Make order of theories explicit in the source code. (#3379)
[cvc5.git] / src / theory / theory.h
1 /********************* */
2 /*! \file theory.h
3 ** \verbatim
4 ** Top contributors (to current version):
5 ** Morgan Deters, Dejan Jovanovic, Tim King
6 ** This file is part of the CVC4 project.
7 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
8 ** in the top-level source directory) and their institutional affiliations.
9 ** All rights reserved. See the file COPYING in the top-level source
10 ** directory for licensing information.\endverbatim
11 **
12 ** \brief Base of the theory interface.
13 **
14 ** Base of the theory interface.
15 **/
16
17 #include "cvc4_private.h"
18
19 #ifndef CVC4__THEORY__THEORY_H
20 #define CVC4__THEORY__THEORY_H
21
22 #include <iosfwd>
23 #include <map>
24 #include <set>
25 #include <string>
26 #include <unordered_set>
27
28 #include "context/cdhashset.h"
29 #include "context/cdlist.h"
30 #include "context/cdo.h"
31 #include "context/context.h"
32 #include "expr/node.h"
33 #include "lib/ffs.h"
34 #include "options/options.h"
35 #include "options/theory_options.h"
36 #include "options/theoryof_mode.h"
37 #include "smt/command.h"
38 #include "smt/dump.h"
39 #include "smt/logic_request.h"
40 #include "theory/assertion.h"
41 #include "theory/care_graph.h"
42 #include "theory/decision_manager.h"
43 #include "theory/logic_info.h"
44 #include "theory/output_channel.h"
45 #include "theory/theory_id.h"
46 #include "theory/valuation.h"
47 #include "util/statistics_registry.h"
48
49 namespace CVC4 {
50
51 class TheoryEngine;
52
53 namespace theory {
54
55 class QuantifiersEngine;
56 class TheoryModel;
57 class SubstitutionMap;
58 class ExtTheory;
59
60 class EntailmentCheckParameters;
61 class EntailmentCheckSideEffects;
62
63 namespace rrinst {
64 class CandidateGenerator;
65 }/* CVC4::theory::rrinst namespace */
66
67 namespace eq {
68 class EqualityEngine;
69 }/* CVC4::theory::eq namespace */
70
71 /**
72 * Base class for T-solvers. Abstract DPLL(T).
73 *
74 * This is essentially an interface class. The TheoryEngine has
75 * pointers to Theory. Note that only one specific Theory type (e.g.,
76 * TheoryUF) can exist per NodeManager, because of how the
77 * RegisteredAttr works. (If you need multiple instances of the same
78 * theory, you'll have to write a multiplexed theory that dispatches
79 * all calls to them.)
80 */
81 class Theory {
82
83 private:
84
85 friend class ::CVC4::TheoryEngine;
86
87 // Disallow default construction, copy, assignment.
88 Theory() = delete;
89 Theory(const Theory&) = delete;
90 Theory& operator=(const Theory&) = delete;
91
92 /** An integer identifying the type of the theory. */
93 TheoryId d_id;
94
95 /** Name of this theory instance. Along with the TheoryId this should provide
96 * an unique string identifier for each instance of a Theory class. We need
97 * this to ensure unique statistics names over multiple theory instances. */
98 std::string d_instanceName;
99
100 /** The SAT search context for the Theory. */
101 context::Context* d_satContext;
102
103 /** The user level assertion context for the Theory. */
104 context::UserContext* d_userContext;
105
106 /** Information about the logic we're operating within. */
107 const LogicInfo& d_logicInfo;
108
109 /**
110 * The assertFact() queue.
111 *
112 * These can not be TNodes as some atoms (such as equalities) are sent
113 * across theories without being stored in a global map.
114 */
115 context::CDList<Assertion> d_facts;
116
117 /** Index into the head of the facts list */
118 context::CDO<unsigned> d_factsHead;
119
120 /** Add shared term to the theory. */
121 void addSharedTermInternal(TNode node);
122
123 /** Indices for splitting on the shared terms. */
124 context::CDO<unsigned> d_sharedTermsIndex;
125
126 /** The care graph the theory will use during combination. */
127 CareGraph* d_careGraph;
128
129 /**
130 * Pointer to the quantifiers engine (or NULL, if quantifiers are not
131 * supported or not enabled). Not owned by the theory.
132 */
133 QuantifiersEngine* d_quantEngine;
134
135 /** Pointer to the decision manager. */
136 DecisionManager* d_decManager;
137
138 /** Extended theory module or NULL. Owned by the theory. */
139 ExtTheory* d_extTheory;
140
141 protected:
142
143
144 // === STATISTICS ===
145 /** time spent in check calls */
146 TimerStat d_checkTime;
147 /** time spent in theory combination */
148 TimerStat d_computeCareGraphTime;
149
150 /**
151 * The only method to add suff to the care graph.
152 */
153 void addCarePair(TNode t1, TNode t2);
154
155 /**
156 * The function should compute the care graph over the shared terms.
157 * The default function returns all the pairs among the shared variables.
158 */
159 virtual void computeCareGraph();
160
161 /**
162 * A list of shared terms that the theory has.
163 */
164 context::CDList<TNode> d_sharedTerms;
165
166 /**
167 * Helper function for computeRelevantTerms
168 */
169 void collectTerms(TNode n,
170 std::set<Kind>& irrKinds,
171 std::set<Node>& termSet) const;
172
173 /**
174 * Scans the current set of assertions and shared terms top-down
175 * until a theory-leaf is reached, and adds all terms found to
176 * termSet. This is used by collectModelInfo to delimit the set of
177 * terms that should be used when constructing a model.
178 *
179 * irrKinds: The kinds of terms that appear in assertions that should *not*
180 * be included in termSet. Note that the kinds EQUAL and NOT are always
181 * treated as irrelevant kinds.
182 *
183 * includeShared: Whether to include shared terms in termSet. Notice that
184 * shared terms are not influenced by irrKinds.
185 */
186 void computeRelevantTerms(std::set<Node>& termSet,
187 std::set<Kind>& irrKinds,
188 bool includeShared = true) const;
189 /** same as above, but with empty irrKinds */
190 void computeRelevantTerms(std::set<Node>& termSet, bool includeShared = true) const;
191
192 /**
193 * Construct a Theory.
194 *
195 * The pair <id, instance> is assumed to uniquely identify this Theory
196 * w.r.t. the SmtEngine.
197 */
198 Theory(TheoryId id,
199 context::Context* satContext,
200 context::UserContext* userContext,
201 OutputChannel& out,
202 Valuation valuation,
203 const LogicInfo& logicInfo,
204 std::string instance = ""); // taking : No default.
205
206 /**
207 * This is called at shutdown time by the TheoryEngine, just before
208 * destruction. It is important because there are destruction
209 * ordering issues between PropEngine and Theory (based on what
210 * hard-links to Nodes are outstanding). As the fact queue might be
211 * nonempty, we ensure here that it's clear. If you overload this,
212 * you must make an explicit call here to this->Theory::shutdown()
213 * too.
214 */
215 virtual void shutdown() { }
216
217 /**
218 * The output channel for the Theory.
219 */
220 OutputChannel* d_out;
221
222 /**
223 * The valuation proxy for the Theory to communicate back with the
224 * theory engine (and other theories).
225 */
226 Valuation d_valuation;
227
228 /**
229 * Whether proofs are enabled
230 *
231 */
232 bool d_proofsEnabled;
233
234 /**
235 * Returns the next assertion in the assertFact() queue.
236 *
237 * @return the next assertion in the assertFact() queue
238 */
239 inline Assertion get();
240
241 const LogicInfo& getLogicInfo() const {
242 return d_logicInfo;
243 }
244
245 /**
246 * The theory that owns the uninterpreted sort.
247 */
248 static TheoryId s_uninterpretedSortOwner;
249
250 void printFacts(std::ostream& os) const;
251 void debugPrintFacts() const;
252
253 public:
254
255 /**
256 * Return the ID of the theory responsible for the given type.
257 */
258 static inline TheoryId theoryOf(TypeNode typeNode) {
259 Trace("theory::internal") << "theoryOf(" << typeNode << ")" << std::endl;
260 TheoryId id;
261 if (typeNode.getKind() == kind::TYPE_CONSTANT) {
262 id = typeConstantToTheoryId(typeNode.getConst<TypeConstant>());
263 } else {
264 id = kindToTheoryId(typeNode.getKind());
265 }
266 if (id == THEORY_BUILTIN) {
267 Trace("theory::internal") << "theoryOf(" << typeNode << ") == " << s_uninterpretedSortOwner << std::endl;
268 return s_uninterpretedSortOwner;
269 }
270 return id;
271 }
272
273 /**
274 * Returns the ID of the theory responsible for the given node.
275 */
276 static TheoryId theoryOf(TheoryOfMode mode, TNode node);
277
278 /**
279 * Returns the ID of the theory responsible for the given node.
280 */
281 static inline TheoryId theoryOf(TNode node) {
282 return theoryOf(options::theoryOfMode(), node);
283 }
284
285 /**
286 * Set the owner of the uninterpreted sort.
287 */
288 static void setUninterpretedSortOwner(TheoryId theory) {
289 s_uninterpretedSortOwner = theory;
290 }
291
292 /**
293 * Get the owner of the uninterpreted sort.
294 */
295 static TheoryId getUninterpretedSortOwner() {
296 return s_uninterpretedSortOwner;
297 }
298
299 /**
300 * Checks if the node is a leaf node of this theory
301 */
302 inline bool isLeaf(TNode node) const {
303 return node.getNumChildren() == 0 || theoryOf(node) != d_id;
304 }
305
306 /**
307 * Checks if the node is a leaf node of a theory.
308 */
309 inline static bool isLeafOf(TNode node, TheoryId theoryId) {
310 return node.getNumChildren() == 0 || theoryOf(node) != theoryId;
311 }
312
313 /** Returns true if the assertFact queue is empty*/
314 bool done() const { return d_factsHead == d_facts.size(); }
315 /**
316 * Destructs a Theory.
317 */
318 virtual ~Theory();
319
320 /**
321 * Subclasses of Theory may add additional efforts. DO NOT CHECK
322 * equality with one of these values (e.g. if STANDARD xxx) but
323 * rather use range checks (or use the helper functions below).
324 * Normally we call QUICK_CHECK or STANDARD; at the leaves we call
325 * with FULL_EFFORT.
326 */
327 enum Effort {
328 /**
329 * Standard effort where theory need not do anything
330 */
331 EFFORT_STANDARD = 50,
332 /**
333 * Full effort requires the theory make sure its assertions are satisfiable or not
334 */
335 EFFORT_FULL = 100,
336 /**
337 * Combination effort means that the individual theories are already satisfied, and
338 * it is time to put some effort into propagation of shared term equalities
339 */
340 EFFORT_COMBINATION = 150,
341 /**
342 * Last call effort, reserved for quantifiers.
343 */
344 EFFORT_LAST_CALL = 200
345 };/* enum Effort */
346
347 static inline bool standardEffortOrMore(Effort e) CVC4_CONST_FUNCTION
348 { return e >= EFFORT_STANDARD; }
349 static inline bool standardEffortOnly(Effort e) CVC4_CONST_FUNCTION
350 { return e >= EFFORT_STANDARD && e < EFFORT_FULL; }
351 static inline bool fullEffort(Effort e) CVC4_CONST_FUNCTION
352 { return e == EFFORT_FULL; }
353 static inline bool combination(Effort e) CVC4_CONST_FUNCTION
354 { return e == EFFORT_COMBINATION; }
355
356 /**
357 * Get the id for this Theory.
358 */
359 TheoryId getId() const {
360 return d_id;
361 }
362
363 /**
364 * Get the SAT context associated to this Theory.
365 */
366 context::Context* getSatContext() const {
367 return d_satContext;
368 }
369
370 /**
371 * Get the context associated to this Theory.
372 */
373 context::UserContext* getUserContext() const {
374 return d_userContext;
375 }
376
377 /**
378 * Set the output channel associated to this theory.
379 */
380 void setOutputChannel(OutputChannel& out) {
381 d_out = &out;
382 }
383
384 /**
385 * Get the output channel associated to this theory.
386 */
387 OutputChannel& getOutputChannel() {
388 return *d_out;
389 }
390
391 /**
392 * Get the valuation associated to this theory.
393 */
394 Valuation& getValuation() {
395 return d_valuation;
396 }
397
398 /**
399 * Get the quantifiers engine associated to this theory.
400 */
401 QuantifiersEngine* getQuantifiersEngine() {
402 return d_quantEngine;
403 }
404
405 /**
406 * Get the quantifiers engine associated to this theory (const version).
407 */
408 const QuantifiersEngine* getQuantifiersEngine() const {
409 return d_quantEngine;
410 }
411
412 /** Get the decision manager associated to this theory. */
413 DecisionManager* getDecisionManager() { return d_decManager; }
414
415 /**
416 * Finish theory initialization. At this point, options and the logic
417 * setting are final, and the master equality engine and quantifiers
418 * engine (if any) are initialized. This base class implementation
419 * does nothing.
420 */
421 virtual void finishInit() { }
422
423 /**
424 * Some theories have kinds that are effectively definitions and
425 * should be expanded before they are handled. Definitions allow
426 * a much wider range of actions than the normal forms given by the
427 * rewriter; they can enable other theories and create new terms.
428 * However no assumptions can be made about subterms having been
429 * expanded or rewritten. Where possible rewrite rules should be
430 * used, definitions should only be used when rewrites are not
431 * possible, for example in handling under-specified operations
432 * using partially defined functions.
433 *
434 * Some theories like sets use expandDefinition as a "context
435 * independent preRegisterTerm". This is required for cases where
436 * a theory wants to be notified about a term before preprocessing
437 * and simplification but doesn't necessarily want to rewrite it.
438 */
439 virtual Node expandDefinition(LogicRequest &logicRequest, Node node) {
440 // by default, do nothing
441 return node;
442 }
443
444 /**
445 * Pre-register a term. Done one time for a Node per SAT context level.
446 */
447 virtual void preRegisterTerm(TNode) { }
448
449 /**
450 * Assert a fact in the current context.
451 */
452 void assertFact(TNode assertion, bool isPreregistered) {
453 Trace("theory") << "Theory<" << getId() << ">::assertFact["
454 << d_satContext->getLevel() << "](" << assertion << ", "
455 << (isPreregistered ? "true" : "false") << ")" << std::endl;
456 d_facts.push_back(Assertion(assertion, isPreregistered));
457 }
458
459 /**
460 * This method is called to notify a theory that the node n should
461 * be considered a "shared term" by this theory
462 */
463 virtual void addSharedTerm(TNode n) { }
464
465 /**
466 * Called to set the master equality engine.
467 */
468 virtual void setMasterEqualityEngine(eq::EqualityEngine* eq) { }
469
470 /** Called to set the quantifiers engine. */
471 void setQuantifiersEngine(QuantifiersEngine* qe);
472 /** Called to set the decision manager. */
473 void setDecisionManager(DecisionManager* dm);
474
475 /** Setup an ExtTheory module for this Theory. Can only be called once. */
476 void setupExtTheory();
477
478 /**
479 * Return the current theory care graph. Theories should overload
480 * computeCareGraph to do the actual computation, and use addCarePair to add
481 * pairs to the care graph.
482 */
483 void getCareGraph(CareGraph* careGraph);
484
485 /**
486 * Return the status of two terms in the current context. Should be
487 * implemented in sub-theories to enable more efficient theory-combination.
488 */
489 virtual EqualityStatus getEqualityStatus(TNode a, TNode b) {
490 return EQUALITY_UNKNOWN;
491 }
492
493 /**
494 * Return the model value of the give shared term (or null if not available).
495 */
496 virtual Node getModelValue(TNode var) { return Node::null(); }
497
498 /**
499 * Check the current assignment's consistency.
500 *
501 * An implementation of check() is required to either:
502 * - return a conflict on the output channel,
503 * - be interrupted,
504 * - throw an exception
505 * - or call get() until done() is true.
506 */
507 virtual void check(Effort level = EFFORT_FULL) { }
508
509 /** Needs last effort check? */
510 virtual bool needsCheckLastEffort() { return false; }
511
512 /** T-propagate new literal assignments in the current context. */
513 virtual void propagate(Effort level = EFFORT_FULL) { }
514
515 /**
516 * Return an explanation for the literal represented by parameter n
517 * (which was previously propagated by this theory).
518 */
519 virtual Node explain(TNode n) {
520 Unimplemented("Theory %s propagated a node but doesn't implement the "
521 "Theory::explain() interface!", identify().c_str());
522 }
523
524 /**
525 * Get all relevant information in this theory regarding the current
526 * model. This should be called after a call to check( FULL_EFFORT )
527 * for all theories with no conflicts and no lemmas added.
528 *
529 * This method returns true if and only if the equality engine of m is
530 * consistent as a result of this call.
531 */
532 virtual bool collectModelInfo(TheoryModel* m) { return true; }
533 /** if theories want to do something with model after building, do it here */
534 virtual void postProcessModel( TheoryModel* m ){ }
535 /**
536 * Statically learn from assertion "in," which has been asserted
537 * true at the top level. The theory should only add (via
538 * ::operator<< or ::append()) to the "learned" builder---it should
539 * *never* clear it. It is a conjunction to add to the formula at
540 * the top-level and may contain other theories' contributions.
541 */
542 virtual void ppStaticLearn(TNode in, NodeBuilder<>& learned) { }
543
544 enum PPAssertStatus {
545 /** Atom has been solved */
546 PP_ASSERT_STATUS_SOLVED,
547 /** Atom has not been solved */
548 PP_ASSERT_STATUS_UNSOLVED,
549 /** Atom is inconsistent */
550 PP_ASSERT_STATUS_CONFLICT
551 };
552
553 /**
554 * Given a literal, add the solved substitutions to the map, if any.
555 * The method should return true if the literal can be safely removed.
556 */
557 virtual PPAssertStatus ppAssert(TNode in, SubstitutionMap& outSubstitutions);
558
559 /**
560 * Given an atom of the theory coming from the input formula, this
561 * method can be overridden in a theory implementation to rewrite
562 * the atom into an equivalent form. This is only called just
563 * before an input atom to the engine.
564 */
565 virtual Node ppRewrite(TNode atom) { return atom; }
566
567 /**
568 * Notify preprocessed assertions. Called on new assertions after
569 * preprocessing before they are asserted to theory engine.
570 */
571 virtual void ppNotifyAssertions(const std::vector<Node>& assertions) {}
572
573 /**
574 * A Theory is called with presolve exactly one time per user
575 * check-sat. presolve() is called after preregistration,
576 * rewriting, and Boolean propagation, (other theories'
577 * propagation?), but the notified Theory has not yet had its
578 * check() or propagate() method called. A Theory may empty its
579 * assertFact() queue using get(). A Theory can raise conflicts,
580 * add lemmas, and propagate literals during presolve().
581 *
582 * NOTE: The presolve property must be added to the kinds file for
583 * the theory.
584 */
585 virtual void presolve() { }
586
587 /**
588 * A Theory is called with postsolve exactly one time per user
589 * check-sat. postsolve() is called after the query has completed
590 * (regardless of whether sat, unsat, or unknown), and after any
591 * model-querying related to the query has been performed.
592 * After this call, the theory will not get another check() or
593 * propagate() call until presolve() is called again. A Theory
594 * cannot raise conflicts, add lemmas, or propagate literals during
595 * postsolve().
596 */
597 virtual void postsolve() { }
598
599 /**
600 * Notification sent to the theory wheneven the search restarts.
601 * Serves as a good time to do some clean-up work, and you can
602 * assume you're at DL 0 for the purposes of Contexts. This function
603 * should not use the output channel.
604 */
605 virtual void notifyRestart() { }
606
607 /**
608 * Identify this theory (for debugging, dynamic configuration,
609 * etc..)
610 */
611 virtual std::string identify() const = 0;
612
613 /** Set user attribute
614 * This function is called when an attribute is set by a user. In SMT-LIBv2 this is done
615 * via the syntax (! n :attr)
616 */
617 virtual void setUserAttribute(const std::string& attr, Node n, std::vector<Node> node_values, std::string str_value) {
618 Unimplemented("Theory %s doesn't support Theory::setUserAttribute interface",
619 identify().c_str());
620 }
621
622 /** A set of theories */
623 typedef uint32_t Set;
624
625 /** A set of all theories */
626 static const Set AllTheories = (1 << theory::THEORY_LAST) - 1;
627
628 /** Pops a first theory off the set */
629 static inline TheoryId setPop(Set& set) {
630 uint32_t i = ffs(set); // Find First Set (bit)
631 if (i == 0) { return THEORY_LAST; }
632 TheoryId id = (TheoryId)(i-1);
633 set = setRemove(id, set);
634 return id;
635 }
636
637 /** Returns the size of a set of theories */
638 static inline size_t setSize(Set set) {
639 size_t count = 0;
640 while (setPop(set) != THEORY_LAST) {
641 ++ count;
642 }
643 return count;
644 }
645
646 /** Returns the index size of a set of theories */
647 static inline size_t setIndex(TheoryId id, Set set) {
648 Assert (setContains(id, set));
649 size_t count = 0;
650 while (setPop(set) != id) {
651 ++ count;
652 }
653 return count;
654 }
655
656 /** Add the theory to the set. If no set specified, just returns a singleton set */
657 static inline Set setInsert(TheoryId theory, Set set = 0) {
658 return set | (1 << theory);
659 }
660
661 /** Add the theory to the set. If no set specified, just returns a singleton set */
662 static inline Set setRemove(TheoryId theory, Set set = 0) {
663 return setDifference(set, setInsert(theory));
664 }
665
666 /** Check if the set contains the theory */
667 static inline bool setContains(TheoryId theory, Set set) {
668 return set & (1 << theory);
669 }
670
671 static inline Set setComplement(Set a) {
672 return (~a) & AllTheories;
673 }
674
675 static inline Set setIntersection(Set a, Set b) {
676 return a & b;
677 }
678
679 static inline Set setUnion(Set a, Set b) {
680 return a | b;
681 }
682
683 /** a - b */
684 static inline Set setDifference(Set a, Set b) {
685 return (~b) & a;
686 }
687
688 static inline std::string setToString(theory::Theory::Set theorySet) {
689 std::stringstream ss;
690 ss << "[";
691 for(unsigned theoryId = 0; theoryId < theory::THEORY_LAST; ++theoryId) {
692 if (theory::Theory::setContains((theory::TheoryId)theoryId, theorySet)) {
693 ss << (theory::TheoryId) theoryId << " ";
694 }
695 }
696 ss << "]";
697 return ss.str();
698 }
699
700 typedef context::CDList<Assertion>::const_iterator assertions_iterator;
701
702 /**
703 * Provides access to the facts queue, primarily intended for theory
704 * debugging purposes.
705 *
706 * @return the iterator to the beginning of the fact queue
707 */
708 assertions_iterator facts_begin() const {
709 return d_facts.begin();
710 }
711
712 /**
713 * Provides access to the facts queue, primarily intended for theory
714 * debugging purposes.
715 *
716 * @return the iterator to the end of the fact queue
717 */
718 assertions_iterator facts_end() const {
719 return d_facts.end();
720 }
721 /**
722 * Whether facts have been asserted to this theory.
723 *
724 * @return true iff facts have been asserted to this theory.
725 */
726 bool hasFacts() {
727 return !d_facts.empty();
728 }
729
730 /** Return total number of facts asserted to this theory */
731 size_t numAssertions() {
732 return d_facts.size();
733 }
734
735 typedef context::CDList<TNode>::const_iterator shared_terms_iterator;
736
737 /**
738 * Provides access to the shared terms, primarily intended for theory
739 * debugging purposes.
740 *
741 * @return the iterator to the beginning of the shared terms list
742 */
743 shared_terms_iterator shared_terms_begin() const {
744 return d_sharedTerms.begin();
745 }
746
747 /**
748 * Provides access to the facts queue, primarily intended for theory
749 * debugging purposes.
750 *
751 * @return the iterator to the end of the shared terms list
752 */
753 shared_terms_iterator shared_terms_end() const {
754 return d_sharedTerms.end();
755 }
756
757
758 /**
759 * This is a utility function for constructing a copy of the currently shared terms
760 * in a queriable form. As this is
761 */
762 std::unordered_set<TNode, TNodeHashFunction> currentlySharedTerms() const;
763
764 /**
765 * This allows the theory to be queried for whether a literal, lit, is
766 * entailed by the theory. This returns a pair of a Boolean and a node E.
767 *
768 * If the Boolean is true, then E is a formula that entails lit and E is propositionally
769 * entailed by the assertions to the theory.
770 *
771 * If the Boolean is false, it is "unknown" if lit is entailed and E may be
772 * any node.
773 *
774 * The literal lit is either an atom a or (not a), which must belong to the theory:
775 * There is some TheoryOfMode m s.t. Theory::theoryOf(m, a) == this->getId().
776 *
777 * There are NO assumptions that a or the subterms of a have been
778 * preprocessed in any form. This includes ppRewrite, rewriting,
779 * preregistering, registering, definition expansion or ITE removal!
780 *
781 * Theories are free to limit the amount of effort they use and so may
782 * always opt to return "unknown". Both "unknown" and "not entailed",
783 * may return for E a non-boolean Node (e.g. Node::null()). (There is no explicit output
784 * for the negation of lit is entailed.)
785 *
786 * If lit is theory valid, the return result may be the Boolean constant
787 * true for E.
788 *
789 * If lit is entailed by multiple assertions on the theory's getFact()
790 * queue, a_1, a_2, ... and a_k, this may return E=(and a_1 a_2 ... a_k) or
791 * another theory entailed explanation E=(and (and a_1 a_2) (and a3 a_4) ... a_k)
792 *
793 * If lit is entailed by a single assertion on the theory's getFact()
794 * queue, say a, this may return E=a.
795 *
796 * The theory may always return false!
797 *
798 * The search is controlled by the parameter params. For default behavior,
799 * this may be left NULL.
800 *
801 * Theories that want parameters extend the virtual EntailmentCheckParameters
802 * class. Users ask the theory for an appropriate subclass from the theory
803 * and configure that. How this is implemented is on a per theory basis.
804 *
805 * The search may provide additional output to guide the user of
806 * this function. This output is stored in a EntailmentCheckSideEffects*
807 * output parameter. The implementation of this is theory specific. For
808 * no output, this is NULL.
809 *
810 * Theories may not touch their output stream during an entailment check.
811 *
812 * @param lit a literal belonging to the theory.
813 * @param params the control parameters for the entailment check.
814 * @param out a theory specific output object of the entailment search.
815 * @return a pair <b,E> s.t. if b is true, then a formula E such that
816 * E |= lit in the theory.
817 */
818 virtual std::pair<bool, Node> entailmentCheck(
819 TNode lit, const EntailmentCheckParameters* params = NULL,
820 EntailmentCheckSideEffects* out = NULL);
821
822 /* equality engine TODO: use? */
823 virtual eq::EqualityEngine* getEqualityEngine() { return NULL; }
824
825 /* Get extended theory if one has been installed. */
826 ExtTheory* getExtTheory();
827
828 /* get current substitution at an effort
829 * input : vars
830 * output : subs, exp
831 * where ( exp[vars[i]] => vars[i] = subs[i] ) holds for all i
832 */
833 virtual bool getCurrentSubstitution(int effort, std::vector<Node>& vars,
834 std::vector<Node>& subs,
835 std::map<Node, std::vector<Node> >& exp) {
836 return false;
837 }
838
839 /* is extended function reduced */
840 virtual bool isExtfReduced( int effort, Node n, Node on, std::vector< Node >& exp ) { return n.isConst(); }
841
842 /**
843 * Get reduction for node
844 * If return value is not 0, then n is reduced.
845 * If return value <0 then n is reduced SAT-context-independently (e.g. by a
846 * lemma that persists at this user-context level).
847 * If nr is non-null, then ( n = nr ) should be added as a lemma by caller,
848 * and return value should be <0.
849 */
850 virtual int getReduction( int effort, Node n, Node& nr ) { return 0; }
851
852 /** Turn on proof-production mode. */
853 void produceProofs() { d_proofsEnabled = true; }
854
855 };/* class Theory */
856
857 std::ostream& operator<<(std::ostream& os, theory::Theory::Effort level);
858
859
860 inline theory::Assertion Theory::get() {
861 Assert( !done(), "Theory::get() called with assertion queue empty!" );
862
863 // Get the assertion
864 Assertion fact = d_facts[d_factsHead];
865 d_factsHead = d_factsHead + 1;
866
867 Trace("theory") << "Theory::get() => " << fact << " (" << d_facts.size() - d_factsHead << " left)" << std::endl;
868
869 if(Dump.isOn("state")) {
870 Dump("state") << AssertCommand(fact.assertion.toExpr());
871 }
872
873 return fact;
874 }
875
876 inline std::ostream& operator<<(std::ostream& out,
877 const CVC4::theory::Theory& theory) {
878 return out << theory.identify();
879 }
880
881 inline std::ostream& operator << (std::ostream& out, theory::Theory::PPAssertStatus status) {
882 switch (status) {
883 case theory::Theory::PP_ASSERT_STATUS_SOLVED:
884 out << "SOLVE_STATUS_SOLVED"; break;
885 case theory::Theory::PP_ASSERT_STATUS_UNSOLVED:
886 out << "SOLVE_STATUS_UNSOLVED"; break;
887 case theory::Theory::PP_ASSERT_STATUS_CONFLICT:
888 out << "SOLVE_STATUS_CONFLICT"; break;
889 default:
890 Unhandled();
891 }
892 return out;
893 }
894
895 class EntailmentCheckParameters {
896 private:
897 TheoryId d_tid;
898 protected:
899 EntailmentCheckParameters(TheoryId tid);
900 public:
901 TheoryId getTheoryId() const;
902 virtual ~EntailmentCheckParameters();
903 };/* class EntailmentCheckParameters */
904
905 class EntailmentCheckSideEffects {
906 private:
907 TheoryId d_tid;
908 protected:
909 EntailmentCheckSideEffects(TheoryId tid);
910 public:
911 TheoryId getTheoryId() const;
912 virtual ~EntailmentCheckSideEffects();
913 };/* class EntailmentCheckSideEffects */
914
915 }/* CVC4::theory namespace */
916 }/* CVC4 namespace */
917
918 #endif /* CVC4__THEORY__THEORY_H */