sim: Make the drain state a global typed enum
[gem5.git] / src / sim / serialize.hh
1 /*
2 * Copyright (c) 2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Nathan Binkert
41 * Erik Hallnor
42 * Steve Reinhardt
43 * Andreas Sandberg
44 */
45
46 /* @file
47 * Serialization Interface Declarations
48 */
49
50 #ifndef __SERIALIZE_HH__
51 #define __SERIALIZE_HH__
52
53
54 #include <iostream>
55 #include <list>
56 #include <map>
57 #include <stack>
58 #include <vector>
59
60 #include "base/bitunion.hh"
61 #include "base/types.hh"
62
63 class IniFile;
64 class Serializable;
65 class CheckpointIn;
66 class SimObject;
67 class EventQueue;
68
69 typedef std::ostream CheckpointOut;
70
71
72 /** The current version of the checkpoint format.
73 * This should be incremented by 1 and only 1 for every new version, where a new
74 * version is defined as a checkpoint created before this version won't work on
75 * the current version until the checkpoint format is updated. Adding a new
76 * SimObject shouldn't cause the version number to increase, only changes to
77 * existing objects such as serializing/unserializing more state, changing sizes
78 * of serialized arrays, etc. */
79 static const uint64_t gem5CheckpointVersion = 0x000000000000000e;
80
81 template <class T>
82 void paramOut(CheckpointOut &cp, const std::string &name, const T &param);
83
84 template <typename DataType, typename BitUnion>
85 void paramOut(CheckpointOut &cp, const std::string &name,
86 const BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
87 {
88 paramOut(cp, name, p.__data);
89 }
90
91 template <class T>
92 void paramIn(CheckpointIn &cp, const std::string &name, T &param);
93
94 template <typename DataType, typename BitUnion>
95 void paramIn(CheckpointIn &cp, const std::string &name,
96 BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
97 {
98 paramIn(cp, name, p.__data);
99 }
100
101 template <class T>
102 bool optParamIn(CheckpointIn &cp, const std::string &name, T &param);
103
104 template <typename DataType, typename BitUnion>
105 bool optParamIn(CheckpointIn &cp, const std::string &name,
106 BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
107 {
108 return optParamIn(cp, name, p.__data);
109 }
110
111 template <class T>
112 void arrayParamOut(CheckpointOut &cp, const std::string &name,
113 const T *param, unsigned size);
114
115 template <class T>
116 void arrayParamOut(CheckpointOut &cp, const std::string &name,
117 const std::vector<T> &param);
118
119 template <class T>
120 void arrayParamOut(CheckpointOut &cp, const std::string &name,
121 const std::list<T> &param);
122
123 template <class T>
124 void arrayParamIn(CheckpointIn &cp, const std::string &name,
125 T *param, unsigned size);
126
127 template <class T>
128 void arrayParamIn(CheckpointIn &cp, const std::string &name,
129 std::vector<T> &param);
130
131 template <class T>
132 void arrayParamIn(CheckpointIn &cp, const std::string &name,
133 std::list<T> &param);
134
135 void
136 objParamIn(CheckpointIn &cp, const std::string &name, SimObject * &param);
137
138 template <typename T>
139 void fromInt(T &t, int i)
140 {
141 t = (T)i;
142 }
143
144 template <typename T>
145 void fromSimObject(T &t, SimObject *s)
146 {
147 t = dynamic_cast<T>(s);
148 }
149
150 //
151 // These macros are streamlined to use in serialize/unserialize
152 // functions. It's assumed that serialize() has a parameter 'os' for
153 // the ostream, and unserialize() has parameters 'cp' and 'section'.
154 #define SERIALIZE_SCALAR(scalar) paramOut(cp, #scalar, scalar)
155
156 #define UNSERIALIZE_SCALAR(scalar) paramIn(cp, #scalar, scalar)
157 #define UNSERIALIZE_OPT_SCALAR(scalar) optParamIn(cp, #scalar, scalar)
158
159 // ENUMs are like SCALARs, but we cast them to ints on the way out
160 #define SERIALIZE_ENUM(scalar) paramOut(cp, #scalar, (int)scalar)
161
162 #define UNSERIALIZE_ENUM(scalar) \
163 do { \
164 int tmp; \
165 paramIn(cp, #scalar, tmp); \
166 fromInt(scalar, tmp); \
167 } while (0)
168
169 #define SERIALIZE_ARRAY(member, size) \
170 arrayParamOut(cp, #member, member, size)
171
172 #define UNSERIALIZE_ARRAY(member, size) \
173 arrayParamIn(cp, #member, member, size)
174
175 #define SERIALIZE_CONTAINER(member) \
176 arrayParamOut(cp, #member, member)
177
178 #define UNSERIALIZE_CONTAINER(member) \
179 arrayParamIn(cp, #member, member)
180
181 #define SERIALIZE_EVENT(event) event.serializeSection(cp, #event);
182
183 #define UNSERIALIZE_EVENT(event) \
184 do { \
185 event.unserializeSection(cp, #event); \
186 eventQueue()->checkpointReschedule(&event); \
187 } while(0)
188
189 #define SERIALIZE_OBJ(obj) obj.serializeSection(cp, #obj)
190 #define UNSERIALIZE_OBJ(obj) obj.unserializeSection(cp, #obj)
191
192 #define SERIALIZE_OBJPTR(objptr) paramOut(cp, #objptr, (objptr)->name())
193
194 #define UNSERIALIZE_OBJPTR(objptr) \
195 do { \
196 SimObject *sptr; \
197 objParamIn(cp, #objptr, sptr); \
198 fromSimObject(objptr, sptr); \
199 } while (0)
200
201 /**
202 * Basic support for object serialization.
203 *
204 * Objects that support serialization should derive from this
205 * class. Such objects can largely be divided into two categories: 1)
206 * True SimObjects (deriving from SimObject), and 2) child objects
207 * (non-SimObjects).
208 *
209 * SimObjects are serialized automatically into their own sections
210 * automatically by the SimObject base class (see
211 * SimObject::serializeAll().
212 *
213 * SimObjects can contain other serializable objects that are not
214 * SimObjects. Much like normal serialized members are not serialized
215 * automatically, these objects will not be serialized automatically
216 * and it is expected that the objects owning such serializable
217 * objects call the required serialization/unserialization methods on
218 * child objects. The preferred method to serialize a child object is
219 * to call serializeSection() on the child, which serializes the
220 * object into a new subsection in the current section. Another option
221 * is to call serialize() directly, which serializes the object into
222 * the current section. The latter is not recommended as it can lead
223 * to naming clashes between objects.
224 *
225 * @note Many objects that support serialization need to be put in a
226 * consistent state when serialization takes place. We refer to the
227 * action of forcing an object into a consistent state as
228 * 'draining'. Objects that need draining inherit from Drainable. See
229 * Drainable for more information.
230 */
231 class Serializable
232 {
233 protected:
234 /**
235 * Scoped checkpoint section helper class
236 *
237 * This helper class creates a section within a checkpoint without
238 * the need for a separate serializeable object. It is mainly used
239 * within the Serializable class when serializing or unserializing
240 * section (see serializeSection() and unserializeSection()). It
241 * can also be used to maintain backwards compatibility in
242 * existing code that serializes structs that are not inheriting
243 * from Serializable into subsections.
244 *
245 * When the class is instantiated, it appends a name to the active
246 * path in a checkpoint. The old path is later restored when the
247 * instance is destroyed. For example, serializeSection() could be
248 * implemented by instantiating a ScopedCheckpointSection and then
249 * calling serialize() on an object.
250 */
251 class ScopedCheckpointSection {
252 public:
253 template<class CP>
254 ScopedCheckpointSection(CP &cp, const char *name) {
255 pushName(name);
256 nameOut(cp);
257 }
258
259 template<class CP>
260 ScopedCheckpointSection(CP &cp, const std::string &name) {
261 pushName(name.c_str());
262 nameOut(cp);
263 }
264
265 ~ScopedCheckpointSection();
266
267 ScopedCheckpointSection() = delete;
268 ScopedCheckpointSection(const ScopedCheckpointSection &) = delete;
269 ScopedCheckpointSection &operator=(
270 const ScopedCheckpointSection &) = delete;
271 ScopedCheckpointSection &operator=(
272 ScopedCheckpointSection &&) = delete;
273
274 private:
275 void pushName(const char *name);
276 void nameOut(CheckpointOut &cp);
277 void nameOut(CheckpointIn &cp) {};
278 };
279
280 public:
281 Serializable();
282 virtual ~Serializable();
283
284 /**
285 * Serialize an object
286 *
287 * Output an object's state into the current checkpoint section.
288 *
289 * @param cp Checkpoint state
290 */
291 virtual void serialize(CheckpointOut &cp) const = 0;
292
293 /**
294 * Unserialize an object
295 *
296 * Read an object's state from the current checkpoint section.
297 *
298 * @param cp Checkpoint state
299 */
300 virtual void unserialize(CheckpointIn &cp) = 0;
301
302 /**
303 * Serialize an object into a new section
304 *
305 * This method creates a new section in a checkpoint and calls
306 * serialize() to serialize the current object into that
307 * section. The name of the section is appended to the current
308 * checkpoint path.
309 *
310 * @param cp Checkpoint state
311 * @param name Name to append to the active path
312 */
313 void serializeSection(CheckpointOut &cp, const char *name) const;
314
315 void serializeSection(CheckpointOut &cp, const std::string &name) const {
316 serializeSection(cp, name.c_str());
317 }
318
319 /**
320 * Unserialize an a child object
321 *
322 * This method loads a child object from a checkpoint. The object
323 * name is appended to the active path to form a fully qualified
324 * section name and unserialize() is called.
325 *
326 * @param cp Checkpoint state
327 * @param name Name to append to the active path
328 */
329 void unserializeSection(CheckpointIn &cp, const char *name);
330
331 void unserializeSection(CheckpointIn &cp, const std::string &name) {
332 unserializeSection(cp, name.c_str());
333 }
334
335 /**
336 * @{
337 * @name Legacy interface
338 *
339 * Interface for objects that insist on changing their state when
340 * serializing. Such state change should be done in drain(),
341 * memWriteback(), or memInvalidate() and not in the serialization
342 * method. In general, if state changes occur in serialize, it
343 * complicates testing since it breaks assumptions about draining
344 * and serialization. It potentially also makes components more
345 * fragile since they there are no ordering guarantees when
346 * serializing SimObjects.
347 *
348 * @warn This interface is considered deprecated and should never
349 * be used.
350 */
351
352 virtual void serializeOld(CheckpointOut &cp) {
353 serialize(cp);
354 }
355 void serializeSectionOld(CheckpointOut &cp, const char *name);
356 void serializeSectionOld(CheckpointOut &cp, const std::string &name) {
357 serializeSectionOld(cp, name.c_str());
358 }
359 /** @} */
360
361 /** Get the fully-qualified name of the active section */
362 static const std::string &currentSection();
363
364 static Serializable *create(CheckpointIn &cp, const std::string &section);
365
366 static int ckptCount;
367 static int ckptMaxCount;
368 static int ckptPrevCount;
369 static void serializeAll(const std::string &cpt_dir);
370 static void unserializeGlobals(CheckpointIn &cp);
371
372 private:
373 static std::stack<std::string> path;
374 };
375
376 void debug_serialize(const std::string &cpt_dir);
377
378 //
379 // A SerializableBuilder serves as an evaluation context for a set of
380 // parameters that describe a specific instance of a Serializable. This
381 // evaluation context corresponds to a section in the .ini file (as
382 // with the base ParamContext) plus an optional node in the
383 // configuration hierarchy (the configNode member) for resolving
384 // Serializable references. SerializableBuilder is an abstract superclass;
385 // derived classes specialize the class for particular subclasses of
386 // Serializable (e.g., BaseCache).
387 //
388 // For typical usage, see the definition of
389 // SerializableClass::createObject().
390 //
391 class SerializableBuilder
392 {
393 public:
394
395 SerializableBuilder() {}
396
397 virtual ~SerializableBuilder() {}
398
399 // Create the actual Serializable corresponding to the parameter
400 // values in this context. This function is overridden in derived
401 // classes to call a specific constructor for a particular
402 // subclass of Serializable.
403 virtual Serializable *create() = 0;
404 };
405
406 //
407 // An instance of SerializableClass corresponds to a class derived from
408 // Serializable. The SerializableClass instance serves to bind the string
409 // name (found in the config file) to a function that creates an
410 // instance of the appropriate derived class.
411 //
412 // This would be much cleaner in Smalltalk or Objective-C, where types
413 // are first-class objects themselves.
414 //
415 class SerializableClass
416 {
417 public:
418
419 // Type CreateFunc is a pointer to a function that creates a new
420 // simulation object builder based on a .ini-file parameter
421 // section (specified by the first string argument), a unique name
422 // for the object (specified by the second string argument), and
423 // an optional config hierarchy node (specified by the third
424 // argument). A pointer to the new SerializableBuilder is returned.
425 typedef Serializable *(*CreateFunc)(CheckpointIn &cp,
426 const std::string &section);
427
428 static std::map<std::string,CreateFunc> *classMap;
429
430 // Constructor. For example:
431 //
432 // SerializableClass baseCacheSerializableClass("BaseCacheSerializable",
433 // newBaseCacheSerializableBuilder);
434 //
435 SerializableClass(const std::string &className, CreateFunc createFunc);
436
437 // create Serializable given name of class and pointer to
438 // configuration hierarchy node
439 static Serializable *createObject(CheckpointIn &cp,
440 const std::string &section);
441 };
442
443 //
444 // Macros to encapsulate the magic of declaring & defining
445 // SerializableBuilder and SerializableClass objects
446 //
447
448 #define REGISTER_SERIALIZEABLE(CLASS_NAME, OBJ_CLASS) \
449 SerializableClass the##OBJ_CLASS##Class(CLASS_NAME, \
450 OBJ_CLASS::createForUnserialize);
451
452 // Base class to wrap object resolving functionality. This can be
453 // provided to Checkpoint to allow it to map object names onto
454 // object C++ objects in which to unserialize
455 class SimObjectResolver
456 {
457 public:
458 virtual ~SimObjectResolver() { }
459
460 // Find a SimObject given a full path name
461 virtual SimObject *resolveSimObject(const std::string &name) = 0;
462 };
463
464 class CheckpointIn
465 {
466 private:
467
468 IniFile *db;
469
470 SimObjectResolver &objNameResolver;
471
472 public:
473 CheckpointIn(const std::string &cpt_dir, SimObjectResolver &resolver);
474 ~CheckpointIn();
475
476 const std::string cptDir;
477
478 bool find(const std::string &section, const std::string &entry,
479 std::string &value);
480
481 bool findObj(const std::string &section, const std::string &entry,
482 SimObject *&value);
483
484 bool sectionExists(const std::string &section);
485
486 // The following static functions have to do with checkpoint
487 // creation rather than restoration. This class makes a handy
488 // namespace for them though. Currently no Checkpoint object is
489 // created on serialization (only unserialization) so we track the
490 // directory name as a global. It would be nice to change this
491 // someday
492
493 private:
494 // current directory we're serializing into.
495 static std::string currentDirectory;
496
497 public:
498 // Set the current directory. This function takes care of
499 // inserting curTick() if there's a '%d' in the argument, and
500 // appends a '/' if necessary. The final name is returned.
501 static std::string setDir(const std::string &base_name);
502
503 // Export current checkpoint directory name so other objects can
504 // derive filenames from it (e.g., memory). The return value is
505 // guaranteed to end in '/' so filenames can be directly appended.
506 // This function is only valid while a checkpoint is being created.
507 static std::string dir();
508
509 // Filename for base checkpoint file within directory.
510 static const char *baseFilename;
511 };
512
513 #endif // __SERIALIZE_HH__