base: add support for probe points and common probes
[gem5.git] / src / python / m5 / SimObject.py
1 # Copyright (c) 2012 ARM Limited
2 # All rights reserved.
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2004-2006 The Regents of The University of Michigan
14 # Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
15 # Copyright (c) 2013 Mark D. Hill and David A. Wood
16 # All rights reserved.
17 #
18 # Redistribution and use in source and binary forms, with or without
19 # modification, are permitted provided that the following conditions are
20 # met: redistributions of source code must retain the above copyright
21 # notice, this list of conditions and the following disclaimer;
22 # redistributions in binary form must reproduce the above copyright
23 # notice, this list of conditions and the following disclaimer in the
24 # documentation and/or other materials provided with the distribution;
25 # neither the name of the copyright holders nor the names of its
26 # contributors may be used to endorse or promote products derived from
27 # this software without specific prior written permission.
28 #
29 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 #
41 # Authors: Steve Reinhardt
42 # Nathan Binkert
43 # Andreas Hansson
44
45 import sys
46 from types import FunctionType, MethodType, ModuleType
47
48 import m5
49 from m5.util import *
50
51 # Have to import params up top since Param is referenced on initial
52 # load (when SimObject class references Param to create a class
53 # variable, the 'name' param)...
54 from m5.params import *
55 # There are a few things we need that aren't in params.__all__ since
56 # normal users don't need them
57 from m5.params import ParamDesc, VectorParamDesc, \
58 isNullPointer, SimObjectVector, Port
59
60 from m5.proxy import *
61 from m5.proxy import isproxy
62
63 #####################################################################
64 #
65 # M5 Python Configuration Utility
66 #
67 # The basic idea is to write simple Python programs that build Python
68 # objects corresponding to M5 SimObjects for the desired simulation
69 # configuration. For now, the Python emits a .ini file that can be
70 # parsed by M5. In the future, some tighter integration between M5
71 # and the Python interpreter may allow bypassing the .ini file.
72 #
73 # Each SimObject class in M5 is represented by a Python class with the
74 # same name. The Python inheritance tree mirrors the M5 C++ tree
75 # (e.g., SimpleCPU derives from BaseCPU in both cases, and all
76 # SimObjects inherit from a single SimObject base class). To specify
77 # an instance of an M5 SimObject in a configuration, the user simply
78 # instantiates the corresponding Python object. The parameters for
79 # that SimObject are given by assigning to attributes of the Python
80 # object, either using keyword assignment in the constructor or in
81 # separate assignment statements. For example:
82 #
83 # cache = BaseCache(size='64KB')
84 # cache.hit_latency = 3
85 # cache.assoc = 8
86 #
87 # The magic lies in the mapping of the Python attributes for SimObject
88 # classes to the actual SimObject parameter specifications. This
89 # allows parameter validity checking in the Python code. Continuing
90 # the example above, the statements "cache.blurfl=3" or
91 # "cache.assoc='hello'" would both result in runtime errors in Python,
92 # since the BaseCache object has no 'blurfl' parameter and the 'assoc'
93 # parameter requires an integer, respectively. This magic is done
94 # primarily by overriding the special __setattr__ method that controls
95 # assignment to object attributes.
96 #
97 # Once a set of Python objects have been instantiated in a hierarchy,
98 # calling 'instantiate(obj)' (where obj is the root of the hierarchy)
99 # will generate a .ini file.
100 #
101 #####################################################################
102
103 # list of all SimObject classes
104 allClasses = {}
105
106 # dict to look up SimObjects based on path
107 instanceDict = {}
108
109 # Did any of the SimObjects lack a header file?
110 noCxxHeader = False
111
112 def public_value(key, value):
113 return key.startswith('_') or \
114 isinstance(value, (FunctionType, MethodType, ModuleType,
115 classmethod, type))
116
117 # The metaclass for SimObject. This class controls how new classes
118 # that derive from SimObject are instantiated, and provides inherited
119 # class behavior (just like a class controls how instances of that
120 # class are instantiated, and provides inherited instance behavior).
121 class MetaSimObject(type):
122 # Attributes that can be set only at initialization time
123 init_keywords = { 'abstract' : bool,
124 'cxx_class' : str,
125 'cxx_type' : str,
126 'cxx_header' : str,
127 'type' : str,
128 'cxx_bases' : list }
129 # Attributes that can be set any time
130 keywords = { 'check' : FunctionType }
131
132 # __new__ is called before __init__, and is where the statements
133 # in the body of the class definition get loaded into the class's
134 # __dict__. We intercept this to filter out parameter & port assignments
135 # and only allow "private" attributes to be passed to the base
136 # __new__ (starting with underscore).
137 def __new__(mcls, name, bases, dict):
138 assert name not in allClasses, "SimObject %s already present" % name
139
140 # Copy "private" attributes, functions, and classes to the
141 # official dict. Everything else goes in _init_dict to be
142 # filtered in __init__.
143 cls_dict = {}
144 value_dict = {}
145 for key,val in dict.items():
146 if public_value(key, val):
147 cls_dict[key] = val
148 else:
149 # must be a param/port setting
150 value_dict[key] = val
151 if 'abstract' not in value_dict:
152 value_dict['abstract'] = False
153 if 'cxx_bases' not in value_dict:
154 value_dict['cxx_bases'] = []
155 cls_dict['_value_dict'] = value_dict
156 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
157 if 'type' in value_dict:
158 allClasses[name] = cls
159 return cls
160
161 # subclass initialization
162 def __init__(cls, name, bases, dict):
163 # calls type.__init__()... I think that's a no-op, but leave
164 # it here just in case it's not.
165 super(MetaSimObject, cls).__init__(name, bases, dict)
166
167 # initialize required attributes
168
169 # class-only attributes
170 cls._params = multidict() # param descriptions
171 cls._ports = multidict() # port descriptions
172
173 # class or instance attributes
174 cls._values = multidict() # param values
175 cls._children = multidict() # SimObject children
176 cls._port_refs = multidict() # port ref objects
177 cls._instantiated = False # really instantiated, cloned, or subclassed
178
179 # We don't support multiple inheritance of sim objects. If you want
180 # to, you must fix multidict to deal with it properly. Non sim-objects
181 # are ok, though
182 bTotal = 0
183 for c in bases:
184 if isinstance(c, MetaSimObject):
185 bTotal += 1
186 if bTotal > 1:
187 raise TypeError, "SimObjects do not support multiple inheritance"
188
189 base = bases[0]
190
191 # Set up general inheritance via multidicts. A subclass will
192 # inherit all its settings from the base class. The only time
193 # the following is not true is when we define the SimObject
194 # class itself (in which case the multidicts have no parent).
195 if isinstance(base, MetaSimObject):
196 cls._base = base
197 cls._params.parent = base._params
198 cls._ports.parent = base._ports
199 cls._values.parent = base._values
200 cls._children.parent = base._children
201 cls._port_refs.parent = base._port_refs
202 # mark base as having been subclassed
203 base._instantiated = True
204 else:
205 cls._base = None
206
207 # default keyword values
208 if 'type' in cls._value_dict:
209 if 'cxx_class' not in cls._value_dict:
210 cls._value_dict['cxx_class'] = cls._value_dict['type']
211
212 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
213
214 if 'cxx_header' not in cls._value_dict:
215 global noCxxHeader
216 noCxxHeader = True
217 warn("No header file specified for SimObject: %s", name)
218
219 # Export methods are automatically inherited via C++, so we
220 # don't want the method declarations to get inherited on the
221 # python side (and thus end up getting repeated in the wrapped
222 # versions of derived classes). The code below basicallly
223 # suppresses inheritance by substituting in the base (null)
224 # versions of these methods unless a different version is
225 # explicitly supplied.
226 for method_name in ('export_methods', 'export_method_cxx_predecls',
227 'export_method_swig_predecls'):
228 if method_name not in cls.__dict__:
229 base_method = getattr(MetaSimObject, method_name)
230 m = MethodType(base_method, cls, MetaSimObject)
231 setattr(cls, method_name, m)
232
233 # Now process the _value_dict items. They could be defining
234 # new (or overriding existing) parameters or ports, setting
235 # class keywords (e.g., 'abstract'), or setting parameter
236 # values or port bindings. The first 3 can only be set when
237 # the class is defined, so we handle them here. The others
238 # can be set later too, so just emulate that by calling
239 # setattr().
240 for key,val in cls._value_dict.items():
241 # param descriptions
242 if isinstance(val, ParamDesc):
243 cls._new_param(key, val)
244
245 # port objects
246 elif isinstance(val, Port):
247 cls._new_port(key, val)
248
249 # init-time-only keywords
250 elif cls.init_keywords.has_key(key):
251 cls._set_keyword(key, val, cls.init_keywords[key])
252
253 # default: use normal path (ends up in __setattr__)
254 else:
255 setattr(cls, key, val)
256
257 def _set_keyword(cls, keyword, val, kwtype):
258 if not isinstance(val, kwtype):
259 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
260 (keyword, type(val), kwtype)
261 if isinstance(val, FunctionType):
262 val = classmethod(val)
263 type.__setattr__(cls, keyword, val)
264
265 def _new_param(cls, name, pdesc):
266 # each param desc should be uniquely assigned to one variable
267 assert(not hasattr(pdesc, 'name'))
268 pdesc.name = name
269 cls._params[name] = pdesc
270 if hasattr(pdesc, 'default'):
271 cls._set_param(name, pdesc.default, pdesc)
272
273 def _set_param(cls, name, value, param):
274 assert(param.name == name)
275 try:
276 value = param.convert(value)
277 except Exception, e:
278 msg = "%s\nError setting param %s.%s to %s\n" % \
279 (e, cls.__name__, name, value)
280 e.args = (msg, )
281 raise
282 cls._values[name] = value
283 # if param value is a SimObject, make it a child too, so that
284 # it gets cloned properly when the class is instantiated
285 if isSimObjectOrVector(value) and not value.has_parent():
286 cls._add_cls_child(name, value)
287
288 def _add_cls_child(cls, name, child):
289 # It's a little funky to have a class as a parent, but these
290 # objects should never be instantiated (only cloned, which
291 # clears the parent pointer), and this makes it clear that the
292 # object is not an orphan and can provide better error
293 # messages.
294 child.set_parent(cls, name)
295 cls._children[name] = child
296
297 def _new_port(cls, name, port):
298 # each port should be uniquely assigned to one variable
299 assert(not hasattr(port, 'name'))
300 port.name = name
301 cls._ports[name] = port
302
303 # same as _get_port_ref, effectively, but for classes
304 def _cls_get_port_ref(cls, attr):
305 # Return reference that can be assigned to another port
306 # via __setattr__. There is only ever one reference
307 # object per port, but we create them lazily here.
308 ref = cls._port_refs.get(attr)
309 if not ref:
310 ref = cls._ports[attr].makeRef(cls)
311 cls._port_refs[attr] = ref
312 return ref
313
314 # Set attribute (called on foo.attr = value when foo is an
315 # instance of class cls).
316 def __setattr__(cls, attr, value):
317 # normal processing for private attributes
318 if public_value(attr, value):
319 type.__setattr__(cls, attr, value)
320 return
321
322 if cls.keywords.has_key(attr):
323 cls._set_keyword(attr, value, cls.keywords[attr])
324 return
325
326 if cls._ports.has_key(attr):
327 cls._cls_get_port_ref(attr).connect(value)
328 return
329
330 if isSimObjectOrSequence(value) and cls._instantiated:
331 raise RuntimeError, \
332 "cannot set SimObject parameter '%s' after\n" \
333 " class %s has been instantiated or subclassed" \
334 % (attr, cls.__name__)
335
336 # check for param
337 param = cls._params.get(attr)
338 if param:
339 cls._set_param(attr, value, param)
340 return
341
342 if isSimObjectOrSequence(value):
343 # If RHS is a SimObject, it's an implicit child assignment.
344 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
345 return
346
347 # no valid assignment... raise exception
348 raise AttributeError, \
349 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
350
351 def __getattr__(cls, attr):
352 if attr == 'cxx_class_path':
353 return cls.cxx_class.split('::')
354
355 if attr == 'cxx_class_name':
356 return cls.cxx_class_path[-1]
357
358 if attr == 'cxx_namespaces':
359 return cls.cxx_class_path[:-1]
360
361 if cls._values.has_key(attr):
362 return cls._values[attr]
363
364 if cls._children.has_key(attr):
365 return cls._children[attr]
366
367 raise AttributeError, \
368 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
369
370 def __str__(cls):
371 return cls.__name__
372
373 # See ParamValue.cxx_predecls for description.
374 def cxx_predecls(cls, code):
375 code('#include "params/$cls.hh"')
376
377 # See ParamValue.swig_predecls for description.
378 def swig_predecls(cls, code):
379 code('%import "python/m5/internal/param_$cls.i"')
380
381 # Hook for exporting additional C++ methods to Python via SWIG.
382 # Default is none, override using @classmethod in class definition.
383 def export_methods(cls, code):
384 pass
385
386 # Generate the code needed as a prerequisite for the C++ methods
387 # exported via export_methods() to be compiled in the _wrap.cc
388 # file. Typically generates one or more #include statements. If
389 # any methods are exported, typically at least the C++ header
390 # declaring the relevant SimObject class must be included.
391 def export_method_cxx_predecls(cls, code):
392 pass
393
394 # Generate the code needed as a prerequisite for the C++ methods
395 # exported via export_methods() to be processed by SWIG.
396 # Typically generates one or more %include or %import statements.
397 # If any methods are exported, typically at least the C++ header
398 # declaring the relevant SimObject class must be included.
399 def export_method_swig_predecls(cls, code):
400 pass
401
402 # Generate the declaration for this object for wrapping with SWIG.
403 # Generates code that goes into a SWIG .i file. Called from
404 # src/SConscript.
405 def swig_decl(cls, code):
406 class_path = cls.cxx_class.split('::')
407 classname = class_path[-1]
408 namespaces = class_path[:-1]
409
410 # The 'local' attribute restricts us to the params declared in
411 # the object itself, not including inherited params (which
412 # will also be inherited from the base class's param struct
413 # here).
414 params = cls._params.local.values()
415 ports = cls._ports.local
416
417 code('%module(package="m5.internal") param_$cls')
418 code()
419 code('%{')
420 code('#include "sim/sim_object.hh"')
421 code('#include "params/$cls.hh"')
422 for param in params:
423 param.cxx_predecls(code)
424 code('#include "${{cls.cxx_header}}"')
425 cls.export_method_cxx_predecls(code)
426 code('''\
427 /**
428 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
429 * headers like vector, string, etc. used to automatically pull in
430 * the cstddef header but starting with gcc 4.6.1 they no longer do.
431 * This leads to swig generated a file that does not compile so we
432 * explicitly include cstddef. Additionally, including version 2.0.4,
433 * swig uses ptrdiff_t without the std:: namespace prefix which is
434 * required with gcc 4.6.1. We explicitly provide access to it.
435 */
436 #include <cstddef>
437 using std::ptrdiff_t;
438 ''')
439 code('%}')
440 code()
441
442 for param in params:
443 param.swig_predecls(code)
444 cls.export_method_swig_predecls(code)
445
446 code()
447 if cls._base:
448 code('%import "python/m5/internal/param_${{cls._base}}.i"')
449 code()
450
451 for ns in namespaces:
452 code('namespace $ns {')
453
454 if namespaces:
455 code('// avoid name conflicts')
456 sep_string = '_COLONS_'
457 flat_name = sep_string.join(class_path)
458 code('%rename($flat_name) $classname;')
459
460 code()
461 code('// stop swig from creating/wrapping default ctor/dtor')
462 code('%nodefault $classname;')
463 code('class $classname')
464 if cls._base:
465 bases = [ cls._base.cxx_class ] + cls.cxx_bases
466 else:
467 bases = cls.cxx_bases
468 base_first = True
469 for base in bases:
470 if base_first:
471 code(' : public ${{base}}')
472 base_first = False
473 else:
474 code(' , public ${{base}}')
475
476 code('{')
477 code(' public:')
478 cls.export_methods(code)
479 code('};')
480
481 for ns in reversed(namespaces):
482 code('} // namespace $ns')
483
484 code()
485 code('%include "params/$cls.hh"')
486
487
488 # Generate the C++ declaration (.hh file) for this SimObject's
489 # param struct. Called from src/SConscript.
490 def cxx_param_decl(cls, code):
491 # The 'local' attribute restricts us to the params declared in
492 # the object itself, not including inherited params (which
493 # will also be inherited from the base class's param struct
494 # here).
495 params = cls._params.local.values()
496 ports = cls._ports.local
497 try:
498 ptypes = [p.ptype for p in params]
499 except:
500 print cls, p, p.ptype_str
501 print params
502 raise
503
504 class_path = cls._value_dict['cxx_class'].split('::')
505
506 code('''\
507 #ifndef __PARAMS__${cls}__
508 #define __PARAMS__${cls}__
509
510 ''')
511
512 # A forward class declaration is sufficient since we are just
513 # declaring a pointer.
514 for ns in class_path[:-1]:
515 code('namespace $ns {')
516 code('class $0;', class_path[-1])
517 for ns in reversed(class_path[:-1]):
518 code('} // namespace $ns')
519 code()
520
521 # The base SimObject has a couple of params that get
522 # automatically set from Python without being declared through
523 # the normal Param mechanism; we slip them in here (needed
524 # predecls now, actual declarations below)
525 if cls == SimObject:
526 code('''
527 #ifndef PY_VERSION
528 struct PyObject;
529 #endif
530
531 #include <string>
532 ''')
533 for param in params:
534 param.cxx_predecls(code)
535 for port in ports.itervalues():
536 port.cxx_predecls(code)
537 code()
538
539 if cls._base:
540 code('#include "params/${{cls._base.type}}.hh"')
541 code()
542
543 for ptype in ptypes:
544 if issubclass(ptype, Enum):
545 code('#include "enums/${{ptype.__name__}}.hh"')
546 code()
547
548 # now generate the actual param struct
549 code("struct ${cls}Params")
550 if cls._base:
551 code(" : public ${{cls._base.type}}Params")
552 code("{")
553 if not hasattr(cls, 'abstract') or not cls.abstract:
554 if 'type' in cls.__dict__:
555 code(" ${{cls.cxx_type}} create();")
556
557 code.indent()
558 if cls == SimObject:
559 code('''
560 SimObjectParams() {}
561 virtual ~SimObjectParams() {}
562
563 std::string name;
564 PyObject *pyobj;
565 ''')
566 for param in params:
567 param.cxx_decl(code)
568 for port in ports.itervalues():
569 port.cxx_decl(code)
570
571 code.dedent()
572 code('};')
573
574 code()
575 code('#endif // __PARAMS__${cls}__')
576 return code
577
578
579 # This *temporary* definition is required to support calls from the
580 # SimObject class definition to the MetaSimObject methods (in
581 # particular _set_param, which gets called for parameters with default
582 # values defined on the SimObject class itself). It will get
583 # overridden by the permanent definition (which requires that
584 # SimObject be defined) lower in this file.
585 def isSimObjectOrVector(value):
586 return False
587
588 # The SimObject class is the root of the special hierarchy. Most of
589 # the code in this class deals with the configuration hierarchy itself
590 # (parent/child node relationships).
591 class SimObject(object):
592 # Specify metaclass. Any class inheriting from SimObject will
593 # get this metaclass.
594 __metaclass__ = MetaSimObject
595 type = 'SimObject'
596 abstract = True
597
598 cxx_header = "sim/sim_object.hh"
599 cxx_bases = [ "Drainable", "Serializable" ]
600 eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
601
602 @classmethod
603 def export_method_swig_predecls(cls, code):
604 code('''
605 %include <std_string.i>
606
607 %import "python/swig/drain.i"
608 %import "python/swig/serialize.i"
609 ''')
610
611 @classmethod
612 def export_methods(cls, code):
613 code('''
614 void init();
615 void loadState(Checkpoint *cp);
616 void initState();
617 void regStats();
618 void resetStats();
619 void regProbePoints();
620 void regProbeListeners();
621 void startup();
622 ''')
623
624 # Initialize new instance. For objects with SimObject-valued
625 # children, we need to recursively clone the classes represented
626 # by those param values as well in a consistent "deep copy"-style
627 # fashion. That is, we want to make sure that each instance is
628 # cloned only once, and that if there are multiple references to
629 # the same original object, we end up with the corresponding
630 # cloned references all pointing to the same cloned instance.
631 def __init__(self, **kwargs):
632 ancestor = kwargs.get('_ancestor')
633 memo_dict = kwargs.get('_memo')
634 if memo_dict is None:
635 # prepare to memoize any recursively instantiated objects
636 memo_dict = {}
637 elif ancestor:
638 # memoize me now to avoid problems with recursive calls
639 memo_dict[ancestor] = self
640
641 if not ancestor:
642 ancestor = self.__class__
643 ancestor._instantiated = True
644
645 # initialize required attributes
646 self._parent = None
647 self._name = None
648 self._ccObject = None # pointer to C++ object
649 self._ccParams = None
650 self._instantiated = False # really "cloned"
651
652 # Clone children specified at class level. No need for a
653 # multidict here since we will be cloning everything.
654 # Do children before parameter values so that children that
655 # are also param values get cloned properly.
656 self._children = {}
657 for key,val in ancestor._children.iteritems():
658 self.add_child(key, val(_memo=memo_dict))
659
660 # Inherit parameter values from class using multidict so
661 # individual value settings can be overridden but we still
662 # inherit late changes to non-overridden class values.
663 self._values = multidict(ancestor._values)
664 # clone SimObject-valued parameters
665 for key,val in ancestor._values.iteritems():
666 val = tryAsSimObjectOrVector(val)
667 if val is not None:
668 self._values[key] = val(_memo=memo_dict)
669
670 # clone port references. no need to use a multidict here
671 # since we will be creating new references for all ports.
672 self._port_refs = {}
673 for key,val in ancestor._port_refs.iteritems():
674 self._port_refs[key] = val.clone(self, memo_dict)
675 # apply attribute assignments from keyword args, if any
676 for key,val in kwargs.iteritems():
677 setattr(self, key, val)
678
679 # "Clone" the current instance by creating another instance of
680 # this instance's class, but that inherits its parameter values
681 # and port mappings from the current instance. If we're in a
682 # "deep copy" recursive clone, check the _memo dict to see if
683 # we've already cloned this instance.
684 def __call__(self, **kwargs):
685 memo_dict = kwargs.get('_memo')
686 if memo_dict is None:
687 # no memo_dict: must be top-level clone operation.
688 # this is only allowed at the root of a hierarchy
689 if self._parent:
690 raise RuntimeError, "attempt to clone object %s " \
691 "not at the root of a tree (parent = %s)" \
692 % (self, self._parent)
693 # create a new dict and use that.
694 memo_dict = {}
695 kwargs['_memo'] = memo_dict
696 elif memo_dict.has_key(self):
697 # clone already done & memoized
698 return memo_dict[self]
699 return self.__class__(_ancestor = self, **kwargs)
700
701 def _get_port_ref(self, attr):
702 # Return reference that can be assigned to another port
703 # via __setattr__. There is only ever one reference
704 # object per port, but we create them lazily here.
705 ref = self._port_refs.get(attr)
706 if ref == None:
707 ref = self._ports[attr].makeRef(self)
708 self._port_refs[attr] = ref
709 return ref
710
711 def __getattr__(self, attr):
712 if self._ports.has_key(attr):
713 return self._get_port_ref(attr)
714
715 if self._values.has_key(attr):
716 return self._values[attr]
717
718 if self._children.has_key(attr):
719 return self._children[attr]
720
721 # If the attribute exists on the C++ object, transparently
722 # forward the reference there. This is typically used for
723 # SWIG-wrapped methods such as init(), regStats(),
724 # resetStats(), startup(), drain(), and
725 # resume().
726 if self._ccObject and hasattr(self._ccObject, attr):
727 return getattr(self._ccObject, attr)
728
729 err_string = "object '%s' has no attribute '%s'" \
730 % (self.__class__.__name__, attr)
731
732 if not self._ccObject:
733 err_string += "\n (C++ object is not yet constructed," \
734 " so wrapped C++ methods are unavailable.)"
735
736 raise AttributeError, err_string
737
738 # Set attribute (called on foo.attr = value when foo is an
739 # instance of class cls).
740 def __setattr__(self, attr, value):
741 # normal processing for private attributes
742 if attr.startswith('_'):
743 object.__setattr__(self, attr, value)
744 return
745
746 if self._ports.has_key(attr):
747 # set up port connection
748 self._get_port_ref(attr).connect(value)
749 return
750
751 param = self._params.get(attr)
752 if param:
753 try:
754 value = param.convert(value)
755 except Exception, e:
756 msg = "%s\nError setting param %s.%s to %s\n" % \
757 (e, self.__class__.__name__, attr, value)
758 e.args = (msg, )
759 raise
760 self._values[attr] = value
761 # implicitly parent unparented objects assigned as params
762 if isSimObjectOrVector(value) and not value.has_parent():
763 self.add_child(attr, value)
764 return
765
766 # if RHS is a SimObject, it's an implicit child assignment
767 if isSimObjectOrSequence(value):
768 self.add_child(attr, value)
769 return
770
771 # no valid assignment... raise exception
772 raise AttributeError, "Class %s has no parameter %s" \
773 % (self.__class__.__name__, attr)
774
775
776 # this hack allows tacking a '[0]' onto parameters that may or may
777 # not be vectors, and always getting the first element (e.g. cpus)
778 def __getitem__(self, key):
779 if key == 0:
780 return self
781 raise TypeError, "Non-zero index '%s' to SimObject" % key
782
783 # Also implemented by SimObjectVector
784 def clear_parent(self, old_parent):
785 assert self._parent is old_parent
786 self._parent = None
787
788 # Also implemented by SimObjectVector
789 def set_parent(self, parent, name):
790 self._parent = parent
791 self._name = name
792
793 # Return parent object of this SimObject, not implemented by SimObjectVector
794 # because the elements in a SimObjectVector may not share the same parent
795 def get_parent(self):
796 return self._parent
797
798 # Also implemented by SimObjectVector
799 def get_name(self):
800 return self._name
801
802 # Also implemented by SimObjectVector
803 def has_parent(self):
804 return self._parent is not None
805
806 # clear out child with given name. This code is not likely to be exercised.
807 # See comment in add_child.
808 def clear_child(self, name):
809 child = self._children[name]
810 child.clear_parent(self)
811 del self._children[name]
812
813 # Add a new child to this object.
814 def add_child(self, name, child):
815 child = coerceSimObjectOrVector(child)
816 if child.has_parent():
817 warn("add_child('%s'): child '%s' already has parent", name,
818 child.get_name())
819 if self._children.has_key(name):
820 # This code path had an undiscovered bug that would make it fail
821 # at runtime. It had been here for a long time and was only
822 # exposed by a buggy script. Changes here will probably not be
823 # exercised without specialized testing.
824 self.clear_child(name)
825 child.set_parent(self, name)
826 self._children[name] = child
827
828 # Take SimObject-valued parameters that haven't been explicitly
829 # assigned as children and make them children of the object that
830 # they were assigned to as a parameter value. This guarantees
831 # that when we instantiate all the parameter objects we're still
832 # inside the configuration hierarchy.
833 def adoptOrphanParams(self):
834 for key,val in self._values.iteritems():
835 if not isSimObjectVector(val) and isSimObjectSequence(val):
836 # need to convert raw SimObject sequences to
837 # SimObjectVector class so we can call has_parent()
838 val = SimObjectVector(val)
839 self._values[key] = val
840 if isSimObjectOrVector(val) and not val.has_parent():
841 warn("%s adopting orphan SimObject param '%s'", self, key)
842 self.add_child(key, val)
843
844 def path(self):
845 if not self._parent:
846 return '<orphan %s>' % self.__class__
847 ppath = self._parent.path()
848 if ppath == 'root':
849 return self._name
850 return ppath + "." + self._name
851
852 def __str__(self):
853 return self.path()
854
855 def ini_str(self):
856 return self.path()
857
858 def find_any(self, ptype):
859 if isinstance(self, ptype):
860 return self, True
861
862 found_obj = None
863 for child in self._children.itervalues():
864 if isinstance(child, ptype):
865 if found_obj != None and child != found_obj:
866 raise AttributeError, \
867 'parent.any matched more than one: %s %s' % \
868 (found_obj.path, child.path)
869 found_obj = child
870 # search param space
871 for pname,pdesc in self._params.iteritems():
872 if issubclass(pdesc.ptype, ptype):
873 match_obj = self._values[pname]
874 if found_obj != None and found_obj != match_obj:
875 raise AttributeError, \
876 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
877 found_obj = match_obj
878 return found_obj, found_obj != None
879
880 def find_all(self, ptype):
881 all = {}
882 # search children
883 for child in self._children.itervalues():
884 # a child could be a list, so ensure we visit each item
885 if isinstance(child, list):
886 children = child
887 else:
888 children = [child]
889
890 for child in children:
891 if isinstance(child, ptype) and not isproxy(child) and \
892 not isNullPointer(child):
893 all[child] = True
894 if isSimObject(child):
895 # also add results from the child itself
896 child_all, done = child.find_all(ptype)
897 all.update(dict(zip(child_all, [done] * len(child_all))))
898 # search param space
899 for pname,pdesc in self._params.iteritems():
900 if issubclass(pdesc.ptype, ptype):
901 match_obj = self._values[pname]
902 if not isproxy(match_obj) and not isNullPointer(match_obj):
903 all[match_obj] = True
904 return all.keys(), True
905
906 def unproxy(self, base):
907 return self
908
909 def unproxyParams(self):
910 for param in self._params.iterkeys():
911 value = self._values.get(param)
912 if value != None and isproxy(value):
913 try:
914 value = value.unproxy(self)
915 except:
916 print "Error in unproxying param '%s' of %s" % \
917 (param, self.path())
918 raise
919 setattr(self, param, value)
920
921 # Unproxy ports in sorted order so that 'append' operations on
922 # vector ports are done in a deterministic fashion.
923 port_names = self._ports.keys()
924 port_names.sort()
925 for port_name in port_names:
926 port = self._port_refs.get(port_name)
927 if port != None:
928 port.unproxy(self)
929
930 def print_ini(self, ini_file):
931 print >>ini_file, '[' + self.path() + ']' # .ini section header
932
933 instanceDict[self.path()] = self
934
935 if hasattr(self, 'type'):
936 print >>ini_file, 'type=%s' % self.type
937
938 if len(self._children.keys()):
939 print >>ini_file, 'children=%s' % \
940 ' '.join(self._children[n].get_name() \
941 for n in sorted(self._children.keys()))
942
943 for param in sorted(self._params.keys()):
944 value = self._values.get(param)
945 if value != None:
946 print >>ini_file, '%s=%s' % (param,
947 self._values[param].ini_str())
948
949 for port_name in sorted(self._ports.keys()):
950 port = self._port_refs.get(port_name, None)
951 if port != None:
952 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
953
954 print >>ini_file # blank line between objects
955
956 # generate a tree of dictionaries expressing all the parameters in the
957 # instantiated system for use by scripts that want to do power, thermal
958 # visualization, and other similar tasks
959 def get_config_as_dict(self):
960 d = attrdict()
961 if hasattr(self, 'type'):
962 d.type = self.type
963 if hasattr(self, 'cxx_class'):
964 d.cxx_class = self.cxx_class
965 # Add the name and path of this object to be able to link to
966 # the stats
967 d.name = self.get_name()
968 d.path = self.path()
969
970 for param in sorted(self._params.keys()):
971 value = self._values.get(param)
972 if value != None:
973 try:
974 # Use native type for those supported by JSON and
975 # strings for everything else. skipkeys=True seems
976 # to not work as well as one would hope
977 if type(self._values[param].value) in \
978 [str, unicode, int, long, float, bool, None]:
979 d[param] = self._values[param].value
980 else:
981 d[param] = str(self._values[param])
982
983 except AttributeError:
984 pass
985
986 for n in sorted(self._children.keys()):
987 child = self._children[n]
988 # Use the name of the attribute (and not get_name()) as
989 # the key in the JSON dictionary to capture the hierarchy
990 # in the Python code that assembled this system
991 d[n] = child.get_config_as_dict()
992
993 for port_name in sorted(self._ports.keys()):
994 port = self._port_refs.get(port_name, None)
995 if port != None:
996 # Represent each port with a dictionary containing the
997 # prominent attributes
998 d[port_name] = port.get_config_as_dict()
999
1000 return d
1001
1002 def getCCParams(self):
1003 if self._ccParams:
1004 return self._ccParams
1005
1006 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
1007 cc_params = cc_params_struct()
1008 cc_params.pyobj = self
1009 cc_params.name = str(self)
1010
1011 param_names = self._params.keys()
1012 param_names.sort()
1013 for param in param_names:
1014 value = self._values.get(param)
1015 if value is None:
1016 fatal("%s.%s without default or user set value",
1017 self.path(), param)
1018
1019 value = value.getValue()
1020 if isinstance(self._params[param], VectorParamDesc):
1021 assert isinstance(value, list)
1022 vec = getattr(cc_params, param)
1023 assert not len(vec)
1024 for v in value:
1025 vec.append(v)
1026 else:
1027 setattr(cc_params, param, value)
1028
1029 port_names = self._ports.keys()
1030 port_names.sort()
1031 for port_name in port_names:
1032 port = self._port_refs.get(port_name, None)
1033 if port != None:
1034 port_count = len(port)
1035 else:
1036 port_count = 0
1037 setattr(cc_params, 'port_' + port_name + '_connection_count',
1038 port_count)
1039 self._ccParams = cc_params
1040 return self._ccParams
1041
1042 # Get C++ object corresponding to this object, calling C++ if
1043 # necessary to construct it. Does *not* recursively create
1044 # children.
1045 def getCCObject(self):
1046 if not self._ccObject:
1047 # Make sure this object is in the configuration hierarchy
1048 if not self._parent and not isRoot(self):
1049 raise RuntimeError, "Attempt to instantiate orphan node"
1050 # Cycles in the configuration hierarchy are not supported. This
1051 # will catch the resulting recursion and stop.
1052 self._ccObject = -1
1053 params = self.getCCParams()
1054 self._ccObject = params.create()
1055 elif self._ccObject == -1:
1056 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1057 % self.path()
1058 return self._ccObject
1059
1060 def descendants(self):
1061 yield self
1062 for child in self._children.itervalues():
1063 for obj in child.descendants():
1064 yield obj
1065
1066 # Call C++ to create C++ object corresponding to this object
1067 def createCCObject(self):
1068 self.getCCParams()
1069 self.getCCObject() # force creation
1070
1071 def getValue(self):
1072 return self.getCCObject()
1073
1074 # Create C++ port connections corresponding to the connections in
1075 # _port_refs
1076 def connectPorts(self):
1077 for portRef in self._port_refs.itervalues():
1078 portRef.ccConnect()
1079
1080 # Function to provide to C++ so it can look up instances based on paths
1081 def resolveSimObject(name):
1082 obj = instanceDict[name]
1083 return obj.getCCObject()
1084
1085 def isSimObject(value):
1086 return isinstance(value, SimObject)
1087
1088 def isSimObjectClass(value):
1089 return issubclass(value, SimObject)
1090
1091 def isSimObjectVector(value):
1092 return isinstance(value, SimObjectVector)
1093
1094 def isSimObjectSequence(value):
1095 if not isinstance(value, (list, tuple)) or len(value) == 0:
1096 return False
1097
1098 for val in value:
1099 if not isNullPointer(val) and not isSimObject(val):
1100 return False
1101
1102 return True
1103
1104 def isSimObjectOrSequence(value):
1105 return isSimObject(value) or isSimObjectSequence(value)
1106
1107 def isRoot(obj):
1108 from m5.objects import Root
1109 return obj and obj is Root.getInstance()
1110
1111 def isSimObjectOrVector(value):
1112 return isSimObject(value) or isSimObjectVector(value)
1113
1114 def tryAsSimObjectOrVector(value):
1115 if isSimObjectOrVector(value):
1116 return value
1117 if isSimObjectSequence(value):
1118 return SimObjectVector(value)
1119 return None
1120
1121 def coerceSimObjectOrVector(value):
1122 value = tryAsSimObjectOrVector(value)
1123 if value is None:
1124 raise TypeError, "SimObject or SimObjectVector expected"
1125 return value
1126
1127 baseClasses = allClasses.copy()
1128 baseInstances = instanceDict.copy()
1129
1130 def clear():
1131 global allClasses, instanceDict, noCxxHeader
1132
1133 allClasses = baseClasses.copy()
1134 instanceDict = baseInstances.copy()
1135 noCxxHeader = False
1136
1137 # __all__ defines the list of symbols that get exported when
1138 # 'from config import *' is invoked. Try to keep this reasonably
1139 # short to avoid polluting other namespaces.
1140 __all__ = [ 'SimObject' ]