Minor cleanups to ExtTheory.
[cvc5.git] / src / theory / theory.h
1 /********************* */
2 /*! \file theory.h
3 ** \verbatim
4 ** Top contributors (to current version):
5 ** Dejan Jovanovic, Morgan Deters, Tim King
6 ** This file is part of the CVC4 project.
7 ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS
8 ** in the top-level source directory) and their institutional affiliations.
9 ** All rights reserved. See the file COPYING in the top-level source
10 ** directory for licensing information.\endverbatim
11 **
12 ** \brief Base of the theory interface.
13 **
14 ** Base of the theory interface.
15 **/
16
17 #include "cvc4_private.h"
18
19 #ifndef __CVC4__THEORY__THEORY_H
20 #define __CVC4__THEORY__THEORY_H
21
22 #include <ext/hash_set>
23 #include <iosfwd>
24 #include <map>
25 #include <set>
26 #include <string>
27
28 #include "context/cdlist.h"
29 #include "context/cdhashset.h"
30 #include "context/cdo.h"
31 #include "context/context.h"
32 #include "expr/node.h"
33 #include "lib/ffs.h"
34 #include "options/options.h"
35 #include "options/theory_options.h"
36 #include "options/theoryof_mode.h"
37 #include "smt/command.h"
38 #include "smt/dump.h"
39 #include "smt/logic_request.h"
40 #include "theory/assertion.h"
41 #include "theory/care_graph.h"
42 #include "theory/logic_info.h"
43 #include "theory/output_channel.h"
44 #include "theory/valuation.h"
45 #include "util/statistics_registry.h"
46
47 namespace CVC4 {
48
49 class TheoryEngine;
50
51 namespace theory {
52
53 class QuantifiersEngine;
54 class TheoryModel;
55 class SubstitutionMap;
56 class ExtTheory;
57
58 class EntailmentCheckParameters;
59 class EntailmentCheckSideEffects;
60
61 namespace rrinst {
62 class CandidateGenerator;
63 }/* CVC4::theory::rrinst namespace */
64
65 namespace eq {
66 class EqualityEngine;
67 }/* CVC4::theory::eq namespace */
68
69 /**
70 * Base class for T-solvers. Abstract DPLL(T).
71 *
72 * This is essentially an interface class. The TheoryEngine has
73 * pointers to Theory. Note that only one specific Theory type (e.g.,
74 * TheoryUF) can exist per NodeManager, because of how the
75 * RegisteredAttr works. (If you need multiple instances of the same
76 * theory, you'll have to write a multiplexed theory that dispatches
77 * all calls to them.)
78 */
79 class Theory {
80
81 private:
82
83 friend class ::CVC4::TheoryEngine;
84
85 // Disallow default construction, copy, assignment.
86 Theory() CVC4_UNDEFINED;
87 Theory(const Theory&) CVC4_UNDEFINED;
88 Theory& operator=(const Theory&) CVC4_UNDEFINED;
89
90 /** An integer identifying the type of the theory. */
91 TheoryId d_id;
92
93 /** Name of this theory instance. Along with the TheoryId this should provide
94 * an unique string identifier for each instance of a Theory class. We need
95 * this to ensure unique statistics names over multiple theory instances. */
96 std::string d_instanceName;
97
98 /** The SAT search context for the Theory. */
99 context::Context* d_satContext;
100
101 /** The user level assertion context for the Theory. */
102 context::UserContext* d_userContext;
103
104 /** Information about the logic we're operating within. */
105 const LogicInfo& d_logicInfo;
106
107 /**
108 * The assertFact() queue.
109 *
110 * These can not be TNodes as some atoms (such as equalities) are sent
111 * across theories without being stored in a global map.
112 */
113 context::CDList<Assertion> d_facts;
114
115 /** Index into the head of the facts list */
116 context::CDO<unsigned> d_factsHead;
117
118 /** Add shared term to the theory. */
119 void addSharedTermInternal(TNode node);
120
121 /** Indices for splitting on the shared terms. */
122 context::CDO<unsigned> d_sharedTermsIndex;
123
124 /** The care graph the theory will use during combination. */
125 CareGraph* d_careGraph;
126
127 /**
128 * Pointer to the quantifiers engine (or NULL, if quantifiers are not
129 * supported or not enabled). Not owned by the theory.
130 */
131 QuantifiersEngine* d_quantEngine;
132
133 /** Extended theory module or NULL. Owned by the theory. */
134 ExtTheory* d_extTheory;
135
136 protected:
137
138
139 // === STATISTICS ===
140 /** time spent in check calls */
141 TimerStat d_checkTime;
142 /** time spent in theory combination */
143 TimerStat d_computeCareGraphTime;
144
145 /**
146 * The only method to add suff to the care graph.
147 */
148 void addCarePair(TNode t1, TNode t2);
149
150 /**
151 * The function should compute the care graph over the shared terms.
152 * The default function returns all the pairs among the shared variables.
153 */
154 virtual void computeCareGraph();
155
156 /**
157 * A list of shared terms that the theory has.
158 */
159 context::CDList<TNode> d_sharedTerms;
160
161 /**
162 * Helper function for computeRelevantTerms
163 */
164 void collectTerms(TNode n, std::set<Node>& termSet) const;
165
166 /**
167 * Scans the current set of assertions and shared terms top-down
168 * until a theory-leaf is reached, and adds all terms found to
169 * termSet. This is used by collectModelInfo to delimit the set of
170 * terms that should be used when constructing a model
171 */
172 void computeRelevantTerms(std::set<Node>& termSet, bool includeShared = true) const;
173
174 /**
175 * Construct a Theory.
176 *
177 * The pair <id, instance> is assumed to uniquely identify this Theory
178 * w.r.t. the SmtEngine.
179 */
180 Theory(TheoryId id, context::Context* satContext,
181 context::UserContext* userContext, OutputChannel& out,
182 Valuation valuation, const LogicInfo& logicInfo,
183 std::string instance = "") throw(); // taking : No default.
184
185 /**
186 * This is called at shutdown time by the TheoryEngine, just before
187 * destruction. It is important because there are destruction
188 * ordering issues between PropEngine and Theory (based on what
189 * hard-links to Nodes are outstanding). As the fact queue might be
190 * nonempty, we ensure here that it's clear. If you overload this,
191 * you must make an explicit call here to this->Theory::shutdown()
192 * too.
193 */
194 virtual void shutdown() { }
195
196 /**
197 * The output channel for the Theory.
198 */
199 OutputChannel* d_out;
200
201 /**
202 * The valuation proxy for the Theory to communicate back with the
203 * theory engine (and other theories).
204 */
205 Valuation d_valuation;
206
207 /**
208 * Whether proofs are enabled
209 *
210 */
211 bool d_proofsEnabled;
212
213 /**
214 * Returns the next assertion in the assertFact() queue.
215 *
216 * @return the next assertion in the assertFact() queue
217 */
218 inline Assertion get();
219
220 const LogicInfo& getLogicInfo() const {
221 return d_logicInfo;
222 }
223
224 /**
225 * The theory that owns the uninterpreted sort.
226 */
227 static TheoryId s_uninterpretedSortOwner;
228
229 void printFacts(std::ostream& os) const;
230 void debugPrintFacts() const;
231
232 /**
233 * Whether proofs are enabled
234 *
235 */
236 bool d_proofEnabled;
237
238 public:
239
240 /**
241 * Return the ID of the theory responsible for the given type.
242 */
243 static inline TheoryId theoryOf(TypeNode typeNode) {
244 Trace("theory::internal") << "theoryOf(" << typeNode << ")" << std::endl;
245 TheoryId id;
246 while (typeNode.isPredicateSubtype()) {
247 typeNode = typeNode.getSubtypeParentType();
248 }
249 if (typeNode.getKind() == kind::TYPE_CONSTANT) {
250 id = typeConstantToTheoryId(typeNode.getConst<TypeConstant>());
251 } else {
252 id = kindToTheoryId(typeNode.getKind());
253 }
254 if (id == THEORY_BUILTIN) {
255 Trace("theory::internal") << "theoryOf(" << typeNode << ") == " << s_uninterpretedSortOwner << std::endl;
256 return s_uninterpretedSortOwner;
257 }
258 return id;
259 }
260
261 /**
262 * Returns the ID of the theory responsible for the given node.
263 */
264 static TheoryId theoryOf(TheoryOfMode mode, TNode node);
265
266 /**
267 * Returns the ID of the theory responsible for the given node.
268 */
269 static inline TheoryId theoryOf(TNode node) {
270 return theoryOf(options::theoryOfMode(), node);
271 }
272
273 /**
274 * Set the owner of the uninterpreted sort.
275 */
276 static void setUninterpretedSortOwner(TheoryId theory) {
277 s_uninterpretedSortOwner = theory;
278 }
279
280 /**
281 * Get the owner of the uninterpreted sort.
282 */
283 static TheoryId getUninterpretedSortOwner() {
284 return s_uninterpretedSortOwner;
285 }
286
287 /**
288 * Checks if the node is a leaf node of this theory
289 */
290 inline bool isLeaf(TNode node) const {
291 return node.getNumChildren() == 0 || theoryOf(node) != d_id;
292 }
293
294 /**
295 * Checks if the node is a leaf node of a theory.
296 */
297 inline static bool isLeafOf(TNode node, TheoryId theoryId) {
298 return node.getNumChildren() == 0 || theoryOf(node) != theoryId;
299 }
300
301 /**
302 * Returns true if the assertFact queue is empty
303 */
304 bool done() const throw() {
305 return d_factsHead == d_facts.size();
306 }
307
308 /**
309 * Destructs a Theory.
310 */
311 virtual ~Theory();
312
313 /**
314 * Subclasses of Theory may add additional efforts. DO NOT CHECK
315 * equality with one of these values (e.g. if STANDARD xxx) but
316 * rather use range checks (or use the helper functions below).
317 * Normally we call QUICK_CHECK or STANDARD; at the leaves we call
318 * with FULL_EFFORT.
319 */
320 enum Effort {
321 /**
322 * Standard effort where theory need not do anything
323 */
324 EFFORT_STANDARD = 50,
325 /**
326 * Full effort requires the theory make sure its assertions are satisfiable or not
327 */
328 EFFORT_FULL = 100,
329 /**
330 * Combination effort means that the individual theories are already satisfied, and
331 * it is time to put some effort into propagation of shared term equalities
332 */
333 EFFORT_COMBINATION = 150,
334 /**
335 * Last call effort, reserved for quantifiers.
336 */
337 EFFORT_LAST_CALL = 200
338 };/* enum Effort */
339
340 static inline bool standardEffortOrMore(Effort e) CVC4_CONST_FUNCTION
341 { return e >= EFFORT_STANDARD; }
342 static inline bool standardEffortOnly(Effort e) CVC4_CONST_FUNCTION
343 { return e >= EFFORT_STANDARD && e < EFFORT_FULL; }
344 static inline bool fullEffort(Effort e) CVC4_CONST_FUNCTION
345 { return e == EFFORT_FULL; }
346 static inline bool combination(Effort e) CVC4_CONST_FUNCTION
347 { return e == EFFORT_COMBINATION; }
348
349 /**
350 * Get the id for this Theory.
351 */
352 TheoryId getId() const {
353 return d_id;
354 }
355
356 /**
357 * Returns a string that uniquely identifies this theory solver w.r.t. the
358 * SmtEngine.
359 */
360 std::string getFullInstanceName() const;
361
362
363 /**
364 * Get the SAT context associated to this Theory.
365 */
366 context::Context* getSatContext() const {
367 return d_satContext;
368 }
369
370 /**
371 * Get the context associated to this Theory.
372 */
373 context::UserContext* getUserContext() const {
374 return d_userContext;
375 }
376
377 /**
378 * Set the output channel associated to this theory.
379 */
380 void setOutputChannel(OutputChannel& out) {
381 d_out = &out;
382 }
383
384 /**
385 * Get the output channel associated to this theory.
386 */
387 OutputChannel& getOutputChannel() {
388 return *d_out;
389 }
390
391 /**
392 * Get the valuation associated to this theory.
393 */
394 Valuation& getValuation() {
395 return d_valuation;
396 }
397
398 /**
399 * Get the quantifiers engine associated to this theory.
400 */
401 QuantifiersEngine* getQuantifiersEngine() {
402 return d_quantEngine;
403 }
404
405 /**
406 * Get the quantifiers engine associated to this theory (const version).
407 */
408 const QuantifiersEngine* getQuantifiersEngine() const {
409 return d_quantEngine;
410 }
411
412 /**
413 * Finish theory initialization. At this point, options and the logic
414 * setting are final, and the master equality engine and quantifiers
415 * engine (if any) are initialized. This base class implementation
416 * does nothing.
417 */
418 virtual void finishInit() { }
419
420 /**
421 * Some theories have kinds that are effectively definitions and
422 * should be expanded before they are handled. Definitions allow
423 * a much wider range of actions than the normal forms given by the
424 * rewriter; they can enable other theories and create new terms.
425 * However no assumptions can be made about subterms having been
426 * expanded or rewritten. Where possible rewrite rules should be
427 * used, definitions should only be used when rewrites are not
428 * possible, for example in handling under-specified operations
429 * using partially defined functions.
430 */
431 virtual Node expandDefinition(LogicRequest &logicRequest, Node node) {
432 // by default, do nothing
433 return node;
434 }
435
436 /**
437 * Pre-register a term. Done one time for a Node per SAT context level.
438 */
439 virtual void preRegisterTerm(TNode) { }
440
441 /**
442 * Assert a fact in the current context.
443 */
444 void assertFact(TNode assertion, bool isPreregistered) {
445 Trace("theory") << "Theory<" << getId() << ">::assertFact["
446 << d_satContext->getLevel() << "](" << assertion << ", "
447 << (isPreregistered ? "true" : "false") << ")" << std::endl;
448 d_facts.push_back(Assertion(assertion, isPreregistered));
449 }
450
451 /**
452 * This method is called to notify a theory that the node n should
453 * be considered a "shared term" by this theory
454 */
455 virtual void addSharedTerm(TNode n) { }
456
457 /**
458 * Called to set the master equality engine.
459 */
460 virtual void setMasterEqualityEngine(eq::EqualityEngine* eq) { }
461
462 /** Called to set the quantifiers engine. */
463 virtual void setQuantifiersEngine(QuantifiersEngine* qe);
464
465 /** Setup an ExtTheory module for this Theory. Can only be called once. */
466 void setupExtTheory();
467
468 /**
469 * Return the current theory care graph. Theories should overload
470 * computeCareGraph to do the actual computation, and use addCarePair to add
471 * pairs to the care graph.
472 */
473 void getCareGraph(CareGraph* careGraph);
474
475 /**
476 * Return the status of two terms in the current context. Should be
477 * implemented in sub-theories to enable more efficient theory-combination.
478 */
479 virtual EqualityStatus getEqualityStatus(TNode a, TNode b) {
480 return EQUALITY_UNKNOWN;
481 }
482
483 /**
484 * Return the model value of the give shared term (or null if not available).
485 */
486 virtual Node getModelValue(TNode var) { return Node::null(); }
487
488 /**
489 * Check the current assignment's consistency.
490 *
491 * An implementation of check() is required to either:
492 * - return a conflict on the output channel,
493 * - be interrupted,
494 * - throw an exception
495 * - or call get() until done() is true.
496 */
497 virtual void check(Effort level = EFFORT_FULL) { }
498
499 /** Needs last effort check? */
500 virtual bool needsCheckLastEffort() { return false; }
501
502 /** T-propagate new literal assignments in the current context. */
503 virtual void propagate(Effort level = EFFORT_FULL) { }
504
505 /**
506 * Return an explanation for the literal represented by parameter n
507 * (which was previously propagated by this theory).
508 */
509 virtual Node explain(TNode n) {
510 Unimplemented("Theory %s propagated a node but doesn't implement the "
511 "Theory::explain() interface!", identify().c_str());
512 }
513
514 /**
515 * Get all relevant information in this theory regarding the current
516 * model. This should be called after a call to check( FULL_EFFORT )
517 * for all theories with no conflicts and no lemmas added.
518 * If fullModel is true, then we must specify sufficient information for
519 * the model class to construct constant representatives for each equivalence
520 * class.
521 */
522 virtual void collectModelInfo( TheoryModel* m, bool fullModel ){ }
523
524 /** if theories want to do something with model after building, do it here */
525 virtual void postProcessModel( TheoryModel* m ){ }
526
527 /**
528 * Return a decision request, if the theory has one, or the NULL node
529 * otherwise.
530 * If returning non-null node, hould set priority to
531 * 0 if decision is necessary for model-soundness,
532 * 1 if decision is necessary for completeness,
533 * >1 otherwise.
534 */
535 virtual Node getNextDecisionRequest( unsigned& priority ) { return Node(); }
536
537 /**
538 * Statically learn from assertion "in," which has been asserted
539 * true at the top level. The theory should only add (via
540 * ::operator<< or ::append()) to the "learned" builder---it should
541 * *never* clear it. It is a conjunction to add to the formula at
542 * the top-level and may contain other theories' contributions.
543 */
544 virtual void ppStaticLearn(TNode in, NodeBuilder<>& learned) { }
545
546 enum PPAssertStatus {
547 /** Atom has been solved */
548 PP_ASSERT_STATUS_SOLVED,
549 /** Atom has not been solved */
550 PP_ASSERT_STATUS_UNSOLVED,
551 /** Atom is inconsistent */
552 PP_ASSERT_STATUS_CONFLICT
553 };
554
555 /**
556 * Given a literal, add the solved substitutions to the map, if any.
557 * The method should return true if the literal can be safely removed.
558 */
559 virtual PPAssertStatus ppAssert(TNode in, SubstitutionMap& outSubstitutions);
560
561 /**
562 * Given an atom of the theory coming from the input formula, this
563 * method can be overridden in a theory implementation to rewrite
564 * the atom into an equivalent form. This is only called just
565 * before an input atom to the engine.
566 */
567 virtual Node ppRewrite(TNode atom) { return atom; }
568
569 /**
570 * Don't preprocess subterm of this term
571 */
572 virtual bool ppDontRewriteSubterm(TNode atom) { return false; }
573
574 /**
575 * Notify preprocessed assertions. Called on new assertions after
576 * preprocessing before they are asserted to theory engine.
577 */
578 virtual void ppNotifyAssertions(const std::vector<Node>& assertions) {}
579
580 /**
581 * A Theory is called with presolve exactly one time per user
582 * check-sat. presolve() is called after preregistration,
583 * rewriting, and Boolean propagation, (other theories'
584 * propagation?), but the notified Theory has not yet had its
585 * check() or propagate() method called. A Theory may empty its
586 * assertFact() queue using get(). A Theory can raise conflicts,
587 * add lemmas, and propagate literals during presolve().
588 *
589 * NOTE: The presolve property must be added to the kinds file for
590 * the theory.
591 */
592 virtual void presolve() { }
593
594 /**
595 * A Theory is called with postsolve exactly one time per user
596 * check-sat. postsolve() is called after the query has completed
597 * (regardless of whether sat, unsat, or unknown), and after any
598 * model-querying related to the query has been performed.
599 * After this call, the theory will not get another check() or
600 * propagate() call until presolve() is called again. A Theory
601 * cannot raise conflicts, add lemmas, or propagate literals during
602 * postsolve().
603 */
604 virtual void postsolve() { }
605
606 /**
607 * Notification sent to the theory wheneven the search restarts.
608 * Serves as a good time to do some clean-up work, and you can
609 * assume you're at DL 0 for the purposes of Contexts. This function
610 * should not use the output channel.
611 */
612 virtual void notifyRestart() { }
613
614 /**
615 * Identify this theory (for debugging, dynamic configuration,
616 * etc..)
617 */
618 virtual std::string identify() const = 0;
619
620 /** Set user attribute
621 * This function is called when an attribute is set by a user. In SMT-LIBv2 this is done
622 * via the syntax (! n :attr)
623 */
624 virtual void setUserAttribute(const std::string& attr, Node n, std::vector<Node> node_values, std::string str_value) {
625 Unimplemented("Theory %s doesn't support Theory::setUserAttribute interface",
626 identify().c_str());
627 }
628
629 /** A set of theories */
630 typedef uint32_t Set;
631
632 /** A set of all theories */
633 static const Set AllTheories = (1 << theory::THEORY_LAST) - 1;
634
635 /** Pops a first theory off the set */
636 static inline TheoryId setPop(Set& set) {
637 uint32_t i = ffs(set); // Find First Set (bit)
638 if (i == 0) { return THEORY_LAST; }
639 TheoryId id = (TheoryId)(i-1);
640 set = setRemove(id, set);
641 return id;
642 }
643
644 /** Returns the size of a set of theories */
645 static inline size_t setSize(Set set) {
646 size_t count = 0;
647 while (setPop(set) != THEORY_LAST) {
648 ++ count;
649 }
650 return count;
651 }
652
653 /** Returns the index size of a set of theories */
654 static inline size_t setIndex(TheoryId id, Set set) {
655 Assert (setContains(id, set));
656 size_t count = 0;
657 while (setPop(set) != id) {
658 ++ count;
659 }
660 return count;
661 }
662
663 /** Add the theory to the set. If no set specified, just returns a singleton set */
664 static inline Set setInsert(TheoryId theory, Set set = 0) {
665 return set | (1 << theory);
666 }
667
668 /** Add the theory to the set. If no set specified, just returns a singleton set */
669 static inline Set setRemove(TheoryId theory, Set set = 0) {
670 return setDifference(set, setInsert(theory));
671 }
672
673 /** Check if the set contains the theory */
674 static inline bool setContains(TheoryId theory, Set set) {
675 return set & (1 << theory);
676 }
677
678 static inline Set setComplement(Set a) {
679 return (~a) & AllTheories;
680 }
681
682 static inline Set setIntersection(Set a, Set b) {
683 return a & b;
684 }
685
686 static inline Set setUnion(Set a, Set b) {
687 return a | b;
688 }
689
690 /** a - b */
691 static inline Set setDifference(Set a, Set b) {
692 return (~b) & a;
693 }
694
695 static inline std::string setToString(theory::Theory::Set theorySet) {
696 std::stringstream ss;
697 ss << "[";
698 for(unsigned theoryId = 0; theoryId < theory::THEORY_LAST; ++theoryId) {
699 if (theory::Theory::setContains((theory::TheoryId)theoryId, theorySet)) {
700 ss << (theory::TheoryId) theoryId << " ";
701 }
702 }
703 ss << "]";
704 return ss.str();
705 }
706
707 typedef context::CDList<Assertion>::const_iterator assertions_iterator;
708
709 /**
710 * Provides access to the facts queue, primarily intended for theory
711 * debugging purposes.
712 *
713 * @return the iterator to the beginning of the fact queue
714 */
715 assertions_iterator facts_begin() const {
716 return d_facts.begin();
717 }
718
719 /**
720 * Provides access to the facts queue, primarily intended for theory
721 * debugging purposes.
722 *
723 * @return the iterator to the end of the fact queue
724 */
725 assertions_iterator facts_end() const {
726 return d_facts.end();
727 }
728 /**
729 * Whether facts have been asserted to this theory.
730 *
731 * @return true iff facts have been asserted to this theory.
732 */
733 bool hasFacts() {
734 return !d_facts.empty();
735 }
736
737 typedef context::CDList<TNode>::const_iterator shared_terms_iterator;
738
739 /**
740 * Provides access to the shared terms, primarily intended for theory
741 * debugging purposes.
742 *
743 * @return the iterator to the beginning of the shared terms list
744 */
745 shared_terms_iterator shared_terms_begin() const {
746 return d_sharedTerms.begin();
747 }
748
749 /**
750 * Provides access to the facts queue, primarily intended for theory
751 * debugging purposes.
752 *
753 * @return the iterator to the end of the shared terms list
754 */
755 shared_terms_iterator shared_terms_end() const {
756 return d_sharedTerms.end();
757 }
758
759
760 /**
761 * This is a utility function for constructing a copy of the currently shared terms
762 * in a queriable form. As this is
763 */
764 std::hash_set<TNode, TNodeHashFunction> currentlySharedTerms() const;
765
766 /**
767 * This allows the theory to be queried for whether a literal, lit, is
768 * entailed by the theory. This returns a pair of a Boolean and a node E.
769 *
770 * If the Boolean is true, then E is a formula that entails lit and E is propositionally
771 * entailed by the assertions to the theory.
772 *
773 * If the Boolean is false, it is "unknown" if lit is entailed and E may be
774 * any node.
775 *
776 * The literal lit is either an atom a or (not a), which must belong to the theory:
777 * There is some TheoryOfMode m s.t. Theory::theoryOf(m, a) == this->getId().
778 *
779 * There are NO assumptions that a or the subterms of a have been
780 * preprocessed in any form. This includes ppRewrite, rewriting,
781 * preregistering, registering, definition expansion or ITE removal!
782 *
783 * Theories are free to limit the amount of effort they use and so may
784 * always opt to return "unknown". Both "unknown" and "not entailed",
785 * may return for E a non-boolean Node (e.g. Node::null()). (There is no explicit output
786 * for the negation of lit is entailed.)
787 *
788 * If lit is theory valid, the return result may be the Boolean constant
789 * true for E.
790 *
791 * If lit is entailed by multiple assertions on the theory's getFact()
792 * queue, a_1, a_2, ... and a_k, this may return E=(and a_1 a_2 ... a_k) or
793 * another theory entailed explanation E=(and (and a_1 a_2) (and a3 a_4) ... a_k)
794 *
795 * If lit is entailed by a single assertion on the theory's getFact()
796 * queue, say a, this may return E=a.
797 *
798 * The theory may always return false!
799 *
800 * The search is controlled by the parameter params. For default behavior,
801 * this may be left NULL.
802 *
803 * Theories that want parameters extend the virtual EntailmentCheckParameters
804 * class. Users ask the theory for an appropriate subclass from the theory
805 * and configure that. How this is implemented is on a per theory basis.
806 *
807 * The search may provide additional output to guide the user of
808 * this function. This output is stored in a EntailmentCheckSideEffects*
809 * output parameter. The implementation of this is theory specific. For
810 * no output, this is NULL.
811 *
812 * Theories may not touch their output stream during an entailment check.
813 *
814 * @param lit a literal belonging to the theory.
815 * @param params the control parameters for the entailment check.
816 * @param out a theory specific output object of the entailment search.
817 * @return a pair <b,E> s.t. if b is true, then a formula E such that
818 * E |= lit in the theory.
819 */
820 virtual std::pair<bool, Node> entailmentCheck(
821 TNode lit, const EntailmentCheckParameters* params = NULL,
822 EntailmentCheckSideEffects* out = NULL);
823
824 /* equality engine TODO: use? */
825 virtual eq::EqualityEngine* getEqualityEngine() { return NULL; }
826
827 /* Get extended theory if one has been installed. */
828 ExtTheory* getExtTheory();
829
830 /* get current substitution at an effort
831 * input : vars
832 * output : subs, exp
833 * where ( exp[vars[i]] => vars[i] = subs[i] ) holds for all i
834 */
835 virtual bool getCurrentSubstitution(int effort, std::vector<Node>& vars,
836 std::vector<Node>& subs,
837 std::map<Node, std::vector<Node> >& exp) {
838 return false;
839 }
840
841 /**
842 * Get reduction for node
843 * If return value is not 0, then n is reduced.
844 * If return value <0 then n is reduced SAT-context-independently (e.g. by a
845 * lemma that persists at this user-context level).
846 * If nr is non-null, then ( n = nr ) should be added as a lemma by caller,
847 * and return value should be <0.
848 */
849 virtual int getReduction( int effort, Node n, Node& nr ) { return 0; }
850
851 /** Turn on proof-production mode. */
852 void produceProofs() { d_proofsEnabled = true; }
853
854 };/* class Theory */
855
856 std::ostream& operator<<(std::ostream& os, theory::Theory::Effort level);
857
858
859 inline theory::Assertion Theory::get() {
860 Assert( !done(), "Theory::get() called with assertion queue empty!" );
861
862 // Get the assertion
863 Assertion fact = d_facts[d_factsHead];
864 d_factsHead = d_factsHead + 1;
865
866 Trace("theory") << "Theory::get() => " << fact << " (" << d_facts.size() - d_factsHead << " left)" << std::endl;
867
868 if(Dump.isOn("state")) {
869 Dump("state") << AssertCommand(fact.assertion.toExpr());
870 }
871
872 return fact;
873 }
874
875 inline std::ostream& operator<<(std::ostream& out,
876 const CVC4::theory::Theory& theory) {
877 return out << theory.identify();
878 }
879
880 inline std::ostream& operator << (std::ostream& out, theory::Theory::PPAssertStatus status) {
881 switch (status) {
882 case theory::Theory::PP_ASSERT_STATUS_SOLVED:
883 out << "SOLVE_STATUS_SOLVED"; break;
884 case theory::Theory::PP_ASSERT_STATUS_UNSOLVED:
885 out << "SOLVE_STATUS_UNSOLVED"; break;
886 case theory::Theory::PP_ASSERT_STATUS_CONFLICT:
887 out << "SOLVE_STATUS_CONFLICT"; break;
888 default:
889 Unhandled();
890 }
891 return out;
892 }
893
894 class EntailmentCheckParameters {
895 private:
896 TheoryId d_tid;
897 protected:
898 EntailmentCheckParameters(TheoryId tid);
899 public:
900 TheoryId getTheoryId() const;
901 virtual ~EntailmentCheckParameters();
902 };/* class EntailmentCheckParameters */
903
904 class EntailmentCheckSideEffects {
905 private:
906 TheoryId d_tid;
907 protected:
908 EntailmentCheckSideEffects(TheoryId tid);
909 public:
910 TheoryId getTheoryId() const;
911 virtual ~EntailmentCheckSideEffects();
912 };/* class EntailmentCheckSideEffects */
913
914
915 class ExtTheory {
916 typedef context::CDHashMap<Node, bool, NodeHashFunction> NodeBoolMap;
917 typedef context::CDHashSet<Node, NodeHashFunction> NodeSet;
918 private:
919 // collect variables
920 static std::vector<Node> collectVars(Node n);
921 // is context dependent inactive
922 bool isContextIndependentInactive( Node n ) const;
923 //do inferences internal
924 bool doInferencesInternal(int effort, const std::vector<Node>& terms,
925 std::vector<Node>& nred, bool batch, bool isRed);
926 // send lemma
927 bool sendLemma( Node lem, bool preprocess = false );
928 // register term (recursive)
929 void registerTermRec(Node n, std::set<Node>* visited);
930
931 Theory * d_parent;
932 Node d_true;
933 //extended string terms, map to whether they are active
934 NodeBoolMap d_ext_func_terms;
935 //set of terms from d_ext_func_terms that are SAT-context-independently inactive
936 // (e.g. term t when a reduction lemma of the form t = t' was added)
937 NodeSet d_ci_inactive;
938 //cache of all lemmas sent
939 NodeSet d_lemmas;
940 NodeSet d_pp_lemmas;
941 //watched term for checking if any non-reduced extended functions exist
942 context::CDO< Node > d_has_extf;
943 //extf kind
944 std::map< Kind, bool > d_extf_kind;
945 //information for each term in d_ext_func_terms
946 class ExtfInfo {
947 public:
948 //all variables in this term
949 std::vector< Node > d_vars;
950 };
951 std::map< Node, ExtfInfo > d_extf_info;
952
953 public:
954 ExtTheory(Theory* p);
955 virtual ~ExtTheory() {}
956 // add extf kind
957 void addFunctionKind(Kind k) { d_extf_kind[k] = true; }
958 bool hasFunctionKind(Kind k) const {
959 return d_extf_kind.find(k) != d_extf_kind.end();
960 }
961 // register term
962 // adds n to d_ext_func_terms if addFunctionKind( n.getKind() ) was called
963 void registerTerm( Node n );
964 void registerTermRec( Node n );
965 // set n as reduced/inactive
966 // if contextDepend = false, then n remains inactive in the duration of this user-context level
967 void markReduced( Node n, bool contextDepend = true );
968 // mark that a and b are congruent terms: set b inactive, set a to inactive if b was inactive
969 void markCongruent( Node a, Node b );
970
971 //getSubstitutedTerms
972 // input : effort, terms
973 // output : sterms, exp, where ( exp[i] => terms[i] = sterms[i] ) for all i
974 void getSubstitutedTerms(int effort, const std::vector<Node>& terms,
975 std::vector<Node>& sterms,
976 std::vector<std::vector<Node> >& exp);
977 // doInferences
978 // * input : effort, terms, batch (whether to send one lemma or lemmas for
979 // all terms)
980 // * sends rewriting lemmas of the form ( exp => t = c ) where t is in terms
981 // and c is a constant, c = rewrite( t*sigma ) where exp |= sigma
982 // * output : nred (the terms that are still active)
983 // * return : true iff lemma is sent
984 bool doInferences(int effort, const std::vector<Node>& terms,
985 std::vector<Node>& nred, bool batch = true);
986 bool doInferences(int effort, std::vector<Node>& nred, bool batch = true);
987 //doReductions
988 // same as doInferences, but will send reduction lemmas of the form ( t = t' )
989 // where t is in terms, t' is equivalent, reduced term.
990 bool doReductions(int effort, const std::vector<Node>& terms,
991 std::vector<Node>& nred, bool batch = true);
992 bool doReductions(int effort, std::vector<Node>& nred, bool batch = true);
993
994 // has active term
995 bool hasActiveTerm();
996 // is n active
997 bool isActive(Node n);
998 // get the set of active terms from d_ext_func_terms
999 std::vector<Node> getActive() const;
1000 // get the set of active terms from d_ext_func_terms of kind k
1001 std::vector<Node> getActive(Kind k) const;
1002 };
1003
1004 }/* CVC4::theory namespace */
1005 }/* CVC4 namespace */
1006
1007 #endif /* __CVC4__THEORY__THEORY_H */