);
189 }
190
191 for (unsigned i = num_components; i < 4; ++i)
192 unpacked[i] = nir_imm_intN_t(b, 0, 16);
193
194 return nir_vec(b, unpacked, 4);
195 }
196
197 /* And likewise for x8. pan_fill_4 fills a 4-channel vector with a n-channel
198 * vector (n <= 4), replicating as needed. pan_replicate_4 constructs a
199 * 4-channel vector from a scalar via replication */
200
201 static nir_ssa_def *
202 pan_fill_4(nir_builder *b, nir_ssa_def *v)
203 {
204 nir_ssa_def *q[4];
205 assert(v->num_components <= 4);
206
207 for (unsigned j = 0; j < 4; ++j)
208 q[j] = nir_channel(b, v, j % v->num_components);
209
210 return nir_vec(b, q, 4);
211 }
212
213 static nir_ssa_def *
214 pan_replicate_4(nir_builder *b, nir_ssa_def *v)
215 {
216 nir_ssa_def *replicated[4] = { v, v, v, v };
217 return nir_vec(b, replicated, 4);
218 }
219
220 static nir_ssa_def *
221 pan_pack_pure_8(nir_builder *b, nir_ssa_def *v)
222 {
223 return pan_replicate_4(b, nir_pack_32_4x8(b, pan_fill_4(b, v)));
224 }
225
226 static nir_ssa_def *
227 pan_unpack_pure_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
228 {
229 assert(num_components <= 4);
230 nir_ssa_def *unpacked = nir_unpack_32_4x8(b, nir_channel(b, pack, 0));
231 return nir_channels(b, unpacked, (1 << num_components) - 1);
232 }
233
234 /* UNORM 8 is unpacked to f16 vec4. We could directly use the un/pack_unorm_4x8
235 * ops provided we replicate appropriately, but for packing we'd rather stay in
236 * 8/16-bit whereas the NIR op forces 32-bit, so we do it manually */
237
238 static nir_ssa_def *
239 pan_pack_unorm_8(nir_builder *b, nir_ssa_def *v)
240 {
241 return pan_replicate_4(b, nir_pack_32_4x8(b,
242 nir_f2u8(b, nir_fround_even(b, nir_fmul(b, nir_fsat(b,
243 pan_fill_4(b, v)), nir_imm_float16(b, 255.0))))));
244 }
245
246 static nir_ssa_def *
247 pan_unpack_unorm_8(nir_builder *b, nir_ssa_def *pack, unsigned num_components)
248 {
249 assert(num_components <= 4);
250 nir_ssa_def *unpacked = nir_unpack_unorm_4x8(b, nir_channel(b, pack, 0));
251 return nir_f2f16(b, unpacked);
252 }
253
254 /* Generic dispatches for un/pack regardless of format */
255
256 static nir_ssa_def *
257 pan_unpack(nir_builder *b,
258 const struct util_format_description *desc,
259 nir_ssa_def *packed)
260 {
261 if (util_format_is_unorm8(desc))
262 return pan_unpack_unorm_8(b, packed, desc->nr_channels);
263
264 if (desc->is_array) {
265 int c = util_format_get_first_non_void_channel(desc->format);
266 assert(c >= 0);
267 struct util_format_channel_description d = desc->channel[c];
268
269 if (d.size == 32 || d.size == 16) {
270 assert(!d.normalized);
271 assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
272
273 return d.size == 32 ? pan_unpack_pure_32(b, packed, desc->nr_channels) :
274 pan_unpack_pure_16(b, packed, desc->nr_channels);
275 } else if (d.size == 8) {
276 assert(d.pure_integer);
277 return pan_unpack_pure_8(b, packed, desc->nr_channels);
278 } else {
279 unreachable("Unrenderable size");
280 }
281 }
282
283 fprintf(stderr, "%s\n", desc->name);
284 unreachable("Unknown format");
285 }
286
287 static nir_ssa_def *
288 pan_pack(nir_builder *b,
289 const struct util_format_description *desc,
290 nir_ssa_def *unpacked)
291 {
292 if (util_format_is_unorm8(desc))
293 return pan_pack_unorm_8(b, unpacked);
294
295 if (desc->is_array) {
296 int c = util_format_get_first_non_void_channel(desc->format);
297 assert(c >= 0);
298 struct util_format_channel_description d = desc->channel[c];
299
300 if (d.size == 32 || d.size == 16) {
301 assert(!d.normalized);
302 assert(d.type == UTIL_FORMAT_TYPE_FLOAT || d.pure_integer);
303
304 return d.size == 32 ? pan_pack_pure_32(b, unpacked) :
305 pan_pack_pure_16(b, unpacked);
306 } else if (d.size == 8) {
307 assert(d.pure_integer);
308 return pan_pack_pure_8(b, unpacked);
309 } else {
310 unreachable("Unrenderable size");
311 }
312 }
313
314 fprintf(stderr, "%s\n", desc->name);
315 unreachable("Unknown format");
316 }
317
318 static void
319 pan_lower_fb_store(nir_shader *shader,
320 nir_builder *b,
321 nir_intrinsic_instr *intr,
322 const struct util_format_description *desc,
323 unsigned quirks)
324 {
325 /* For stores, add conversion before */
326 nir_ssa_def *unpacked = nir_ssa_for_src(b, intr->src[1], 4);
327 nir_ssa_def *packed = pan_pack(b, desc, unpacked);
328
329 nir_intrinsic_instr *new =
330 nir_intrinsic_instr_create(shader, nir_intrinsic_store_raw_output_pan);
331 new->src[0] = nir_src_for_ssa(packed);
332 new->num_components = 4;
333 nir_builder_instr_insert(b, &new->instr);
334 }
335
336 static void
337 pan_lower_fb_load(nir_shader *shader,
338 nir_builder *b,
339 nir_intrinsic_instr *intr,
340 const struct util_format_description *desc,
341 unsigned quirks)
342 {
343 nir_intrinsic_instr *new = nir_intrinsic_instr_create(shader,
344 nir_intrinsic_load_raw_output_pan);
345 new->num_components = 4;
346
347 nir_ssa_dest_init(&new->instr, &new->dest, 4, 32, NULL);
348 nir_builder_instr_insert(b, &new->instr);
349
350 /* Convert the raw value */
351 nir_ssa_def *packed = &new->dest.ssa;
352 nir_ssa_def *unpacked = pan_unpack(b, desc, packed);
353
354 nir_src rewritten = nir_src_for_ssa(unpacked);
355 nir_ssa_def_rewrite_uses_after(&intr->dest.ssa, rewritten, &intr->instr);
356 }
357
358 void
359 pan_lower_framebuffer(nir_shader *shader,
360 const struct util_format_description *desc,
361 unsigned quirks)
362 {
363 /* Blend shaders are represented as special fragment shaders */
364 assert(shader->info.stage == MESA_SHADER_FRAGMENT);
365
366 nir_foreach_function(func, shader) {
367 nir_foreach_block(block, func->impl) {
368 nir_foreach_instr_safe(instr, block) {
369 if (instr->type != nir_instr_type_intrinsic)
370 continue;
371
372 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
373
374 bool is_load = intr->intrinsic == nir_intrinsic_load_deref;
375 bool is_store = intr->intrinsic == nir_intrinsic_store_deref;
376
377 if (!(is_load || is_store))
378 continue;
379
380 /* Don't worry about MRT */
381 nir_variable *var = nir_intrinsic_get_var(intr, 0);
382
383 if (var->data.location != FRAG_RESULT_COLOR)
384 continue;
385
386 nir_builder b;
387 nir_builder_init(&b, func->impl);
388
389 if (is_store) {
390 b.cursor = nir_before_instr(instr);
391 pan_lower_fb_store(shader, &b, intr, desc, quirks);
392 } else {
393 b.cursor = nir_after_instr(instr);
394 pan_lower_fb_load(shader, &b, intr, desc, quirks);
395 }
396
397 nir_instr_remove(instr);
398 }
399 }
400
401 nir_metadata_preserve(func->impl, nir_metadata_block_index |
402 nir_metadata_dominance);
403 }
404 }