Merge branch '1.4.x'
[cvc5.git] / src / theory / rep_set.cpp
1 /********************* */
2 /*! \file rep_set.cpp
3 ** \verbatim
4 ** Original author: Andrew Reynolds
5 ** Major contributors: Morgan Deters
6 ** Minor contributors (to current version): Kshitij Bansal
7 ** This file is part of the CVC4 project.
8 ** Copyright (c) 2009-2014 New York University and The University of Iowa
9 ** See the file COPYING in the top-level source directory for licensing
10 ** information.\endverbatim
11 **
12 ** \brief Implementation of representative set
13 **/
14
15 #include "theory/rep_set.h"
16 #include "theory/type_enumerator.h"
17 #include "theory/quantifiers/bounded_integers.h"
18
19 using namespace std;
20 using namespace CVC4;
21 using namespace CVC4::kind;
22 using namespace CVC4::context;
23 using namespace CVC4::theory;
24
25 void RepSet::clear(){
26 d_type_reps.clear();
27 d_type_complete.clear();
28 d_tmap.clear();
29 }
30
31 bool RepSet::hasRep( TypeNode tn, Node n ) {
32 std::map< TypeNode, std::vector< Node > >::iterator it = d_type_reps.find( tn );
33 if( it==d_type_reps.end() ){
34 return false;
35 }else{
36 return std::find( it->second.begin(), it->second.end(), n )!=it->second.end();
37 }
38 }
39
40 int RepSet::getNumRepresentatives( TypeNode tn ) const{
41 std::map< TypeNode, std::vector< Node > >::const_iterator it = d_type_reps.find( tn );
42 if( it!=d_type_reps.end() ){
43 return (int)it->second.size();
44 }else{
45 return 0;
46 }
47 }
48
49 void RepSet::add( TypeNode tn, Node n ){
50 Trace("rsi-debug") << "Add rep #" << d_type_reps[tn].size() << " for " << tn << " : " << n << std::endl;
51 Assert( n.getType().isSubtypeOf( tn ) );
52 d_tmap[ n ] = (int)d_type_reps[tn].size();
53 d_type_reps[tn].push_back( n );
54 }
55
56 int RepSet::getIndexFor( Node n ) const {
57 std::map< Node, int >::const_iterator it = d_tmap.find( n );
58 if( it!=d_tmap.end() ){
59 return it->second;
60 }else{
61 return -1;
62 }
63 }
64
65 void RepSet::complete( TypeNode t ){
66 if( d_type_complete.find( t )==d_type_complete.end() ){
67 d_type_complete[t] = true;
68 TypeEnumerator te(t);
69 while( !te.isFinished() ){
70 Node n = *te;
71 if( std::find( d_type_reps[t].begin(), d_type_reps[t].end(), n )==d_type_reps[t].end() ){
72 add( t, n );
73 }
74 ++te;
75 }
76 for( size_t i=0; i<d_type_reps[t].size(); i++ ){
77 Trace("reps-complete") << d_type_reps[t][i] << " ";
78 }
79 Trace("reps-complete") << std::endl;
80 }
81 }
82
83 void RepSet::toStream(std::ostream& out){
84 #if 0
85 for( std::map< TypeNode, std::vector< Node > >::iterator it = d_type_reps.begin(); it != d_type_reps.end(); ++it ){
86 out << it->first << " : " << std::endl;
87 for( int i=0; i<(int)it->second.size(); i++ ){
88 out << " " << i << ": " << it->second[i] << std::endl;
89 }
90 }
91 #else
92 for( std::map< TypeNode, std::vector< Node > >::iterator it = d_type_reps.begin(); it != d_type_reps.end(); ++it ){
93 if( !it->first.isFunction() && !it->first.isPredicate() ){
94 out << "(" << it->first << " " << it->second.size();
95 out << " (";
96 for( int i=0; i<(int)it->second.size(); i++ ){
97 if( i>0 ){ out << " "; }
98 out << it->second[i];
99 }
100 out << ")";
101 out << ")" << std::endl;
102 }
103 }
104 #endif
105 }
106
107
108 RepSetIterator::RepSetIterator( QuantifiersEngine * qe, RepSet* rs ) : d_qe(qe), d_rep_set( rs ){
109 d_incomplete = false;
110 }
111
112 int RepSetIterator::domainSize( int i ) {
113 Assert(i>=0);
114 if( d_enum_type[i]==ENUM_DOMAIN_ELEMENTS ){
115 return d_domain[i].size();
116 }else{
117 return d_domain[i][0];
118 }
119 }
120
121 bool RepSetIterator::setQuantifier( Node f ){
122 Trace("rsi") << "Make rsi for " << f << std::endl;
123 Assert( d_types.empty() );
124 //store indicies
125 for( size_t i=0; i<f[0].getNumChildren(); i++ ){
126 d_types.push_back( f[0][i].getType() );
127 }
128 d_owner = f;
129 return initialize();
130 }
131
132 bool RepSetIterator::setFunctionDomain( Node op ){
133 Trace("rsi") << "Make rsi for " << op << std::endl;
134 Assert( d_types.empty() );
135 TypeNode tn = op.getType();
136 for( size_t i=0; i<tn.getNumChildren()-1; i++ ){
137 d_types.push_back( tn[i] );
138 }
139 d_owner = op;
140 return initialize();
141 }
142
143 bool RepSetIterator::initialize(){
144 for( size_t i=0; i<d_types.size(); i++ ){
145 d_index.push_back( 0 );
146 //store default index order
147 d_index_order.push_back( i );
148 d_var_order[i] = i;
149 //store default domain
150 d_domain.push_back( RepDomain() );
151 TypeNode tn = d_types[i];
152 if( tn.isSort() ){
153 if( !d_rep_set->hasType( tn ) ){
154 Node var = NodeManager::currentNM()->mkSkolem( "repSet", tn, "is a variable created by the RepSetIterator" );
155 Trace("mkVar") << "RepSetIterator:: Make variable " << var << " : " << tn << std::endl;
156 d_rep_set->add( tn, var );
157 }
158 }else if( tn.isInteger() ){
159 bool inc = false;
160 //check if it is bound
161 if( d_owner.getKind()==FORALL && d_qe && d_qe->getBoundedIntegers() ){
162 if( d_qe->getBoundedIntegers()->isBoundVar( d_owner, d_owner[0][i] ) ){
163 Trace("bound-int-rsi") << "Rep set iterator: variable #" << i << " is bounded integer." << std::endl;
164 d_enum_type.push_back( ENUM_RANGE );
165 }else{
166 inc = true;
167 }
168 }else{
169 inc = true;
170 }
171 if( inc ){
172 //check if it is otherwise bound
173 if( d_bounds[0].find(i)!=d_bounds[0].end() && d_bounds[1].find(i)!=d_bounds[1].end() ){
174 Trace("bound-int-rsi") << "Rep set iterator: variable #" << i << " is bounded." << std::endl;
175 d_enum_type.push_back( ENUM_RANGE );
176 }else{
177 Trace("fmf-incomplete") << "Incomplete because of integer quantification of " << d_owner[0][i] << "." << std::endl;
178 d_incomplete = true;
179 }
180 }
181 //enumerate if the sort is reasonably small, the upper bound of 1000 is chosen arbitrarily for now
182 }else if( tn.getCardinality().isFinite() && !tn.getCardinality().isLargeFinite() &&
183 tn.getCardinality().getFiniteCardinality().toUnsignedInt()<=1000 ){
184 d_rep_set->complete( tn );
185 }else{
186 Trace("fmf-incomplete") << "Incomplete because of quantification of type " << tn << std::endl;
187 d_incomplete = true;
188 }
189 if( d_enum_type.size()<=i ){
190 d_enum_type.push_back( ENUM_DOMAIN_ELEMENTS );
191 if( d_rep_set->hasType( tn ) ){
192 for( size_t j=0; j<d_rep_set->d_type_reps[tn].size(); j++ ){
193 d_domain[i].push_back( j );
194 }
195 }else{
196 return false;
197 }
198 }
199 }
200 //must set a variable index order based on bounded integers
201 if (d_owner.getKind()==FORALL && d_qe && d_qe->getBoundedIntegers()) {
202 Trace("bound-int-rsi") << "Calculating variable order..." << std::endl;
203 std::vector< int > varOrder;
204 for( unsigned i=0; i<d_qe->getBoundedIntegers()->getNumBoundVars(d_owner); i++ ){
205 varOrder.push_back(d_qe->getBoundedIntegers()->getBoundVarNum(d_owner,i));
206 }
207 for( unsigned i=0; i<d_owner[0].getNumChildren(); i++) {
208 if( !d_qe->getBoundedIntegers()->isBoundVar(d_owner, d_owner[0][i])) {
209 varOrder.push_back(i);
210 }
211 }
212 Trace("bound-int-rsi") << "Variable order : ";
213 for( unsigned i=0; i<varOrder.size(); i++) {
214 Trace("bound-int-rsi") << varOrder[i] << " ";
215 }
216 Trace("bound-int-rsi") << std::endl;
217 std::vector< int > indexOrder;
218 indexOrder.resize(varOrder.size());
219 for( unsigned i=0; i<varOrder.size(); i++){
220 indexOrder[varOrder[i]] = i;
221 }
222 Trace("bound-int-rsi") << "Will use index order : ";
223 for( unsigned i=0; i<indexOrder.size(); i++) {
224 Trace("bound-int-rsi") << indexOrder[i] << " ";
225 }
226 Trace("bound-int-rsi") << std::endl;
227 setIndexOrder(indexOrder);
228 }
229 //now reset the indices
230 for (unsigned i=0; i<d_index.size(); i++) {
231 if (!resetIndex(i, true)){
232 break;
233 }
234 }
235 return true;
236 }
237
238 void RepSetIterator::setIndexOrder( std::vector< int >& indexOrder ){
239 d_index_order.clear();
240 d_index_order.insert( d_index_order.begin(), indexOrder.begin(), indexOrder.end() );
241 //make the d_var_order mapping
242 for( int i=0; i<(int)d_index_order.size(); i++ ){
243 d_var_order[d_index_order[i]] = i;
244 }
245 }
246 /*
247 void RepSetIterator::setDomain( std::vector< RepDomain >& domain ){
248 d_domain.clear();
249 d_domain.insert( d_domain.begin(), domain.begin(), domain.end() );
250 //we are done if a domain is empty
251 for( int i=0; i<(int)d_domain.size(); i++ ){
252 if( d_domain[i].empty() ){
253 d_index.clear();
254 }
255 }
256 }
257 */
258 bool RepSetIterator::resetIndex( int i, bool initial ) {
259 d_index[i] = 0;
260 int ii = d_index_order[i];
261 Trace("bound-int-rsi") << "Reset " << i << " " << ii << " " << initial << std::endl;
262 //determine the current range
263 if( d_enum_type[ii]==ENUM_RANGE ){
264 if( initial || ( d_qe->getBoundedIntegers() && !d_qe->getBoundedIntegers()->isGroundRange( d_owner, d_owner[0][ii] ) ) ){
265 Trace("bound-int-rsi") << "Getting range of " << d_owner[0][ii] << std::endl;
266 Node actual_l;
267 Node l, u;
268 if( d_qe->getBoundedIntegers() && d_qe->getBoundedIntegers()->isBoundVar( d_owner, d_owner[0][ii] ) ){
269 d_qe->getBoundedIntegers()->getBoundValues( d_owner, d_owner[0][ii], this, l, u );
270 }
271 for( unsigned b=0; b<2; b++ ){
272 if( d_bounds[b].find(ii)!=d_bounds[b].end() ){
273 Trace("bound-int-rsi") << "May further limit bound(" << b << ") based on " << d_bounds[b][ii] << std::endl;
274 if( b==0 && (l.isNull() || d_bounds[b][ii].getConst<Rational>() > l.getConst<Rational>()) ){
275 if( !l.isNull() ){
276 //bound was limited externally, record that the value lower bound is not equal to the term lower bound
277 actual_l = NodeManager::currentNM()->mkNode( MINUS, d_bounds[b][ii], l );
278 }
279 l = d_bounds[b][ii];
280 }else if( b==1 && (u.isNull() || d_bounds[b][ii].getConst<Rational>() <= u.getConst<Rational>()) ){
281 u = NodeManager::currentNM()->mkNode( MINUS, d_bounds[b][ii],
282 NodeManager::currentNM()->mkConst( Rational(1) ) );
283 u = Rewriter::rewrite( u );
284 }
285 }
286 }
287
288 if( l.isNull() || u.isNull() ){
289 //failed, abort the iterator
290 d_index.clear();
291 return false;
292 }else{
293 Trace("bound-int-rsi") << "Can limit bounds of " << d_owner[0][ii] << " to " << l << "..." << u << std::endl;
294 Node range = Rewriter::rewrite( NodeManager::currentNM()->mkNode( MINUS, u, l ) );
295 Node ra = Rewriter::rewrite( NodeManager::currentNM()->mkNode( LEQ, range, NodeManager::currentNM()->mkConst( Rational( 9999 ) ) ) );
296 d_domain[ii].clear();
297 Node tl = l;
298 Node tu = u;
299 if( d_qe->getBoundedIntegers() && d_qe->getBoundedIntegers()->isBoundVar( d_owner, d_owner[0][ii] ) ){
300 d_qe->getBoundedIntegers()->getBounds( d_owner, d_owner[0][ii], this, tl, tu );
301 }
302 d_lower_bounds[ii] = tl;
303 if( !actual_l.isNull() ){
304 //if bound was limited externally, must consider the offset
305 d_lower_bounds[ii] = Rewriter::rewrite( NodeManager::currentNM()->mkNode( PLUS, tl, actual_l ) );
306 }
307 if( ra==NodeManager::currentNM()->mkConst(true) ){
308 long rr = range.getConst<Rational>().getNumerator().getLong()+1;
309 Trace("bound-int-rsi") << "Actual bound range is " << rr << std::endl;
310 d_domain[ii].push_back( (int)rr );
311 }else{
312 Trace("fmf-incomplete") << "Incomplete because of integer quantification, bounds are too big for " << d_owner[0][ii] << "." << std::endl;
313 d_incomplete = true;
314 d_domain[ii].push_back( 0 );
315 }
316 }
317 }else{
318 Trace("bound-int-rsi") << d_owner[0][ii] << " has ground range, skip." << std::endl;
319 }
320 }
321 return true;
322 }
323
324 int RepSetIterator::increment2( int counter ){
325 Assert( !isFinished() );
326 #ifdef DISABLE_EVAL_SKIP_MULTIPLE
327 counter = (int)d_index.size()-1;
328 #endif
329 //increment d_index
330 if( counter>=0){
331 Trace("rsi-debug") << "domain size of " << counter << " is " << domainSize(counter) << std::endl;
332 }
333 while( counter>=0 && d_index[counter]>=(int)(domainSize(counter)-1) ){
334 counter--;
335 if( counter>=0){
336 Trace("rsi-debug") << "domain size of " << counter << " is " << domainSize(counter) << std::endl;
337 }
338 }
339 if( counter==-1 ){
340 d_index.clear();
341 }else{
342 d_index[counter]++;
343 bool emptyDomain = false;
344 for( int i=(int)d_index.size()-1; i>counter; i-- ){
345 if (!resetIndex(i)){
346 break;
347 }else if( domainSize(i)<=0 ){
348 emptyDomain = true;
349 }
350 }
351 if( emptyDomain ){
352 Trace("rsi-debug") << "This is an empty domain, increment again." << std::endl;
353 return increment();
354 }
355 }
356 return counter;
357 }
358
359 int RepSetIterator::increment(){
360 if( !isFinished() ){
361 return increment2( (int)d_index.size()-1 );
362 }else{
363 return -1;
364 }
365 }
366
367 bool RepSetIterator::isFinished(){
368 return d_index.empty();
369 }
370
371 Node RepSetIterator::getTerm( int i ){
372 int index = d_index_order[i];
373 if( d_enum_type[index]==ENUM_DOMAIN_ELEMENTS ){
374 TypeNode tn = d_types[index];
375 Assert( d_rep_set->d_type_reps.find( tn )!=d_rep_set->d_type_reps.end() );
376 return d_rep_set->d_type_reps[tn][d_domain[index][d_index[index]]];
377 }else{
378 Trace("rsi-debug") << "Get, with offset : " << index << " " << d_lower_bounds[index] << " " << d_index[index] << std::endl;
379 Node t = NodeManager::currentNM()->mkNode(PLUS, d_lower_bounds[index],
380 NodeManager::currentNM()->mkConst( Rational(d_index[index]) ) );
381 t = Rewriter::rewrite( t );
382 return t;
383 }
384 }
385
386 void RepSetIterator::debugPrint( const char* c ){
387 for( int i=0; i<(int)d_index.size(); i++ ){
388 Debug( c ) << i << " : " << d_index[i] << " : " << getTerm( i ) << std::endl;
389 }
390 }
391
392 void RepSetIterator::debugPrintSmall( const char* c ){
393 Debug( c ) << "RI: ";
394 for( int i=0; i<(int)d_index.size(); i++ ){
395 Debug( c ) << d_index[i] << ": " << getTerm( i ) << " ";
396 }
397 Debug( c ) << std::endl;
398 }