cpu: fixed how O3 CPU executes an exit system call
[gem5.git] / src / sim / eventq.hh
1 /*
2 * Copyright (c) 2000-2005 The Regents of The University of Michigan
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * Copyright (c) 2013 Mark D. Hill and David A. Wood
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met: redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer;
11 * redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution;
14 * neither the name of the copyright holders nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * Authors: Steve Reinhardt
31 * Nathan Binkert
32 */
33
34 /* @file
35 * EventQueue interfaces
36 */
37
38 #ifndef __SIM_EVENTQ_HH__
39 #define __SIM_EVENTQ_HH__
40
41 #include <algorithm>
42 #include <cassert>
43 #include <climits>
44 #include <functional>
45 #include <iosfwd>
46 #include <memory>
47 #include <mutex>
48 #include <string>
49
50 #include "base/flags.hh"
51 #include "base/types.hh"
52 #include "debug/Event.hh"
53 #include "sim/serialize.hh"
54
55 class EventQueue; // forward declaration
56 class BaseGlobalEvent;
57
58 //! Simulation Quantum for multiple eventq simulation.
59 //! The quantum value is the period length after which the queues
60 //! synchronize themselves with each other. This means that any
61 //! event to scheduled on Queue A which is generated by an event on
62 //! Queue B should be at least simQuantum ticks away in future.
63 extern Tick simQuantum;
64
65 //! Current number of allocated main event queues.
66 extern uint32_t numMainEventQueues;
67
68 //! Array for main event queues.
69 extern std::vector<EventQueue *> mainEventQueue;
70
71 //! The current event queue for the running thread. Access to this queue
72 //! does not require any locking from the thread.
73
74 extern __thread EventQueue *_curEventQueue;
75
76 //! Current mode of execution: parallel / serial
77 extern bool inParallelMode;
78
79 //! Function for returning eventq queue for the provided
80 //! index. The function allocates a new queue in case one
81 //! does not exist for the index, provided that the index
82 //! is with in bounds.
83 EventQueue *getEventQueue(uint32_t index);
84
85 inline EventQueue *curEventQueue() { return _curEventQueue; }
86 inline void curEventQueue(EventQueue *q) { _curEventQueue = q; }
87
88 /**
89 * Common base class for Event and GlobalEvent, so they can share flag
90 * and priority definitions and accessor functions. This class should
91 * not be used directly.
92 */
93 class EventBase
94 {
95 protected:
96 typedef unsigned short FlagsType;
97 typedef ::Flags<FlagsType> Flags;
98
99 static const FlagsType PublicRead = 0x003f; // public readable flags
100 static const FlagsType PublicWrite = 0x001d; // public writable flags
101 static const FlagsType Squashed = 0x0001; // has been squashed
102 static const FlagsType Scheduled = 0x0002; // has been scheduled
103 static const FlagsType Managed = 0x0004; // Use life cycle manager
104 static const FlagsType AutoDelete = Managed; // delete after dispatch
105 /**
106 * This used to be AutoSerialize. This value can't be reused
107 * without changing the checkpoint version since the flag field
108 * gets serialized.
109 */
110 static const FlagsType Reserved0 = 0x0008;
111 static const FlagsType IsExitEvent = 0x0010; // special exit event
112 static const FlagsType IsMainQueue = 0x0020; // on main event queue
113 static const FlagsType Initialized = 0x7a40; // somewhat random bits
114 static const FlagsType InitMask = 0xffc0; // mask for init bits
115
116 public:
117 typedef int8_t Priority;
118
119 /// Event priorities, to provide tie-breakers for events scheduled
120 /// at the same cycle. Most events are scheduled at the default
121 /// priority; these values are used to control events that need to
122 /// be ordered within a cycle.
123
124 /// Minimum priority
125 static const Priority Minimum_Pri = SCHAR_MIN;
126
127 /// If we enable tracing on a particular cycle, do that as the
128 /// very first thing so we don't miss any of the events on
129 /// that cycle (even if we enter the debugger).
130 static const Priority Debug_Enable_Pri = -101;
131
132 /// Breakpoints should happen before anything else (except
133 /// enabling trace output), so we don't miss any action when
134 /// debugging.
135 static const Priority Debug_Break_Pri = -100;
136
137 /// CPU switches schedule the new CPU's tick event for the
138 /// same cycle (after unscheduling the old CPU's tick event).
139 /// The switch needs to come before any tick events to make
140 /// sure we don't tick both CPUs in the same cycle.
141 static const Priority CPU_Switch_Pri = -31;
142
143 /// For some reason "delayed" inter-cluster writebacks are
144 /// scheduled before regular writebacks (which have default
145 /// priority). Steve?
146 static const Priority Delayed_Writeback_Pri = -1;
147
148 /// Default is zero for historical reasons.
149 static const Priority Default_Pri = 0;
150
151 /// DVFS update event leads to stats dump therefore given a lower priority
152 /// to ensure all relevant states have been updated
153 static const Priority DVFS_Update_Pri = 31;
154
155 /// Serailization needs to occur before tick events also, so
156 /// that a serialize/unserialize is identical to an on-line
157 /// CPU switch.
158 static const Priority Serialize_Pri = 32;
159
160 /// CPU ticks must come after other associated CPU events
161 /// (such as writebacks).
162 static const Priority CPU_Tick_Pri = 50;
163
164 /// If we want to exit a thread in a CPU, it comes after CPU_Tick_Pri
165 static const Priority CPU_Exit_Pri = 64;
166
167 /// Statistics events (dump, reset, etc.) come after
168 /// everything else, but before exit.
169 static const Priority Stat_Event_Pri = 90;
170
171 /// Progress events come at the end.
172 static const Priority Progress_Event_Pri = 95;
173
174 /// If we want to exit on this cycle, it's the very last thing
175 /// we do.
176 static const Priority Sim_Exit_Pri = 100;
177
178 /// Maximum priority
179 static const Priority Maximum_Pri = SCHAR_MAX;
180 };
181
182 /*
183 * An item on an event queue. The action caused by a given
184 * event is specified by deriving a subclass and overriding the
185 * process() member function.
186 *
187 * Caution, the order of members is chosen to maximize data packing.
188 */
189 class Event : public EventBase, public Serializable
190 {
191 friend class EventQueue;
192
193 private:
194 // The event queue is now a linked list of linked lists. The
195 // 'nextBin' pointer is to find the bin, where a bin is defined as
196 // when+priority. All events in the same bin will be stored in a
197 // second linked list (a stack) maintained by the 'nextInBin'
198 // pointer. The list will be accessed in LIFO order. The end
199 // result is that the insert/removal in 'nextBin' is
200 // linear/constant, and the lookup/removal in 'nextInBin' is
201 // constant/constant. Hopefully this is a significant improvement
202 // over the current fully linear insertion.
203 Event *nextBin;
204 Event *nextInBin;
205
206 static Event *insertBefore(Event *event, Event *curr);
207 static Event *removeItem(Event *event, Event *last);
208
209 Tick _when; //!< timestamp when event should be processed
210 Priority _priority; //!< event priority
211 Flags flags;
212
213 #ifndef NDEBUG
214 /// Global counter to generate unique IDs for Event instances
215 static Counter instanceCounter;
216
217 /// This event's unique ID. We can also use pointer values for
218 /// this but they're not consistent across runs making debugging
219 /// more difficult. Thus we use a global counter value when
220 /// debugging.
221 Counter instance;
222
223 /// queue to which this event belongs (though it may or may not be
224 /// scheduled on this queue yet)
225 EventQueue *queue;
226 #endif
227
228 #ifdef EVENTQ_DEBUG
229 Tick whenCreated; //!< time created
230 Tick whenScheduled; //!< time scheduled
231 #endif
232
233 void
234 setWhen(Tick when, EventQueue *q)
235 {
236 _when = when;
237 #ifndef NDEBUG
238 queue = q;
239 #endif
240 #ifdef EVENTQ_DEBUG
241 whenScheduled = curTick();
242 #endif
243 }
244
245 bool
246 initialized() const
247 {
248 return (flags & InitMask) == Initialized;
249 }
250
251 protected:
252 /// Accessor for flags.
253 Flags
254 getFlags() const
255 {
256 return flags & PublicRead;
257 }
258
259 bool
260 isFlagSet(Flags _flags) const
261 {
262 assert(_flags.noneSet(~PublicRead));
263 return flags.isSet(_flags);
264 }
265
266 /// Accessor for flags.
267 void
268 setFlags(Flags _flags)
269 {
270 assert(_flags.noneSet(~PublicWrite));
271 flags.set(_flags);
272 }
273
274 void
275 clearFlags(Flags _flags)
276 {
277 assert(_flags.noneSet(~PublicWrite));
278 flags.clear(_flags);
279 }
280
281 void
282 clearFlags()
283 {
284 flags.clear(PublicWrite);
285 }
286
287 // This function isn't really useful if TRACING_ON is not defined
288 virtual void trace(const char *action); //!< trace event activity
289
290 protected: /* Memory management */
291 /**
292 * @{
293 * Memory management hooks for events that have the Managed flag set
294 *
295 * Events can use automatic memory management by setting the
296 * Managed flag. The default implementation automatically deletes
297 * events once they have been removed from the event queue. This
298 * typically happens when events are descheduled or have been
299 * triggered and not rescheduled.
300 *
301 * The methods below may be overridden by events that need custom
302 * memory management. For example, events exported to Python need
303 * to impement reference counting to ensure that the Python
304 * implementation of the event is kept alive while it lives in the
305 * event queue.
306 *
307 * @note Memory managers are responsible for implementing
308 * reference counting (by overriding both acquireImpl() and
309 * releaseImpl()) or checking if an event is no longer scheduled
310 * in releaseImpl() before deallocating it.
311 */
312
313 /**
314 * Managed event scheduled and being held in the event queue.
315 */
316 void acquire()
317 {
318 if (flags.isSet(Event::Managed))
319 acquireImpl();
320 }
321
322 /**
323 * Managed event removed from the event queue.
324 */
325 void release() {
326 if (flags.isSet(Event::Managed))
327 releaseImpl();
328 }
329
330 virtual void acquireImpl() {}
331
332 virtual void releaseImpl() {
333 if (!scheduled())
334 delete this;
335 }
336
337 /** @} */
338
339 public:
340
341 /*
342 * Event constructor
343 * @param queue that the event gets scheduled on
344 */
345 Event(Priority p = Default_Pri, Flags f = 0)
346 : nextBin(nullptr), nextInBin(nullptr), _when(0), _priority(p),
347 flags(Initialized | f)
348 {
349 assert(f.noneSet(~PublicWrite));
350 #ifndef NDEBUG
351 instance = ++instanceCounter;
352 queue = NULL;
353 #endif
354 #ifdef EVENTQ_DEBUG
355 whenCreated = curTick();
356 whenScheduled = 0;
357 #endif
358 }
359
360 virtual ~Event();
361 virtual const std::string name() const;
362
363 /// Return a C string describing the event. This string should
364 /// *not* be dynamically allocated; just a const char array
365 /// describing the event class.
366 virtual const char *description() const;
367
368 /// Dump the current event data
369 void dump() const;
370
371 public:
372 /*
373 * This member function is invoked when the event is processed
374 * (occurs). There is no default implementation; each subclass
375 * must provide its own implementation. The event is not
376 * automatically deleted after it is processed (to allow for
377 * statically allocated event objects).
378 *
379 * If the AutoDestroy flag is set, the object is deleted once it
380 * is processed.
381 */
382 virtual void process() = 0;
383
384 /// Determine if the current event is scheduled
385 bool scheduled() const { return flags.isSet(Scheduled); }
386
387 /// Squash the current event
388 void squash() { flags.set(Squashed); }
389
390 /// Check whether the event is squashed
391 bool squashed() const { return flags.isSet(Squashed); }
392
393 /// See if this is a SimExitEvent (without resorting to RTTI)
394 bool isExitEvent() const { return flags.isSet(IsExitEvent); }
395
396 /// Check whether this event will auto-delete
397 bool isManaged() const { return flags.isSet(Managed); }
398 bool isAutoDelete() const { return isManaged(); }
399
400 /// Get the time that the event is scheduled
401 Tick when() const { return _when; }
402
403 /// Get the event priority
404 Priority priority() const { return _priority; }
405
406 //! If this is part of a GlobalEvent, return the pointer to the
407 //! Global Event. By default, there is no GlobalEvent, so return
408 //! NULL. (Overridden in GlobalEvent::BarrierEvent.)
409 virtual BaseGlobalEvent *globalEvent() { return NULL; }
410
411 void serialize(CheckpointOut &cp) const override;
412 void unserialize(CheckpointIn &cp) override;
413 };
414
415 inline bool
416 operator<(const Event &l, const Event &r)
417 {
418 return l.when() < r.when() ||
419 (l.when() == r.when() && l.priority() < r.priority());
420 }
421
422 inline bool
423 operator>(const Event &l, const Event &r)
424 {
425 return l.when() > r.when() ||
426 (l.when() == r.when() && l.priority() > r.priority());
427 }
428
429 inline bool
430 operator<=(const Event &l, const Event &r)
431 {
432 return l.when() < r.when() ||
433 (l.when() == r.when() && l.priority() <= r.priority());
434 }
435 inline bool
436 operator>=(const Event &l, const Event &r)
437 {
438 return l.when() > r.when() ||
439 (l.when() == r.when() && l.priority() >= r.priority());
440 }
441
442 inline bool
443 operator==(const Event &l, const Event &r)
444 {
445 return l.when() == r.when() && l.priority() == r.priority();
446 }
447
448 inline bool
449 operator!=(const Event &l, const Event &r)
450 {
451 return l.when() != r.when() || l.priority() != r.priority();
452 }
453
454 /**
455 * Queue of events sorted in time order
456 *
457 * Events are scheduled (inserted into the event queue) using the
458 * schedule() method. This method either inserts a <i>synchronous</i>
459 * or <i>asynchronous</i> event.
460 *
461 * Synchronous events are scheduled using schedule() method with the
462 * argument 'global' set to false (default). This should only be done
463 * from a thread holding the event queue lock
464 * (EventQueue::service_mutex). The lock is always held when an event
465 * handler is called, it can therefore always insert events into its
466 * own event queue unless it voluntarily releases the lock.
467 *
468 * Events can be scheduled across thread (and event queue borders) by
469 * either scheduling asynchronous events or taking the target event
470 * queue's lock. However, the lock should <i>never</i> be taken
471 * directly since this is likely to cause deadlocks. Instead, code
472 * that needs to schedule events in other event queues should
473 * temporarily release its own queue and lock the new queue. This
474 * prevents deadlocks since a single thread never owns more than one
475 * event queue lock. This functionality is provided by the
476 * ScopedMigration helper class. Note that temporarily migrating
477 * between event queues can make the simulation non-deterministic, it
478 * should therefore be limited to cases where that can be tolerated
479 * (e.g., handling asynchronous IO or fast-forwarding in KVM).
480 *
481 * Asynchronous events can also be scheduled using the normal
482 * schedule() method with the 'global' parameter set to true. Unlike
483 * the previous queue migration strategy, this strategy is fully
484 * deterministic. This causes the event to be inserted in a separate
485 * queue of asynchronous events (async_queue), which is merged main
486 * event queue at the end of each simulation quantum (by calling the
487 * handleAsyncInsertions() method). Note that this implies that such
488 * events must happen at least one simulation quantum into the future,
489 * otherwise they risk being scheduled in the past by
490 * handleAsyncInsertions().
491 */
492 class EventQueue
493 {
494 private:
495 std::string objName;
496 Event *head;
497 Tick _curTick;
498
499 //! Mutex to protect async queue.
500 std::mutex async_queue_mutex;
501
502 //! List of events added by other threads to this event queue.
503 std::list<Event*> async_queue;
504
505 /**
506 * Lock protecting event handling.
507 *
508 * This lock is always taken when servicing events. It is assumed
509 * that the thread scheduling new events (not asynchronous events
510 * though) have taken this lock. This is normally done by
511 * serviceOne() since new events are typically scheduled as a
512 * response to an earlier event.
513 *
514 * This lock is intended to be used to temporarily steal an event
515 * queue to support inter-thread communication when some
516 * deterministic timing can be sacrificed for speed. For example,
517 * the KVM CPU can use this support to access devices running in a
518 * different thread.
519 *
520 * @see EventQueue::ScopedMigration.
521 * @see EventQueue::ScopedRelease
522 * @see EventQueue::lock()
523 * @see EventQueue::unlock()
524 */
525 std::mutex service_mutex;
526
527 //! Insert / remove event from the queue. Should only be called
528 //! by thread operating this queue.
529 void insert(Event *event);
530 void remove(Event *event);
531
532 //! Function for adding events to the async queue. The added events
533 //! are added to main event queue later. Threads, other than the
534 //! owning thread, should call this function instead of insert().
535 void asyncInsert(Event *event);
536
537 EventQueue(const EventQueue &);
538
539 public:
540 /**
541 * Temporarily migrate execution to a different event queue.
542 *
543 * An instance of this class temporarily migrates execution to a
544 * different event queue by releasing the current queue, locking
545 * the new queue, and updating curEventQueue(). This can, for
546 * example, be useful when performing IO across thread event
547 * queues when timing is not crucial (e.g., during fast
548 * forwarding).
549 *
550 * ScopedMigration does nothing if both eqs are the same
551 */
552 class ScopedMigration
553 {
554 public:
555 ScopedMigration(EventQueue *_new_eq, bool _doMigrate = true)
556 :new_eq(*_new_eq), old_eq(*curEventQueue()),
557 doMigrate((&new_eq != &old_eq)&&_doMigrate)
558 {
559 if (doMigrate){
560 old_eq.unlock();
561 new_eq.lock();
562 curEventQueue(&new_eq);
563 }
564 }
565
566 ~ScopedMigration()
567 {
568 if (doMigrate){
569 new_eq.unlock();
570 old_eq.lock();
571 curEventQueue(&old_eq);
572 }
573 }
574
575 private:
576 EventQueue &new_eq;
577 EventQueue &old_eq;
578 bool doMigrate;
579 };
580
581 /**
582 * Temporarily release the event queue service lock.
583 *
584 * There are cases where it is desirable to temporarily release
585 * the event queue lock to prevent deadlocks. For example, when
586 * waiting on the global barrier, we need to release the lock to
587 * prevent deadlocks from happening when another thread tries to
588 * temporarily take over the event queue waiting on the barrier.
589 */
590 class ScopedRelease
591 {
592 public:
593 ScopedRelease(EventQueue *_eq)
594 : eq(*_eq)
595 {
596 eq.unlock();
597 }
598
599 ~ScopedRelease()
600 {
601 eq.lock();
602 }
603
604 private:
605 EventQueue &eq;
606 };
607
608 EventQueue(const std::string &n);
609
610 virtual const std::string name() const { return objName; }
611 void name(const std::string &st) { objName = st; }
612
613 //! Schedule the given event on this queue. Safe to call from any
614 //! thread.
615 void schedule(Event *event, Tick when, bool global = false);
616
617 //! Deschedule the specified event. Should be called only from the
618 //! owning thread.
619 void deschedule(Event *event);
620
621 //! Reschedule the specified event. Should be called only from
622 //! the owning thread.
623 void reschedule(Event *event, Tick when, bool always = false);
624
625 Tick nextTick() const { return head->when(); }
626 void setCurTick(Tick newVal) { _curTick = newVal; }
627 Tick getCurTick() const { return _curTick; }
628 Event *getHead() const { return head; }
629
630 Event *serviceOne();
631
632 // process all events up to the given timestamp. we inline a
633 // quick test to see if there are any events to process; if so,
634 // call the internal out-of-line version to process them all.
635 void
636 serviceEvents(Tick when)
637 {
638 while (!empty()) {
639 if (nextTick() > when)
640 break;
641
642 /**
643 * @todo this assert is a good bug catcher. I need to
644 * make it true again.
645 */
646 //assert(head->when() >= when && "event scheduled in the past");
647 serviceOne();
648 }
649
650 setCurTick(when);
651 }
652
653 // return true if no events are queued
654 bool empty() const { return head == NULL; }
655
656 void dump() const;
657
658 bool debugVerify() const;
659
660 //! Function for moving events from the async_queue to the main queue.
661 void handleAsyncInsertions();
662
663 /**
664 * Function to signal that the event loop should be woken up because
665 * an event has been scheduled by an agent outside the gem5 event
666 * loop(s) whose event insertion may not have been noticed by gem5.
667 * This function isn't needed by the usual gem5 event loop but may
668 * be necessary in derived EventQueues which host gem5 onto other
669 * schedulers.
670 *
671 * @param when Time of a delayed wakeup (if known). This parameter
672 * can be used by an implementation to schedule a wakeup in the
673 * future if it is sure it will remain active until then.
674 * Or it can be ignored and the event queue can be woken up now.
675 */
676 virtual void wakeup(Tick when = (Tick)-1) { }
677
678 /**
679 * function for replacing the head of the event queue, so that a
680 * different set of events can run without disturbing events that have
681 * already been scheduled. Already scheduled events can be processed
682 * by replacing the original head back.
683 * USING THIS FUNCTION CAN BE DANGEROUS TO THE HEALTH OF THE SIMULATOR.
684 * NOT RECOMMENDED FOR USE.
685 */
686 Event* replaceHead(Event* s);
687
688 /**@{*/
689 /**
690 * Provide an interface for locking/unlocking the event queue.
691 *
692 * @warn Do NOT use these methods directly unless you really know
693 * what you are doing. Incorrect use can easily lead to simulator
694 * deadlocks.
695 *
696 * @see EventQueue::ScopedMigration.
697 * @see EventQueue::ScopedRelease
698 * @see EventQueue
699 */
700 void lock() { service_mutex.lock(); }
701 void unlock() { service_mutex.unlock(); }
702 /**@}*/
703
704 /**
705 * Reschedule an event after a checkpoint.
706 *
707 * Since events don't know which event queue they belong to,
708 * parent objects need to reschedule events themselves. This
709 * method conditionally schedules an event that has the Scheduled
710 * flag set. It should be called by parent objects after
711 * unserializing an object.
712 *
713 * @warn Only use this method after unserializing an Event.
714 */
715 void checkpointReschedule(Event *event);
716
717 virtual ~EventQueue()
718 {
719 while (!empty())
720 deschedule(getHead());
721 }
722 };
723
724 void dumpMainQueue();
725
726 class EventManager
727 {
728 protected:
729 /** A pointer to this object's event queue */
730 EventQueue *eventq;
731
732 public:
733 EventManager(EventManager &em) : eventq(em.eventq) {}
734 EventManager(EventManager *em) : eventq(em->eventq) {}
735 EventManager(EventQueue *eq) : eventq(eq) {}
736
737 EventQueue *
738 eventQueue() const
739 {
740 return eventq;
741 }
742
743 void
744 schedule(Event &event, Tick when)
745 {
746 eventq->schedule(&event, when);
747 }
748
749 void
750 deschedule(Event &event)
751 {
752 eventq->deschedule(&event);
753 }
754
755 void
756 reschedule(Event &event, Tick when, bool always = false)
757 {
758 eventq->reschedule(&event, when, always);
759 }
760
761 void
762 schedule(Event *event, Tick when)
763 {
764 eventq->schedule(event, when);
765 }
766
767 void
768 deschedule(Event *event)
769 {
770 eventq->deschedule(event);
771 }
772
773 void
774 reschedule(Event *event, Tick when, bool always = false)
775 {
776 eventq->reschedule(event, when, always);
777 }
778
779 void wakeupEventQueue(Tick when = (Tick)-1)
780 {
781 eventq->wakeup(when);
782 }
783
784 void setCurTick(Tick newVal) { eventq->setCurTick(newVal); }
785 };
786
787 template <class T, void (T::* F)()>
788 class EventWrapper : public Event
789 {
790 private:
791 T *object;
792
793 public:
794 EventWrapper(T *obj, bool del = false, Priority p = Default_Pri)
795 : Event(p), object(obj)
796 {
797 if (del)
798 setFlags(AutoDelete);
799 }
800
801 EventWrapper(T &obj, bool del = false, Priority p = Default_Pri)
802 : Event(p), object(&obj)
803 {
804 if (del)
805 setFlags(AutoDelete);
806 }
807
808 void process() { (object->*F)(); }
809
810 const std::string
811 name() const
812 {
813 return object->name() + ".wrapped_event";
814 }
815
816 const char *description() const { return "EventWrapped"; }
817 };
818
819 class EventFunctionWrapper : public Event
820 {
821 private:
822 std::function<void(void)> callback;
823 std::string _name;
824
825 public:
826 EventFunctionWrapper(const std::function<void(void)> &callback,
827 const std::string &name,
828 bool del = false,
829 Priority p = Default_Pri)
830 : Event(p), callback(callback), _name(name)
831 {
832 if (del)
833 setFlags(AutoDelete);
834 }
835
836 void process() { callback(); }
837
838 const std::string
839 name() const
840 {
841 return _name + ".wrapped_function_event";
842 }
843
844 const char *description() const { return "EventFunctionWrapped"; }
845 };
846
847 #endif // __SIM_EVENTQ_HH__