sim: Include object header files in SWIG interfaces
[gem5.git] / src / python / m5 / SimObject.py
1 # Copyright (c) 2012 ARM Limited
2 # All rights reserved.
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2004-2006 The Regents of The University of Michigan
14 # Copyright (c) 2010 Advanced Micro Devices, Inc.
15 # All rights reserved.
16 #
17 # Redistribution and use in source and binary forms, with or without
18 # modification, are permitted provided that the following conditions are
19 # met: redistributions of source code must retain the above copyright
20 # notice, this list of conditions and the following disclaimer;
21 # redistributions in binary form must reproduce the above copyright
22 # notice, this list of conditions and the following disclaimer in the
23 # documentation and/or other materials provided with the distribution;
24 # neither the name of the copyright holders nor the names of its
25 # contributors may be used to endorse or promote products derived from
26 # this software without specific prior written permission.
27 #
28 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #
40 # Authors: Steve Reinhardt
41 # Nathan Binkert
42 # Andreas Hansson
43
44 import sys
45 from types import FunctionType, MethodType, ModuleType
46
47 import m5
48 from m5.util import *
49
50 # Have to import params up top since Param is referenced on initial
51 # load (when SimObject class references Param to create a class
52 # variable, the 'name' param)...
53 from m5.params import *
54 # There are a few things we need that aren't in params.__all__ since
55 # normal users don't need them
56 from m5.params import ParamDesc, VectorParamDesc, \
57 isNullPointer, SimObjectVector, Port
58
59 from m5.proxy import *
60 from m5.proxy import isproxy
61
62 #####################################################################
63 #
64 # M5 Python Configuration Utility
65 #
66 # The basic idea is to write simple Python programs that build Python
67 # objects corresponding to M5 SimObjects for the desired simulation
68 # configuration. For now, the Python emits a .ini file that can be
69 # parsed by M5. In the future, some tighter integration between M5
70 # and the Python interpreter may allow bypassing the .ini file.
71 #
72 # Each SimObject class in M5 is represented by a Python class with the
73 # same name. The Python inheritance tree mirrors the M5 C++ tree
74 # (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75 # SimObjects inherit from a single SimObject base class). To specify
76 # an instance of an M5 SimObject in a configuration, the user simply
77 # instantiates the corresponding Python object. The parameters for
78 # that SimObject are given by assigning to attributes of the Python
79 # object, either using keyword assignment in the constructor or in
80 # separate assignment statements. For example:
81 #
82 # cache = BaseCache(size='64KB')
83 # cache.hit_latency = 3
84 # cache.assoc = 8
85 #
86 # The magic lies in the mapping of the Python attributes for SimObject
87 # classes to the actual SimObject parameter specifications. This
88 # allows parameter validity checking in the Python code. Continuing
89 # the example above, the statements "cache.blurfl=3" or
90 # "cache.assoc='hello'" would both result in runtime errors in Python,
91 # since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92 # parameter requires an integer, respectively. This magic is done
93 # primarily by overriding the special __setattr__ method that controls
94 # assignment to object attributes.
95 #
96 # Once a set of Python objects have been instantiated in a hierarchy,
97 # calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98 # will generate a .ini file.
99 #
100 #####################################################################
101
102 # list of all SimObject classes
103 allClasses = {}
104
105 # dict to look up SimObjects based on path
106 instanceDict = {}
107
108 # Did any of the SimObjects lack a header file?
109 noCxxHeader = False
110
111 def public_value(key, value):
112 return key.startswith('_') or \
113 isinstance(value, (FunctionType, MethodType, ModuleType,
114 classmethod, type))
115
116 # The metaclass for SimObject. This class controls how new classes
117 # that derive from SimObject are instantiated, and provides inherited
118 # class behavior (just like a class controls how instances of that
119 # class are instantiated, and provides inherited instance behavior).
120 class MetaSimObject(type):
121 # Attributes that can be set only at initialization time
122 init_keywords = { 'abstract' : bool,
123 'cxx_class' : str,
124 'cxx_type' : str,
125 'cxx_header' : str,
126 'type' : str }
127 # Attributes that can be set any time
128 keywords = { 'check' : FunctionType }
129
130 # __new__ is called before __init__, and is where the statements
131 # in the body of the class definition get loaded into the class's
132 # __dict__. We intercept this to filter out parameter & port assignments
133 # and only allow "private" attributes to be passed to the base
134 # __new__ (starting with underscore).
135 def __new__(mcls, name, bases, dict):
136 assert name not in allClasses, "SimObject %s already present" % name
137
138 # Copy "private" attributes, functions, and classes to the
139 # official dict. Everything else goes in _init_dict to be
140 # filtered in __init__.
141 cls_dict = {}
142 value_dict = {}
143 for key,val in dict.items():
144 if public_value(key, val):
145 cls_dict[key] = val
146 else:
147 # must be a param/port setting
148 value_dict[key] = val
149 if 'abstract' not in value_dict:
150 value_dict['abstract'] = False
151 cls_dict['_value_dict'] = value_dict
152 cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
153 if 'type' in value_dict:
154 allClasses[name] = cls
155 return cls
156
157 # subclass initialization
158 def __init__(cls, name, bases, dict):
159 # calls type.__init__()... I think that's a no-op, but leave
160 # it here just in case it's not.
161 super(MetaSimObject, cls).__init__(name, bases, dict)
162
163 # initialize required attributes
164
165 # class-only attributes
166 cls._params = multidict() # param descriptions
167 cls._ports = multidict() # port descriptions
168
169 # class or instance attributes
170 cls._values = multidict() # param values
171 cls._children = multidict() # SimObject children
172 cls._port_refs = multidict() # port ref objects
173 cls._instantiated = False # really instantiated, cloned, or subclassed
174
175 # We don't support multiple inheritance of sim objects. If you want
176 # to, you must fix multidict to deal with it properly. Non sim-objects
177 # are ok, though
178 bTotal = 0
179 for c in bases:
180 if isinstance(c, MetaSimObject):
181 bTotal += 1
182 if bTotal > 1:
183 raise TypeError, "SimObjects do not support multiple inheritance"
184
185 base = bases[0]
186
187 # Set up general inheritance via multidicts. A subclass will
188 # inherit all its settings from the base class. The only time
189 # the following is not true is when we define the SimObject
190 # class itself (in which case the multidicts have no parent).
191 if isinstance(base, MetaSimObject):
192 cls._base = base
193 cls._params.parent = base._params
194 cls._ports.parent = base._ports
195 cls._values.parent = base._values
196 cls._children.parent = base._children
197 cls._port_refs.parent = base._port_refs
198 # mark base as having been subclassed
199 base._instantiated = True
200 else:
201 cls._base = None
202
203 # default keyword values
204 if 'type' in cls._value_dict:
205 if 'cxx_class' not in cls._value_dict:
206 cls._value_dict['cxx_class'] = cls._value_dict['type']
207
208 cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
209
210 if 'cxx_header' not in cls._value_dict:
211 global noCxxHeader
212 noCxxHeader = True
213 print >> sys.stderr, \
214 "warning: No header file specified for SimObject: %s" % name
215
216 # Export methods are automatically inherited via C++, so we
217 # don't want the method declarations to get inherited on the
218 # python side (and thus end up getting repeated in the wrapped
219 # versions of derived classes). The code below basicallly
220 # suppresses inheritance by substituting in the base (null)
221 # versions of these methods unless a different version is
222 # explicitly supplied.
223 for method_name in ('export_methods', 'export_method_cxx_predecls',
224 'export_method_swig_predecls'):
225 if method_name not in cls.__dict__:
226 base_method = getattr(MetaSimObject, method_name)
227 m = MethodType(base_method, cls, MetaSimObject)
228 setattr(cls, method_name, m)
229
230 # Now process the _value_dict items. They could be defining
231 # new (or overriding existing) parameters or ports, setting
232 # class keywords (e.g., 'abstract'), or setting parameter
233 # values or port bindings. The first 3 can only be set when
234 # the class is defined, so we handle them here. The others
235 # can be set later too, so just emulate that by calling
236 # setattr().
237 for key,val in cls._value_dict.items():
238 # param descriptions
239 if isinstance(val, ParamDesc):
240 cls._new_param(key, val)
241
242 # port objects
243 elif isinstance(val, Port):
244 cls._new_port(key, val)
245
246 # init-time-only keywords
247 elif cls.init_keywords.has_key(key):
248 cls._set_keyword(key, val, cls.init_keywords[key])
249
250 # default: use normal path (ends up in __setattr__)
251 else:
252 setattr(cls, key, val)
253
254 def _set_keyword(cls, keyword, val, kwtype):
255 if not isinstance(val, kwtype):
256 raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
257 (keyword, type(val), kwtype)
258 if isinstance(val, FunctionType):
259 val = classmethod(val)
260 type.__setattr__(cls, keyword, val)
261
262 def _new_param(cls, name, pdesc):
263 # each param desc should be uniquely assigned to one variable
264 assert(not hasattr(pdesc, 'name'))
265 pdesc.name = name
266 cls._params[name] = pdesc
267 if hasattr(pdesc, 'default'):
268 cls._set_param(name, pdesc.default, pdesc)
269
270 def _set_param(cls, name, value, param):
271 assert(param.name == name)
272 try:
273 value = param.convert(value)
274 except Exception, e:
275 msg = "%s\nError setting param %s.%s to %s\n" % \
276 (e, cls.__name__, name, value)
277 e.args = (msg, )
278 raise
279 cls._values[name] = value
280 # if param value is a SimObject, make it a child too, so that
281 # it gets cloned properly when the class is instantiated
282 if isSimObjectOrVector(value) and not value.has_parent():
283 cls._add_cls_child(name, value)
284
285 def _add_cls_child(cls, name, child):
286 # It's a little funky to have a class as a parent, but these
287 # objects should never be instantiated (only cloned, which
288 # clears the parent pointer), and this makes it clear that the
289 # object is not an orphan and can provide better error
290 # messages.
291 child.set_parent(cls, name)
292 cls._children[name] = child
293
294 def _new_port(cls, name, port):
295 # each port should be uniquely assigned to one variable
296 assert(not hasattr(port, 'name'))
297 port.name = name
298 cls._ports[name] = port
299
300 # same as _get_port_ref, effectively, but for classes
301 def _cls_get_port_ref(cls, attr):
302 # Return reference that can be assigned to another port
303 # via __setattr__. There is only ever one reference
304 # object per port, but we create them lazily here.
305 ref = cls._port_refs.get(attr)
306 if not ref:
307 ref = cls._ports[attr].makeRef(cls)
308 cls._port_refs[attr] = ref
309 return ref
310
311 # Set attribute (called on foo.attr = value when foo is an
312 # instance of class cls).
313 def __setattr__(cls, attr, value):
314 # normal processing for private attributes
315 if public_value(attr, value):
316 type.__setattr__(cls, attr, value)
317 return
318
319 if cls.keywords.has_key(attr):
320 cls._set_keyword(attr, value, cls.keywords[attr])
321 return
322
323 if cls._ports.has_key(attr):
324 cls._cls_get_port_ref(attr).connect(value)
325 return
326
327 if isSimObjectOrSequence(value) and cls._instantiated:
328 raise RuntimeError, \
329 "cannot set SimObject parameter '%s' after\n" \
330 " class %s has been instantiated or subclassed" \
331 % (attr, cls.__name__)
332
333 # check for param
334 param = cls._params.get(attr)
335 if param:
336 cls._set_param(attr, value, param)
337 return
338
339 if isSimObjectOrSequence(value):
340 # If RHS is a SimObject, it's an implicit child assignment.
341 cls._add_cls_child(attr, coerceSimObjectOrVector(value))
342 return
343
344 # no valid assignment... raise exception
345 raise AttributeError, \
346 "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
347
348 def __getattr__(cls, attr):
349 if attr == 'cxx_class_path':
350 return cls.cxx_class.split('::')
351
352 if attr == 'cxx_class_name':
353 return cls.cxx_class_path[-1]
354
355 if attr == 'cxx_namespaces':
356 return cls.cxx_class_path[:-1]
357
358 if cls._values.has_key(attr):
359 return cls._values[attr]
360
361 if cls._children.has_key(attr):
362 return cls._children[attr]
363
364 raise AttributeError, \
365 "object '%s' has no attribute '%s'" % (cls.__name__, attr)
366
367 def __str__(cls):
368 return cls.__name__
369
370 # See ParamValue.cxx_predecls for description.
371 def cxx_predecls(cls, code):
372 code('#include "params/$cls.hh"')
373
374 # See ParamValue.swig_predecls for description.
375 def swig_predecls(cls, code):
376 code('%import "python/m5/internal/param_$cls.i"')
377
378 # Hook for exporting additional C++ methods to Python via SWIG.
379 # Default is none, override using @classmethod in class definition.
380 def export_methods(cls, code):
381 pass
382
383 # Generate the code needed as a prerequisite for the C++ methods
384 # exported via export_methods() to be compiled in the _wrap.cc
385 # file. Typically generates one or more #include statements. If
386 # any methods are exported, typically at least the C++ header
387 # declaring the relevant SimObject class must be included.
388 def export_method_cxx_predecls(cls, code):
389 pass
390
391 # Generate the code needed as a prerequisite for the C++ methods
392 # exported via export_methods() to be processed by SWIG.
393 # Typically generates one or more %include or %import statements.
394 # If any methods are exported, typically at least the C++ header
395 # declaring the relevant SimObject class must be included.
396 def export_method_swig_predecls(cls, code):
397 pass
398
399 # Generate the declaration for this object for wrapping with SWIG.
400 # Generates code that goes into a SWIG .i file. Called from
401 # src/SConscript.
402 def swig_decl(cls, code):
403 class_path = cls.cxx_class.split('::')
404 classname = class_path[-1]
405 namespaces = class_path[:-1]
406
407 # The 'local' attribute restricts us to the params declared in
408 # the object itself, not including inherited params (which
409 # will also be inherited from the base class's param struct
410 # here).
411 params = cls._params.local.values()
412 ports = cls._ports.local
413
414 code('%module(package="m5.internal") param_$cls')
415 code()
416 code('%{')
417 code('#include "params/$cls.hh"')
418 for param in params:
419 param.cxx_predecls(code)
420 code('#include "${{cls.cxx_header}}"')
421 cls.export_method_cxx_predecls(code)
422 code('''\
423 /**
424 * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
425 * headers like vector, string, etc. used to automatically pull in
426 * the cstddef header but starting with gcc 4.6.1 they no longer do.
427 * This leads to swig generated a file that does not compile so we
428 * explicitly include cstddef. Additionally, including version 2.0.4,
429 * swig uses ptrdiff_t without the std:: namespace prefix which is
430 * required with gcc 4.6.1. We explicitly provide access to it.
431 */
432 #include <cstddef>
433 using std::ptrdiff_t;
434 ''')
435 code('%}')
436 code()
437
438 for param in params:
439 param.swig_predecls(code)
440 cls.export_method_swig_predecls(code)
441
442 code()
443 if cls._base:
444 code('%import "python/m5/internal/param_${{cls._base}}.i"')
445 code()
446
447 for ns in namespaces:
448 code('namespace $ns {')
449
450 if namespaces:
451 code('// avoid name conflicts')
452 sep_string = '_COLONS_'
453 flat_name = sep_string.join(class_path)
454 code('%rename($flat_name) $classname;')
455
456 code()
457 code('// stop swig from creating/wrapping default ctor/dtor')
458 code('%nodefault $classname;')
459 code('class $classname')
460 if cls._base:
461 code(' : public ${{cls._base.cxx_class}}')
462 code('{')
463 code(' public:')
464 cls.export_methods(code)
465 code('};')
466
467 for ns in reversed(namespaces):
468 code('} // namespace $ns')
469
470 code()
471 code('%include "params/$cls.hh"')
472
473
474 # Generate the C++ declaration (.hh file) for this SimObject's
475 # param struct. Called from src/SConscript.
476 def cxx_param_decl(cls, code):
477 # The 'local' attribute restricts us to the params declared in
478 # the object itself, not including inherited params (which
479 # will also be inherited from the base class's param struct
480 # here).
481 params = cls._params.local.values()
482 ports = cls._ports.local
483 try:
484 ptypes = [p.ptype for p in params]
485 except:
486 print cls, p, p.ptype_str
487 print params
488 raise
489
490 class_path = cls._value_dict['cxx_class'].split('::')
491
492 code('''\
493 #ifndef __PARAMS__${cls}__
494 #define __PARAMS__${cls}__
495
496 ''')
497
498 # A forward class declaration is sufficient since we are just
499 # declaring a pointer.
500 for ns in class_path[:-1]:
501 code('namespace $ns {')
502 code('class $0;', class_path[-1])
503 for ns in reversed(class_path[:-1]):
504 code('} // namespace $ns')
505 code()
506
507 # The base SimObject has a couple of params that get
508 # automatically set from Python without being declared through
509 # the normal Param mechanism; we slip them in here (needed
510 # predecls now, actual declarations below)
511 if cls == SimObject:
512 code('''
513 #ifndef PY_VERSION
514 struct PyObject;
515 #endif
516
517 #include <string>
518
519 class EventQueue;
520 ''')
521 for param in params:
522 param.cxx_predecls(code)
523 for port in ports.itervalues():
524 port.cxx_predecls(code)
525 code()
526
527 if cls._base:
528 code('#include "params/${{cls._base.type}}.hh"')
529 code()
530
531 for ptype in ptypes:
532 if issubclass(ptype, Enum):
533 code('#include "enums/${{ptype.__name__}}.hh"')
534 code()
535
536 # now generate the actual param struct
537 code("struct ${cls}Params")
538 if cls._base:
539 code(" : public ${{cls._base.type}}Params")
540 code("{")
541 if not hasattr(cls, 'abstract') or not cls.abstract:
542 if 'type' in cls.__dict__:
543 code(" ${{cls.cxx_type}} create();")
544
545 code.indent()
546 if cls == SimObject:
547 code('''
548 SimObjectParams()
549 {
550 extern EventQueue mainEventQueue;
551 eventq = &mainEventQueue;
552 }
553 virtual ~SimObjectParams() {}
554
555 std::string name;
556 PyObject *pyobj;
557 EventQueue *eventq;
558 ''')
559 for param in params:
560 param.cxx_decl(code)
561 for port in ports.itervalues():
562 port.cxx_decl(code)
563
564 code.dedent()
565 code('};')
566
567 code()
568 code('#endif // __PARAMS__${cls}__')
569 return code
570
571
572
573 # The SimObject class is the root of the special hierarchy. Most of
574 # the code in this class deals with the configuration hierarchy itself
575 # (parent/child node relationships).
576 class SimObject(object):
577 # Specify metaclass. Any class inheriting from SimObject will
578 # get this metaclass.
579 __metaclass__ = MetaSimObject
580 type = 'SimObject'
581 abstract = True
582 cxx_header = "sim/sim_object.hh"
583
584 @classmethod
585 def export_method_swig_predecls(cls, code):
586 code('''
587 %include <std_string.i>
588 ''')
589
590 @classmethod
591 def export_methods(cls, code):
592 code('''
593 enum State {
594 Running,
595 Draining,
596 Drained
597 };
598
599 void init();
600 void loadState(Checkpoint *cp);
601 void initState();
602 void regStats();
603 void resetStats();
604 void startup();
605
606 unsigned int drain(Event *drain_event);
607 void resume();
608 ''')
609
610 # Initialize new instance. For objects with SimObject-valued
611 # children, we need to recursively clone the classes represented
612 # by those param values as well in a consistent "deep copy"-style
613 # fashion. That is, we want to make sure that each instance is
614 # cloned only once, and that if there are multiple references to
615 # the same original object, we end up with the corresponding
616 # cloned references all pointing to the same cloned instance.
617 def __init__(self, **kwargs):
618 ancestor = kwargs.get('_ancestor')
619 memo_dict = kwargs.get('_memo')
620 if memo_dict is None:
621 # prepare to memoize any recursively instantiated objects
622 memo_dict = {}
623 elif ancestor:
624 # memoize me now to avoid problems with recursive calls
625 memo_dict[ancestor] = self
626
627 if not ancestor:
628 ancestor = self.__class__
629 ancestor._instantiated = True
630
631 # initialize required attributes
632 self._parent = None
633 self._name = None
634 self._ccObject = None # pointer to C++ object
635 self._ccParams = None
636 self._instantiated = False # really "cloned"
637
638 # Clone children specified at class level. No need for a
639 # multidict here since we will be cloning everything.
640 # Do children before parameter values so that children that
641 # are also param values get cloned properly.
642 self._children = {}
643 for key,val in ancestor._children.iteritems():
644 self.add_child(key, val(_memo=memo_dict))
645
646 # Inherit parameter values from class using multidict so
647 # individual value settings can be overridden but we still
648 # inherit late changes to non-overridden class values.
649 self._values = multidict(ancestor._values)
650 # clone SimObject-valued parameters
651 for key,val in ancestor._values.iteritems():
652 val = tryAsSimObjectOrVector(val)
653 if val is not None:
654 self._values[key] = val(_memo=memo_dict)
655
656 # clone port references. no need to use a multidict here
657 # since we will be creating new references for all ports.
658 self._port_refs = {}
659 for key,val in ancestor._port_refs.iteritems():
660 self._port_refs[key] = val.clone(self, memo_dict)
661 # apply attribute assignments from keyword args, if any
662 for key,val in kwargs.iteritems():
663 setattr(self, key, val)
664
665 # "Clone" the current instance by creating another instance of
666 # this instance's class, but that inherits its parameter values
667 # and port mappings from the current instance. If we're in a
668 # "deep copy" recursive clone, check the _memo dict to see if
669 # we've already cloned this instance.
670 def __call__(self, **kwargs):
671 memo_dict = kwargs.get('_memo')
672 if memo_dict is None:
673 # no memo_dict: must be top-level clone operation.
674 # this is only allowed at the root of a hierarchy
675 if self._parent:
676 raise RuntimeError, "attempt to clone object %s " \
677 "not at the root of a tree (parent = %s)" \
678 % (self, self._parent)
679 # create a new dict and use that.
680 memo_dict = {}
681 kwargs['_memo'] = memo_dict
682 elif memo_dict.has_key(self):
683 # clone already done & memoized
684 return memo_dict[self]
685 return self.__class__(_ancestor = self, **kwargs)
686
687 def _get_port_ref(self, attr):
688 # Return reference that can be assigned to another port
689 # via __setattr__. There is only ever one reference
690 # object per port, but we create them lazily here.
691 ref = self._port_refs.get(attr)
692 if not ref:
693 ref = self._ports[attr].makeRef(self)
694 self._port_refs[attr] = ref
695 return ref
696
697 def __getattr__(self, attr):
698 if self._ports.has_key(attr):
699 return self._get_port_ref(attr)
700
701 if self._values.has_key(attr):
702 return self._values[attr]
703
704 if self._children.has_key(attr):
705 return self._children[attr]
706
707 # If the attribute exists on the C++ object, transparently
708 # forward the reference there. This is typically used for
709 # SWIG-wrapped methods such as init(), regStats(),
710 # resetStats(), startup(), drain(), and
711 # resume().
712 if self._ccObject and hasattr(self._ccObject, attr):
713 return getattr(self._ccObject, attr)
714
715 raise AttributeError, "object '%s' has no attribute '%s'" \
716 % (self.__class__.__name__, attr)
717
718 # Set attribute (called on foo.attr = value when foo is an
719 # instance of class cls).
720 def __setattr__(self, attr, value):
721 # normal processing for private attributes
722 if attr.startswith('_'):
723 object.__setattr__(self, attr, value)
724 return
725
726 if self._ports.has_key(attr):
727 # set up port connection
728 self._get_port_ref(attr).connect(value)
729 return
730
731 if isSimObjectOrSequence(value) and self._instantiated:
732 raise RuntimeError, \
733 "cannot set SimObject parameter '%s' after\n" \
734 " instance been cloned %s" % (attr, `self`)
735
736 param = self._params.get(attr)
737 if param:
738 try:
739 value = param.convert(value)
740 except Exception, e:
741 msg = "%s\nError setting param %s.%s to %s\n" % \
742 (e, self.__class__.__name__, attr, value)
743 e.args = (msg, )
744 raise
745 self._values[attr] = value
746 # implicitly parent unparented objects assigned as params
747 if isSimObjectOrVector(value) and not value.has_parent():
748 self.add_child(attr, value)
749 return
750
751 # if RHS is a SimObject, it's an implicit child assignment
752 if isSimObjectOrSequence(value):
753 self.add_child(attr, value)
754 return
755
756 # no valid assignment... raise exception
757 raise AttributeError, "Class %s has no parameter %s" \
758 % (self.__class__.__name__, attr)
759
760
761 # this hack allows tacking a '[0]' onto parameters that may or may
762 # not be vectors, and always getting the first element (e.g. cpus)
763 def __getitem__(self, key):
764 if key == 0:
765 return self
766 raise TypeError, "Non-zero index '%s' to SimObject" % key
767
768 # Also implemented by SimObjectVector
769 def clear_parent(self, old_parent):
770 assert self._parent is old_parent
771 self._parent = None
772
773 # Also implemented by SimObjectVector
774 def set_parent(self, parent, name):
775 self._parent = parent
776 self._name = name
777
778 # Also implemented by SimObjectVector
779 def get_name(self):
780 return self._name
781
782 # Also implemented by SimObjectVector
783 def has_parent(self):
784 return self._parent is not None
785
786 # clear out child with given name. This code is not likely to be exercised.
787 # See comment in add_child.
788 def clear_child(self, name):
789 child = self._children[name]
790 child.clear_parent(self)
791 del self._children[name]
792
793 # Add a new child to this object.
794 def add_child(self, name, child):
795 child = coerceSimObjectOrVector(child)
796 if child.has_parent():
797 print "warning: add_child('%s'): child '%s' already has parent" % \
798 (name, child.get_name())
799 if self._children.has_key(name):
800 # This code path had an undiscovered bug that would make it fail
801 # at runtime. It had been here for a long time and was only
802 # exposed by a buggy script. Changes here will probably not be
803 # exercised without specialized testing.
804 self.clear_child(name)
805 child.set_parent(self, name)
806 self._children[name] = child
807
808 # Take SimObject-valued parameters that haven't been explicitly
809 # assigned as children and make them children of the object that
810 # they were assigned to as a parameter value. This guarantees
811 # that when we instantiate all the parameter objects we're still
812 # inside the configuration hierarchy.
813 def adoptOrphanParams(self):
814 for key,val in self._values.iteritems():
815 if not isSimObjectVector(val) and isSimObjectSequence(val):
816 # need to convert raw SimObject sequences to
817 # SimObjectVector class so we can call has_parent()
818 val = SimObjectVector(val)
819 self._values[key] = val
820 if isSimObjectOrVector(val) and not val.has_parent():
821 print "warning: %s adopting orphan SimObject param '%s'" \
822 % (self, key)
823 self.add_child(key, val)
824
825 def path(self):
826 if not self._parent:
827 return '<orphan %s>' % self.__class__
828 ppath = self._parent.path()
829 if ppath == 'root':
830 return self._name
831 return ppath + "." + self._name
832
833 def __str__(self):
834 return self.path()
835
836 def ini_str(self):
837 return self.path()
838
839 def find_any(self, ptype):
840 if isinstance(self, ptype):
841 return self, True
842
843 found_obj = None
844 for child in self._children.itervalues():
845 if isinstance(child, ptype):
846 if found_obj != None and child != found_obj:
847 raise AttributeError, \
848 'parent.any matched more than one: %s %s' % \
849 (found_obj.path, child.path)
850 found_obj = child
851 # search param space
852 for pname,pdesc in self._params.iteritems():
853 if issubclass(pdesc.ptype, ptype):
854 match_obj = self._values[pname]
855 if found_obj != None and found_obj != match_obj:
856 raise AttributeError, \
857 'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
858 found_obj = match_obj
859 return found_obj, found_obj != None
860
861 def find_all(self, ptype):
862 all = {}
863 # search children
864 for child in self._children.itervalues():
865 if isinstance(child, ptype) and not isproxy(child) and \
866 not isNullPointer(child):
867 all[child] = True
868 if isSimObject(child):
869 # also add results from the child itself
870 child_all, done = child.find_all(ptype)
871 all.update(dict(zip(child_all, [done] * len(child_all))))
872 # search param space
873 for pname,pdesc in self._params.iteritems():
874 if issubclass(pdesc.ptype, ptype):
875 match_obj = self._values[pname]
876 if not isproxy(match_obj) and not isNullPointer(match_obj):
877 all[match_obj] = True
878 return all.keys(), True
879
880 def unproxy(self, base):
881 return self
882
883 def unproxyParams(self):
884 for param in self._params.iterkeys():
885 value = self._values.get(param)
886 if value != None and isproxy(value):
887 try:
888 value = value.unproxy(self)
889 except:
890 print "Error in unproxying param '%s' of %s" % \
891 (param, self.path())
892 raise
893 setattr(self, param, value)
894
895 # Unproxy ports in sorted order so that 'append' operations on
896 # vector ports are done in a deterministic fashion.
897 port_names = self._ports.keys()
898 port_names.sort()
899 for port_name in port_names:
900 port = self._port_refs.get(port_name)
901 if port != None:
902 port.unproxy(self)
903
904 def print_ini(self, ini_file):
905 print >>ini_file, '[' + self.path() + ']' # .ini section header
906
907 instanceDict[self.path()] = self
908
909 if hasattr(self, 'type'):
910 print >>ini_file, 'type=%s' % self.type
911
912 if len(self._children.keys()):
913 print >>ini_file, 'children=%s' % \
914 ' '.join(self._children[n].get_name() \
915 for n in sorted(self._children.keys()))
916
917 for param in sorted(self._params.keys()):
918 value = self._values.get(param)
919 if value != None:
920 print >>ini_file, '%s=%s' % (param,
921 self._values[param].ini_str())
922
923 for port_name in sorted(self._ports.keys()):
924 port = self._port_refs.get(port_name, None)
925 if port != None:
926 print >>ini_file, '%s=%s' % (port_name, port.ini_str())
927
928 print >>ini_file # blank line between objects
929
930 # generate a tree of dictionaries expressing all the parameters in the
931 # instantiated system for use by scripts that want to do power, thermal
932 # visualization, and other similar tasks
933 def get_config_as_dict(self):
934 d = attrdict()
935 if hasattr(self, 'type'):
936 d.type = self.type
937 if hasattr(self, 'cxx_class'):
938 d.cxx_class = self.cxx_class
939 # Add the name and path of this object to be able to link to
940 # the stats
941 d.name = self.get_name()
942 d.path = self.path()
943
944 for param in sorted(self._params.keys()):
945 value = self._values.get(param)
946 if value != None:
947 try:
948 # Use native type for those supported by JSON and
949 # strings for everything else. skipkeys=True seems
950 # to not work as well as one would hope
951 if type(self._values[param].value) in \
952 [str, unicode, int, long, float, bool, None]:
953 d[param] = self._values[param].value
954 else:
955 d[param] = str(self._values[param])
956
957 except AttributeError:
958 pass
959
960 for n in sorted(self._children.keys()):
961 child = self._children[n]
962 # Use the name of the attribute (and not get_name()) as
963 # the key in the JSON dictionary to capture the hierarchy
964 # in the Python code that assembled this system
965 d[n] = child.get_config_as_dict()
966
967 for port_name in sorted(self._ports.keys()):
968 port = self._port_refs.get(port_name, None)
969 if port != None:
970 # Represent each port with a dictionary containing the
971 # prominent attributes
972 d[port_name] = port.get_config_as_dict()
973
974 return d
975
976 def getCCParams(self):
977 if self._ccParams:
978 return self._ccParams
979
980 cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
981 cc_params = cc_params_struct()
982 cc_params.pyobj = self
983 cc_params.name = str(self)
984
985 param_names = self._params.keys()
986 param_names.sort()
987 for param in param_names:
988 value = self._values.get(param)
989 if value is None:
990 fatal("%s.%s without default or user set value",
991 self.path(), param)
992
993 value = value.getValue()
994 if isinstance(self._params[param], VectorParamDesc):
995 assert isinstance(value, list)
996 vec = getattr(cc_params, param)
997 assert not len(vec)
998 for v in value:
999 vec.append(v)
1000 else:
1001 setattr(cc_params, param, value)
1002
1003 port_names = self._ports.keys()
1004 port_names.sort()
1005 for port_name in port_names:
1006 port = self._port_refs.get(port_name, None)
1007 if port != None:
1008 port_count = len(port)
1009 else:
1010 port_count = 0
1011 setattr(cc_params, 'port_' + port_name + '_connection_count',
1012 port_count)
1013 self._ccParams = cc_params
1014 return self._ccParams
1015
1016 # Get C++ object corresponding to this object, calling C++ if
1017 # necessary to construct it. Does *not* recursively create
1018 # children.
1019 def getCCObject(self):
1020 if not self._ccObject:
1021 # Make sure this object is in the configuration hierarchy
1022 if not self._parent and not isRoot(self):
1023 raise RuntimeError, "Attempt to instantiate orphan node"
1024 # Cycles in the configuration hierarchy are not supported. This
1025 # will catch the resulting recursion and stop.
1026 self._ccObject = -1
1027 params = self.getCCParams()
1028 self._ccObject = params.create()
1029 elif self._ccObject == -1:
1030 raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1031 % self.path()
1032 return self._ccObject
1033
1034 def descendants(self):
1035 yield self
1036 for child in self._children.itervalues():
1037 for obj in child.descendants():
1038 yield obj
1039
1040 # Call C++ to create C++ object corresponding to this object
1041 def createCCObject(self):
1042 self.getCCParams()
1043 self.getCCObject() # force creation
1044
1045 def getValue(self):
1046 return self.getCCObject()
1047
1048 # Create C++ port connections corresponding to the connections in
1049 # _port_refs
1050 def connectPorts(self):
1051 for portRef in self._port_refs.itervalues():
1052 portRef.ccConnect()
1053
1054 # Function to provide to C++ so it can look up instances based on paths
1055 def resolveSimObject(name):
1056 obj = instanceDict[name]
1057 return obj.getCCObject()
1058
1059 def isSimObject(value):
1060 return isinstance(value, SimObject)
1061
1062 def isSimObjectClass(value):
1063 return issubclass(value, SimObject)
1064
1065 def isSimObjectVector(value):
1066 return isinstance(value, SimObjectVector)
1067
1068 def isSimObjectSequence(value):
1069 if not isinstance(value, (list, tuple)) or len(value) == 0:
1070 return False
1071
1072 for val in value:
1073 if not isNullPointer(val) and not isSimObject(val):
1074 return False
1075
1076 return True
1077
1078 def isSimObjectOrSequence(value):
1079 return isSimObject(value) or isSimObjectSequence(value)
1080
1081 def isRoot(obj):
1082 from m5.objects import Root
1083 return obj and obj is Root.getInstance()
1084
1085 def isSimObjectOrVector(value):
1086 return isSimObject(value) or isSimObjectVector(value)
1087
1088 def tryAsSimObjectOrVector(value):
1089 if isSimObjectOrVector(value):
1090 return value
1091 if isSimObjectSequence(value):
1092 return SimObjectVector(value)
1093 return None
1094
1095 def coerceSimObjectOrVector(value):
1096 value = tryAsSimObjectOrVector(value)
1097 if value is None:
1098 raise TypeError, "SimObject or SimObjectVector expected"
1099 return value
1100
1101 baseClasses = allClasses.copy()
1102 baseInstances = instanceDict.copy()
1103
1104 def clear():
1105 global allClasses, instanceDict, noCxxHeader
1106
1107 allClasses = baseClasses.copy()
1108 instanceDict = baseInstances.copy()
1109 noCxxHeader = False
1110
1111 # __all__ defines the list of symbols that get exported when
1112 # 'from config import *' is invoked. Try to keep this reasonably
1113 # short to avoid polluting other namespaces.
1114 __all__ = [ 'SimObject' ]