Update copyright headers.
[cvc5.git] / src / theory / bv / bv_subtheory_core.cpp
1 /********************* */
2 /*! \file bv_subtheory_core.cpp
3 ** \verbatim
4 ** Top contributors (to current version):
5 ** Liana Hadarean, Aina Niemetz, Andrew Reynolds
6 ** This file is part of the CVC4 project.
7 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
8 ** in the top-level source directory) and their institutional affiliations.
9 ** All rights reserved. See the file COPYING in the top-level source
10 ** directory for licensing information.\endverbatim
11 **
12 ** \brief Algebraic solver.
13 **
14 ** Algebraic solver.
15 **/
16
17 #include "theory/bv/bv_subtheory_core.h"
18
19 #include "options/bv_options.h"
20 #include "options/smt_options.h"
21 #include "smt/smt_statistics_registry.h"
22 #include "theory/bv/slicer.h"
23 #include "theory/bv/theory_bv.h"
24 #include "theory/bv/theory_bv_utils.h"
25 #include "theory/ext_theory.h"
26 #include "theory/theory_model.h"
27
28 using namespace std;
29 using namespace CVC4;
30 using namespace CVC4::context;
31 using namespace CVC4::theory;
32 using namespace CVC4::theory::bv;
33 using namespace CVC4::theory::bv::utils;
34
35 CoreSolver::CoreSolver(context::Context* c, TheoryBV* bv)
36 : SubtheorySolver(c, bv),
37 d_notify(*this),
38 d_equalityEngine(d_notify, c, "theory::bv::ee", true),
39 d_slicer(new Slicer()),
40 d_isComplete(c, true),
41 d_lemmaThreshold(16),
42 d_useSlicer(false),
43 d_preregisterCalled(false),
44 d_checkCalled(false),
45 d_reasons(c)
46 {
47 // The kinds we are treating as function application in congruence
48 d_equalityEngine.addFunctionKind(kind::BITVECTOR_CONCAT, true);
49 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_AND);
50 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_OR);
51 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_XOR);
52 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_NOT);
53 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_NAND);
54 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_NOR);
55 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_XNOR);
56 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_COMP);
57 d_equalityEngine.addFunctionKind(kind::BITVECTOR_MULT, true);
58 d_equalityEngine.addFunctionKind(kind::BITVECTOR_PLUS, true);
59 d_equalityEngine.addFunctionKind(kind::BITVECTOR_EXTRACT, true);
60 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SUB);
61 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_NEG);
62 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_UDIV);
63 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_UREM);
64 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SDIV);
65 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SREM);
66 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SMOD);
67 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SHL);
68 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_LSHR);
69 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_ASHR);
70 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_ULT);
71 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_ULE);
72 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_UGT);
73 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_UGE);
74 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SLT);
75 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SLE);
76 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SGT);
77 // d_equalityEngine.addFunctionKind(kind::BITVECTOR_SGE);
78 d_equalityEngine.addFunctionKind(kind::BITVECTOR_TO_NAT);
79 d_equalityEngine.addFunctionKind(kind::INT_TO_BITVECTOR);
80 }
81
82 CoreSolver::~CoreSolver() {}
83
84 void CoreSolver::setMasterEqualityEngine(eq::EqualityEngine* eq) {
85 d_equalityEngine.setMasterEqualityEngine(eq);
86 }
87
88 void CoreSolver::enableSlicer() {
89 AlwaysAssert (!d_preregisterCalled);
90 d_useSlicer = true;
91 d_statistics.d_slicerEnabled.setData(true);
92 }
93
94 void CoreSolver::preRegister(TNode node) {
95 d_preregisterCalled = true;
96 if (node.getKind() == kind::EQUAL) {
97 d_equalityEngine.addTriggerEquality(node);
98 if (d_useSlicer) {
99 d_slicer->processEquality(node);
100 AlwaysAssert(!d_checkCalled);
101 }
102 } else {
103 d_equalityEngine.addTerm(node);
104 }
105 }
106
107
108 void CoreSolver::explain(TNode literal, std::vector<TNode>& assumptions) {
109 bool polarity = literal.getKind() != kind::NOT;
110 TNode atom = polarity ? literal : literal[0];
111 if (atom.getKind() == kind::EQUAL) {
112 d_equalityEngine.explainEquality(atom[0], atom[1], polarity, assumptions);
113 } else {
114 d_equalityEngine.explainPredicate(atom, polarity, assumptions);
115 }
116 }
117
118 Node CoreSolver::getBaseDecomposition(TNode a) {
119 std::vector<Node> a_decomp;
120 d_slicer->getBaseDecomposition(a, a_decomp);
121 Node new_a = utils::mkConcat(a_decomp);
122 Debug("bv-slicer") << "CoreSolver::getBaseDecomposition " << a <<" => " << new_a << "\n";
123 return new_a;
124 }
125
126 bool CoreSolver::decomposeFact(TNode fact) {
127 Debug("bv-slicer") << "CoreSolver::decomposeFact fact=" << fact << endl;
128 // FIXME: are this the right things to assert?
129 // assert decompositions since the equality engine does not know the semantics of
130 // concat:
131 // a == a_1 concat ... concat a_k
132 // b == b_1 concat ... concat b_k
133 TNode eq = fact.getKind() == kind::NOT? fact[0] : fact;
134
135 TNode a = eq[0];
136 TNode b = eq[1];
137 Node new_a = getBaseDecomposition(a);
138 Node new_b = getBaseDecomposition(b);
139
140 Assert (utils::getSize(new_a) == utils::getSize(new_b) &&
141 utils::getSize(new_a) == utils::getSize(a));
142
143 NodeManager* nm = NodeManager::currentNM();
144 Node a_eq_new_a = nm->mkNode(kind::EQUAL, a, new_a);
145 Node b_eq_new_b = nm->mkNode(kind::EQUAL, b, new_b);
146
147 bool ok = true;
148 ok = assertFactToEqualityEngine(a_eq_new_a, utils::mkTrue());
149 if (!ok) return false;
150 ok = assertFactToEqualityEngine(b_eq_new_b, utils::mkTrue());
151 if (!ok) return false;
152 ok = assertFactToEqualityEngine(fact, fact);
153 if (!ok) return false;
154
155 if (fact.getKind() == kind::EQUAL) {
156 // assert the individual equalities as well
157 // a_i == b_i
158 if (new_a.getKind() == kind::BITVECTOR_CONCAT &&
159 new_b.getKind() == kind::BITVECTOR_CONCAT) {
160
161 Assert (new_a.getNumChildren() == new_b.getNumChildren());
162 for (unsigned i = 0; i < new_a.getNumChildren(); ++i) {
163 Node eq_i = nm->mkNode(kind::EQUAL, new_a[i], new_b[i]);
164 ok = assertFactToEqualityEngine(eq_i, fact);
165 if (!ok) return false;
166 }
167 }
168 }
169 return true;
170 }
171
172 bool CoreSolver::check(Theory::Effort e) {
173 Trace("bitvector::core") << "CoreSolver::check \n";
174
175 d_bv->spendResource(options::theoryCheckStep());
176
177 d_checkCalled = true;
178 Assert (!d_bv->inConflict());
179 ++(d_statistics.d_numCallstoCheck);
180 bool ok = true;
181 std::vector<Node> core_eqs;
182 TNodeBoolMap seen;
183 // slicer does not deal with cardinality constraints yet
184 if (d_useSlicer) {
185 d_isComplete = false;
186 }
187 while (! done()) {
188 TNode fact = get();
189 if (d_isComplete && !isCompleteForTerm(fact, seen)) {
190 d_isComplete = false;
191 }
192
193 // only reason about equalities
194 if (fact.getKind() == kind::EQUAL || (fact.getKind() == kind::NOT && fact[0].getKind() == kind::EQUAL)) {
195 if (d_useSlicer) {
196 ok = decomposeFact(fact);
197 } else {
198 ok = assertFactToEqualityEngine(fact, fact);
199 }
200 } else {
201 ok = assertFactToEqualityEngine(fact, fact);
202 }
203 if (!ok)
204 return false;
205 }
206
207 if (Theory::fullEffort(e) && isComplete()) {
208 buildModel();
209 }
210
211 return true;
212 }
213
214 void CoreSolver::buildModel()
215 {
216 Debug("bv-core") << "CoreSolver::buildModel() \n";
217 NodeManager* nm = NodeManager::currentNM();
218 d_modelValues.clear();
219 TNodeSet constants;
220 TNodeSet constants_in_eq_engine;
221 // collect constants in equality engine
222 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(&d_equalityEngine);
223 while (!eqcs_i.isFinished())
224 {
225 TNode repr = *eqcs_i;
226 if (repr.getKind() == kind::CONST_BITVECTOR)
227 {
228 // must check if it's just the constant
229 eq::EqClassIterator it(repr, &d_equalityEngine);
230 if (!(++it).isFinished() || true)
231 {
232 constants.insert(repr);
233 constants_in_eq_engine.insert(repr);
234 }
235 }
236 ++eqcs_i;
237 }
238
239 // build repr to value map
240
241 eqcs_i = eq::EqClassesIterator(&d_equalityEngine);
242 while (!eqcs_i.isFinished())
243 {
244 TNode repr = *eqcs_i;
245 ++eqcs_i;
246
247 if (!repr.isVar() && repr.getKind() != kind::CONST_BITVECTOR
248 && !d_bv->isSharedTerm(repr))
249 {
250 continue;
251 }
252
253 TypeNode type = repr.getType();
254 if (type.isBitVector() && repr.getKind() != kind::CONST_BITVECTOR)
255 {
256 Debug("bv-core-model") << " processing " << repr << "\n";
257 // we need to assign a value for it
258 TypeEnumerator te(type);
259 Node val;
260 do
261 {
262 val = *te;
263 ++te;
264 // Debug("bv-core-model") << " trying value " << val << "\n";
265 // Debug("bv-core-model") << " is in set? " << constants.count(val) <<
266 // "\n"; Debug("bv-core-model") << " enumerator done? " <<
267 // te.isFinished() << "\n";
268 } while (constants.count(val) != 0 && !(te.isFinished()));
269
270 if (te.isFinished() && constants.count(val) != 0)
271 {
272 // if we cannot enumerate anymore values we just return the lemma
273 // stating that at least two of the representatives are equal.
274 std::vector<TNode> representatives;
275 representatives.push_back(repr);
276
277 for (TNodeSet::const_iterator it = constants_in_eq_engine.begin();
278 it != constants_in_eq_engine.end();
279 ++it)
280 {
281 TNode constant = *it;
282 if (utils::getSize(constant) == utils::getSize(repr))
283 {
284 representatives.push_back(constant);
285 }
286 }
287 for (ModelValue::const_iterator it = d_modelValues.begin();
288 it != d_modelValues.end();
289 ++it)
290 {
291 representatives.push_back(it->first);
292 }
293 std::vector<Node> equalities;
294 for (unsigned i = 0; i < representatives.size(); ++i)
295 {
296 for (unsigned j = i + 1; j < representatives.size(); ++j)
297 {
298 TNode a = representatives[i];
299 TNode b = representatives[j];
300 if (a.getKind() == kind::CONST_BITVECTOR
301 && b.getKind() == kind::CONST_BITVECTOR)
302 {
303 Assert(a != b);
304 continue;
305 }
306 if (utils::getSize(a) == utils::getSize(b))
307 {
308 equalities.push_back(nm->mkNode(kind::EQUAL, a, b));
309 }
310 }
311 }
312 // better off letting the SAT solver split on values
313 if (equalities.size() > d_lemmaThreshold)
314 {
315 d_isComplete = false;
316 return;
317 }
318
319 if (equalities.size() == 0)
320 {
321 Debug("bv-core") << " lemma: true (no equalities)" << std::endl;
322 }
323 else
324 {
325 Node lemma = utils::mkOr(equalities);
326 d_bv->lemma(lemma);
327 Debug("bv-core") << " lemma: " << lemma << std::endl;
328 }
329 return;
330 }
331
332 Debug("bv-core-model") << " " << repr << " => " << val << "\n";
333 constants.insert(val);
334 d_modelValues[repr] = val;
335 }
336 }
337 }
338
339 bool CoreSolver::assertFactToEqualityEngine(TNode fact, TNode reason) {
340 // Notify the equality engine
341 if (!d_bv->inConflict() && (!d_bv->wasPropagatedBySubtheory(fact) || d_bv->getPropagatingSubtheory(fact) != SUB_CORE)) {
342 Debug("bv-slicer-eq") << "CoreSolver::assertFactToEqualityEngine fact=" << fact << endl;
343 // Debug("bv-slicer-eq") << " reason=" << reason << endl;
344 bool negated = fact.getKind() == kind::NOT;
345 TNode predicate = negated ? fact[0] : fact;
346 if (predicate.getKind() == kind::EQUAL) {
347 if (negated) {
348 // dis-equality
349 d_equalityEngine.assertEquality(predicate, false, reason);
350 } else {
351 // equality
352 d_equalityEngine.assertEquality(predicate, true, reason);
353 }
354 } else {
355 // Adding predicate if the congruence over it is turned on
356 if (d_equalityEngine.isFunctionKind(predicate.getKind())) {
357 d_equalityEngine.assertPredicate(predicate, !negated, reason);
358 }
359 }
360 }
361
362 // checking for a conflict
363 if (d_bv->inConflict()) {
364 return false;
365 }
366 return true;
367 }
368
369 bool CoreSolver::NotifyClass::eqNotifyTriggerEquality(TNode equality, bool value) {
370 Debug("bitvector::core") << "NotifyClass::eqNotifyTriggerEquality(" << equality << ", " << (value ? "true" : "false" )<< ")" << std::endl;
371 if (value) {
372 return d_solver.storePropagation(equality);
373 } else {
374 return d_solver.storePropagation(equality.notNode());
375 }
376 }
377
378 bool CoreSolver::NotifyClass::eqNotifyTriggerPredicate(TNode predicate, bool value) {
379 Debug("bitvector::core") << "NotifyClass::eqNotifyTriggerPredicate(" << predicate << ", " << (value ? "true" : "false" ) << ")" << std::endl;
380 if (value) {
381 return d_solver.storePropagation(predicate);
382 } else {
383 return d_solver.storePropagation(predicate.notNode());
384 }
385 }
386
387 bool CoreSolver::NotifyClass::eqNotifyTriggerTermEquality(TheoryId tag, TNode t1, TNode t2, bool value) {
388 Debug("bitvector::core") << "NotifyClass::eqNotifyTriggerTermMerge(" << t1 << ", " << t2 << ")" << std::endl;
389 if (value) {
390 return d_solver.storePropagation(t1.eqNode(t2));
391 } else {
392 return d_solver.storePropagation(t1.eqNode(t2).notNode());
393 }
394 }
395
396 void CoreSolver::NotifyClass::eqNotifyConstantTermMerge(TNode t1, TNode t2) {
397 d_solver.conflict(t1, t2);
398 }
399
400 void CoreSolver::NotifyClass::eqNotifyNewClass(TNode t) {
401 d_solver.eqNotifyNewClass( t );
402 }
403
404 bool CoreSolver::storePropagation(TNode literal) {
405 return d_bv->storePropagation(literal, SUB_CORE);
406 }
407
408 void CoreSolver::conflict(TNode a, TNode b) {
409 std::vector<TNode> assumptions;
410 d_equalityEngine.explainEquality(a, b, true, assumptions);
411 Node conflict = flattenAnd(assumptions);
412 d_bv->setConflict(conflict);
413 }
414
415 void CoreSolver::eqNotifyNewClass(TNode t) {
416 Assert( d_bv->getExtTheory()!=NULL );
417 d_bv->getExtTheory()->registerTerm( t );
418 }
419
420 bool CoreSolver::isCompleteForTerm(TNode term, TNodeBoolMap& seen) {
421 if (d_useSlicer)
422 return utils::isCoreTerm(term, seen);
423
424 return utils::isEqualityTerm(term, seen);
425 }
426
427 bool CoreSolver::collectModelInfo(TheoryModel* m, bool fullModel)
428 {
429 if (d_useSlicer) {
430 Unreachable();
431 }
432 if (Debug.isOn("bitvector-model")) {
433 context::CDQueue<Node>::const_iterator it = d_assertionQueue.begin();
434 for (; it!= d_assertionQueue.end(); ++it) {
435 Debug("bitvector-model") << "CoreSolver::collectModelInfo (assert "
436 << *it << ")\n";
437 }
438 }
439 set<Node> termSet;
440 d_bv->computeRelevantTerms(termSet);
441 if (!m->assertEqualityEngine(&d_equalityEngine, &termSet))
442 {
443 return false;
444 }
445 if (isComplete()) {
446 Debug("bitvector-model") << "CoreSolver::collectModelInfo complete.";
447 for (ModelValue::const_iterator it = d_modelValues.begin(); it != d_modelValues.end(); ++it) {
448 Node a = it->first;
449 Node b = it->second;
450 Debug("bitvector-model") << "CoreSolver::collectModelInfo modelValues "
451 << a << " => " << b <<")\n";
452 if (!m->assertEquality(a, b, true))
453 {
454 return false;
455 }
456 }
457 }
458 return true;
459 }
460
461 Node CoreSolver::getModelValue(TNode var) {
462 Debug("bitvector-model") << "CoreSolver::getModelValue (" << var <<")";
463 Assert (isComplete());
464 TNode repr = d_equalityEngine.getRepresentative(var);
465 Node result = Node();
466 if (repr.getKind() == kind::CONST_BITVECTOR) {
467 result = repr;
468 } else if (d_modelValues.find(repr) == d_modelValues.end()) {
469 // it may be a shared term that never gets asserted
470 // result is just Null
471 Assert(d_bv->isSharedTerm(var));
472 } else {
473 result = d_modelValues[repr];
474 }
475 Debug("bitvector-model") << " => " << result <<"\n";
476 return result;
477 }
478
479 CoreSolver::Statistics::Statistics()
480 : d_numCallstoCheck("theory::bv::CoreSolver::NumCallsToCheck", 0)
481 , d_slicerEnabled("theory::bv::CoreSolver::SlicerEnabled", false)
482 {
483 smtStatisticsRegistry()->registerStat(&d_numCallstoCheck);
484 smtStatisticsRegistry()->registerStat(&d_slicerEnabled);
485 }
486 CoreSolver::Statistics::~Statistics() {
487 smtStatisticsRegistry()->unregisterStat(&d_numCallstoCheck);
488 smtStatisticsRegistry()->unregisterStat(&d_slicerEnabled);
489 }