Disable constants sharing in eq engine, disable hack in theory engine. Changes to...
[cvc5.git] / src / theory / theory_engine.cpp
1 /********************* */
2 /*! \file theory_engine.cpp
3 ** \verbatim
4 ** Original author: Morgan Deters
5 ** Major contributors: Dejan Jovanovic
6 ** Minor contributors (to current version): Christopher L. Conway, Tianyi Liang, Kshitij Bansal, Clark Barrett, Liana Hadarean, Andrew Reynolds, Tim King
7 ** This file is part of the CVC4 project.
8 ** Copyright (c) 2009-2014 New York University and The University of Iowa
9 ** See the file COPYING in the top-level source directory for licensing
10 ** information.\endverbatim
11 **
12 ** \brief The theory engine
13 **
14 ** The theory engine.
15 **/
16
17 #include <vector>
18 #include <list>
19
20 #include "theory/arith/arith_ite_utils.h"
21
22 #include "decision/decision_engine.h"
23
24 #include "expr/attribute.h"
25 #include "expr/node.h"
26 #include "expr/node_builder.h"
27 #include "options/options.h"
28 #include "util/lemma_output_channel.h"
29 #include "util/resource_manager.h"
30
31 #include "theory/theory.h"
32 #include "theory/theory_engine.h"
33 #include "theory/rewriter.h"
34 #include "theory/theory_traits.h"
35
36 #include "smt/logic_exception.h"
37
38 #include "proof/proof_manager.h"
39
40 #include "util/node_visitor.h"
41 #include "util/ite_removal.h"
42
43 //#include "theory/ite_simplifier.h"
44 //#include "theory/ite_compressor.h"
45 #include "theory/ite_utilities.h"
46 #include "theory/unconstrained_simplifier.h"
47
48 #include "theory/theory_model.h"
49
50 #include "theory/quantifiers_engine.h"
51 #include "theory/quantifiers/theory_quantifiers.h"
52 #include "theory/quantifiers/options.h"
53 #include "theory/quantifiers/model_engine.h"
54 #include "theory/quantifiers/first_order_model.h"
55
56 #include "theory/uf/equality_engine.h"
57 //#include "theory/rewriterules/efficient_e_matching.h"
58 #include "theory/bv/theory_bv_utils.h"
59 #include "theory/bv/options.h"
60
61 #include "proof/proof_manager.h"
62
63 using namespace std;
64
65 using namespace CVC4;
66 using namespace CVC4::theory;
67
68 void TheoryEngine::finishInit() {
69 PROOF (ProofManager::initTheoryProof(); );
70
71 // initialize the quantifiers engine
72 d_quantEngine = new QuantifiersEngine(d_context, d_userContext, this);
73
74 if (d_logicInfo.isQuantified()) {
75 d_quantEngine->finishInit();
76 Assert(d_masterEqualityEngine == 0);
77 d_masterEqualityEngine = new eq::EqualityEngine(d_masterEENotify,getSatContext(), "theory::master");
78
79 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
80 if (d_theoryTable[theoryId]) {
81 d_theoryTable[theoryId]->setQuantifiersEngine(d_quantEngine);
82 d_theoryTable[theoryId]->setMasterEqualityEngine(d_masterEqualityEngine);
83 }
84 }
85 }
86
87 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
88 if (d_theoryTable[theoryId]) {
89 d_theoryTable[theoryId]->finishInit();
90 }
91 }
92 }
93
94 void TheoryEngine::eqNotifyNewClass(TNode t){
95 d_quantEngine->addTermToDatabase( t );
96 }
97
98 void TheoryEngine::eqNotifyPreMerge(TNode t1, TNode t2){
99
100 }
101
102 void TheoryEngine::eqNotifyPostMerge(TNode t1, TNode t2){
103
104 }
105
106 void TheoryEngine::eqNotifyDisequal(TNode t1, TNode t2, TNode reason){
107 if( d_logicInfo.isQuantified() ){
108 if( options::quantConflictFind() ){
109 d_quantEngine->getConflictFind()->assertDisequal( t1, t2 );
110 }
111 }
112 }
113
114
115 TheoryEngine::TheoryEngine(context::Context* context,
116 context::UserContext* userContext,
117 RemoveITE& iteRemover,
118 const LogicInfo& logicInfo)
119 : d_propEngine(NULL),
120 d_decisionEngine(NULL),
121 d_context(context),
122 d_userContext(userContext),
123 d_logicInfo(logicInfo),
124 d_sharedTerms(this, context),
125 d_masterEqualityEngine(NULL),
126 d_masterEENotify(*this),
127 d_quantEngine(NULL),
128 d_curr_model(NULL),
129 d_curr_model_builder(NULL),
130 d_ppCache(),
131 d_possiblePropagations(context),
132 d_hasPropagated(context),
133 d_inConflict(context, false),
134 d_hasShutDown(false),
135 d_incomplete(context, false),
136 d_propagationMap(context),
137 d_propagationMapTimestamp(context, 0),
138 d_propagatedLiterals(context),
139 d_propagatedLiteralsIndex(context, 0),
140 d_atomRequests(context),
141 d_iteRemover(iteRemover),
142 d_combineTheoriesTime("TheoryEngine::combineTheoriesTime"),
143 d_true(),
144 d_false(),
145 d_interrupted(false),
146 d_resourceManager(NodeManager::currentResourceManager()),
147 d_inPreregister(false),
148 d_factsAsserted(context, false),
149 d_preRegistrationVisitor(this, context),
150 d_sharedTermsVisitor(d_sharedTerms),
151 d_unconstrainedSimp(new UnconstrainedSimplifier(context, logicInfo)),
152 d_bvToBoolPreprocessor(),
153 d_arithSubstitutionsAdded("theory::arith::zzz::arith::substitutions", 0)
154 {
155 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
156 d_theoryTable[theoryId] = NULL;
157 d_theoryOut[theoryId] = NULL;
158 }
159
160 // build model information if applicable
161 d_curr_model = new theory::TheoryModel(userContext, "DefaultModel", true);
162 d_curr_model_builder = new theory::TheoryEngineModelBuilder(this);
163
164 StatisticsRegistry::registerStat(&d_combineTheoriesTime);
165 d_true = NodeManager::currentNM()->mkConst<bool>(true);
166 d_false = NodeManager::currentNM()->mkConst<bool>(false);
167
168 d_iteUtilities = new ITEUtilities(d_iteRemover.getContainsVisitor());
169
170 StatisticsRegistry::registerStat(&d_arithSubstitutionsAdded);
171 }
172
173 TheoryEngine::~TheoryEngine() {
174 Assert(d_hasShutDown);
175
176 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId != theory::THEORY_LAST; ++ theoryId) {
177 if(d_theoryTable[theoryId] != NULL) {
178 delete d_theoryTable[theoryId];
179 delete d_theoryOut[theoryId];
180 }
181 }
182
183 delete d_curr_model_builder;
184 delete d_curr_model;
185
186 delete d_quantEngine;
187
188 delete d_masterEqualityEngine;
189
190 StatisticsRegistry::unregisterStat(&d_combineTheoriesTime);
191
192 delete d_unconstrainedSimp;
193
194 delete d_iteUtilities;
195
196 StatisticsRegistry::unregisterStat(&d_arithSubstitutionsAdded);
197 }
198
199 void TheoryEngine::interrupt() throw(ModalException) {
200 d_interrupted = true;
201 }
202
203 void TheoryEngine::preRegister(TNode preprocessed) {
204
205 if(Dump.isOn("missed-t-propagations")) {
206 d_possiblePropagations.push_back(preprocessed);
207 }
208 d_preregisterQueue.push(preprocessed);
209
210 if (!d_inPreregister) {
211 // We're in pre-register
212 d_inPreregister = true;
213
214 // Process the pre-registration queue
215 while (!d_preregisterQueue.empty()) {
216 // Get the next atom to pre-register
217 preprocessed = d_preregisterQueue.front();
218 d_preregisterQueue.pop();
219
220 if (d_logicInfo.isSharingEnabled() && preprocessed.getKind() == kind::EQUAL) {
221 // When sharing is enabled, we propagate from the shared terms manager also
222 d_sharedTerms.addEqualityToPropagate(preprocessed);
223 }
224
225 // Pre-register the terms in the atom
226 Theory::Set theories = NodeVisitor<PreRegisterVisitor>::run(d_preRegistrationVisitor, preprocessed);
227 theories = Theory::setRemove(THEORY_BOOL, theories);
228 // Remove the top theory, if any more that means multiple theories were involved
229 bool multipleTheories = Theory::setRemove(Theory::theoryOf(preprocessed), theories);
230 TheoryId i;
231 // These checks don't work with finite model finding, because it
232 // uses Rational constants to represent cardinality constraints,
233 // even though arithmetic isn't actually involved.
234 if(!options::finiteModelFind()) {
235 while((i = Theory::setPop(theories)) != THEORY_LAST) {
236 if(!d_logicInfo.isTheoryEnabled(i)) {
237 LogicInfo newLogicInfo = d_logicInfo.getUnlockedCopy();
238 newLogicInfo.enableTheory(i);
239 newLogicInfo.lock();
240 stringstream ss;
241 ss << "The logic was specified as " << d_logicInfo.getLogicString()
242 << ", which doesn't include " << i
243 << ", but found a term in that theory." << endl
244 << "You might want to extend your logic to "
245 << newLogicInfo.getLogicString() << endl;
246 throw LogicException(ss.str());
247 }
248 }
249 }
250 if (multipleTheories) {
251 // Collect the shared terms if there are multiple theories
252 NodeVisitor<SharedTermsVisitor>::run(d_sharedTermsVisitor, preprocessed);
253 }
254 }
255
256 // Leaving pre-register
257 d_inPreregister = false;
258 }
259 }
260
261 void TheoryEngine::printAssertions(const char* tag) {
262 if (Trace.isOn(tag)) {
263
264 for (TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
265 Theory* theory = d_theoryTable[theoryId];
266 if (theory && d_logicInfo.isTheoryEnabled(theoryId)) {
267 Trace(tag) << "--------------------------------------------" << endl;
268 Trace(tag) << "Assertions of " << theory->getId() << ": " << endl;
269 context::CDList<Assertion>::const_iterator it = theory->facts_begin(), it_end = theory->facts_end();
270 for (unsigned i = 0; it != it_end; ++ it, ++i) {
271 if ((*it).isPreregistered) {
272 Trace(tag) << "[" << i << "]: ";
273 } else {
274 Trace(tag) << "(" << i << "): ";
275 }
276 Trace(tag) << (*it).assertion << endl;
277 }
278
279 if (d_logicInfo.isSharingEnabled()) {
280 Trace(tag) << "Shared terms of " << theory->getId() << ": " << endl;
281 context::CDList<TNode>::const_iterator it = theory->shared_terms_begin(), it_end = theory->shared_terms_end();
282 for (unsigned i = 0; it != it_end; ++ it, ++i) {
283 Trace(tag) << "[" << i << "]: " << (*it) << endl;
284 }
285 }
286 }
287 }
288 }
289 }
290
291 void TheoryEngine::dumpAssertions(const char* tag) {
292 if (Dump.isOn(tag)) {
293 Dump(tag) << CommentCommand("Starting completeness check");
294 for (TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
295 Theory* theory = d_theoryTable[theoryId];
296 if (theory && d_logicInfo.isTheoryEnabled(theoryId)) {
297 Dump(tag) << CommentCommand("Completeness check");
298 Dump(tag) << PushCommand();
299
300 // Dump the shared terms
301 if (d_logicInfo.isSharingEnabled()) {
302 Dump(tag) << CommentCommand("Shared terms");
303 context::CDList<TNode>::const_iterator it = theory->shared_terms_begin(), it_end = theory->shared_terms_end();
304 for (unsigned i = 0; it != it_end; ++ it, ++i) {
305 stringstream ss;
306 ss << (*it);
307 Dump(tag) << CommentCommand(ss.str());
308 }
309 }
310
311 // Dump the assertions
312 Dump(tag) << CommentCommand("Assertions");
313 context::CDList<Assertion>::const_iterator it = theory->facts_begin(), it_end = theory->facts_end();
314 for (; it != it_end; ++ it) {
315 // Get the assertion
316 Node assertionNode = (*it).assertion;
317 // Purify all the terms
318
319 if ((*it).isPreregistered) {
320 Dump(tag) << CommentCommand("Preregistered");
321 } else {
322 Dump(tag) << CommentCommand("Shared assertion");
323 }
324 Dump(tag) << AssertCommand(assertionNode.toExpr());
325 }
326 Dump(tag) << CheckSatCommand();
327
328 Dump(tag) << PopCommand();
329 }
330 }
331 }
332 }
333
334 /**
335 * Check all (currently-active) theories for conflicts.
336 * @param effort the effort level to use
337 */
338 void TheoryEngine::check(Theory::Effort effort) {
339 // spendResource();
340
341 // Reset the interrupt flag
342 d_interrupted = false;
343
344 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
345 #undef CVC4_FOR_EACH_THEORY_STATEMENT
346 #endif
347 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
348 if (theory::TheoryTraits<THEORY>::hasCheck && d_logicInfo.isTheoryEnabled(THEORY)) { \
349 theoryOf(THEORY)->check(effort); \
350 if (d_inConflict) { \
351 break; \
352 } \
353 }
354
355 // Do the checking
356 try {
357
358 // Mark the output channel unused (if this is FULL_EFFORT, and nothing
359 // is done by the theories, no additional check will be needed)
360 d_outputChannelUsed = false;
361
362 // Mark the lemmas flag (no lemmas added)
363 d_lemmasAdded = false;
364
365 Debug("theory") << "TheoryEngine::check(" << effort << "): d_factsAsserted = " << (d_factsAsserted ? "true" : "false") << endl;
366
367 // If in full effort, we have a fake new assertion just to jumpstart the checking
368 if (Theory::fullEffort(effort)) {
369 d_factsAsserted = true;
370 }
371
372 // Check until done
373 while (d_factsAsserted && !d_inConflict && !d_lemmasAdded) {
374
375 Debug("theory") << "TheoryEngine::check(" << effort << "): running check" << endl;
376
377 Trace("theory::assertions") << endl;
378 if (Trace.isOn("theory::assertions")) {
379 printAssertions("theory::assertions");
380 }
381
382 if(Theory::fullEffort(effort)) {
383 Trace("theory::assertions::fulleffort") << endl;
384 if (Trace.isOn("theory::assertions::fulleffort")) {
385 printAssertions("theory::assertions::fulleffort");
386 }
387 }
388
389 // Note that we've discharged all the facts
390 d_factsAsserted = false;
391
392 // Do the checking
393 CVC4_FOR_EACH_THEORY;
394
395 if(Dump.isOn("missed-t-conflicts")) {
396 Dump("missed-t-conflicts")
397 << CommentCommand("Completeness check for T-conflicts; expect sat")
398 << CheckSatCommand();
399 }
400
401 Debug("theory") << "TheoryEngine::check(" << effort << "): running propagation after the initial check" << endl;
402
403 // We are still satisfiable, propagate as much as possible
404 propagate(effort);
405
406 // We do combination if all has been processed and we are in fullcheck
407 if (Theory::fullEffort(effort) && d_logicInfo.isSharingEnabled() && !d_factsAsserted && !d_lemmasAdded && !d_inConflict) {
408 // Do the combination
409 Debug("theory") << "TheoryEngine::check(" << effort << "): running combination" << endl;
410 combineTheories();
411 }
412 }
413
414 // Must consult quantifiers theory for last call to ensure sat, or otherwise add a lemma
415 if( effort == Theory::EFFORT_FULL && ! d_inConflict && ! needCheck() ) {
416 //d_theoryTable[THEORY_STRINGS]->check(Theory::EFFORT_LAST_CALL);
417 if(d_logicInfo.isQuantified()) {
418 // quantifiers engine must pass effort last call check
419 d_quantEngine->check(Theory::EFFORT_LAST_CALL);
420 // if we have given up, then possibly flip decision
421 if(options::flipDecision()) {
422 if(d_incomplete && !d_inConflict && !needCheck()) {
423 ((theory::quantifiers::TheoryQuantifiers*) d_theoryTable[THEORY_QUANTIFIERS])->flipDecision();
424 }
425 }
426 // if returning incomplete or SAT, we have ensured that the model in the quantifiers engine has been built
427 } else if(options::produceModels()) {
428 // must build model at this point
429 d_curr_model_builder->buildModel(d_curr_model, true);
430 }
431 Trace("theory::assertions-model") << endl;
432 if (Trace.isOn("theory::assertions-model")) {
433 printAssertions("theory::assertions-model");
434 }
435 }
436
437 Debug("theory") << "TheoryEngine::check(" << effort << "): done, we are " << (d_inConflict ? "unsat" : "sat") << (d_lemmasAdded ? " with new lemmas" : " with no new lemmas") << endl;
438
439 if(!d_inConflict && Theory::fullEffort(effort) && d_masterEqualityEngine != NULL && !d_lemmasAdded) {
440 AlwaysAssert(d_masterEqualityEngine->consistent());
441 }
442 } catch(const theory::Interrupted&) {
443 Trace("theory") << "TheoryEngine::check() => interrupted" << endl;
444 }
445 // If fulleffort, check all theories
446 if(Dump.isOn("theory::fullcheck") && Theory::fullEffort(effort)) {
447 if (!d_inConflict && !needCheck()) {
448 dumpAssertions("theory::fullcheck");
449 }
450 }
451 }
452
453 void TheoryEngine::combineTheories() {
454
455 Trace("combineTheories") << "TheoryEngine::combineTheories()" << endl;
456
457 TimerStat::CodeTimer combineTheoriesTimer(d_combineTheoriesTime);
458
459 // Care graph we'll be building
460 CareGraph careGraph;
461
462 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
463 #undef CVC4_FOR_EACH_THEORY_STATEMENT
464 #endif
465 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
466 if (theory::TheoryTraits<THEORY>::isParametric && d_logicInfo.isTheoryEnabled(THEORY)) { \
467 theoryOf(THEORY)->getCareGraph(careGraph); \
468 }
469
470 // Call on each parametric theory to give us its care graph
471 CVC4_FOR_EACH_THEORY;
472
473 Trace("combineTheories") << "TheoryEngine::combineTheories(): care graph size = " << careGraph.size() << endl;
474
475 // Now add splitters for the ones we are interested in
476 CareGraph::const_iterator care_it = careGraph.begin();
477 CareGraph::const_iterator care_it_end = careGraph.end();
478
479 for (; care_it != care_it_end; ++ care_it) {
480 const CarePair& carePair = *care_it;
481
482 Debug("combineTheories") << "TheoryEngine::combineTheories(): checking " << carePair.a << " = " << carePair.b << " from " << carePair.theory << endl;
483
484 Assert(d_sharedTerms.isShared(carePair.a) || carePair.a.isConst());
485 Assert(d_sharedTerms.isShared(carePair.b) || carePair.b.isConst());
486
487 // The equality in question (order for no repetition)
488 Node equality = carePair.a.eqNode(carePair.b);
489 // EqualityStatus es = getEqualityStatus(carePair.a, carePair.b);
490 // Debug("combineTheories") << "TheoryEngine::combineTheories(): " <<
491 // (es == EQUALITY_TRUE_AND_PROPAGATED ? "EQUALITY_TRUE_AND_PROPAGATED" :
492 // es == EQUALITY_FALSE_AND_PROPAGATED ? "EQUALITY_FALSE_AND_PROPAGATED" :
493 // es == EQUALITY_TRUE ? "EQUALITY_TRUE" :
494 // es == EQUALITY_FALSE ? "EQUALITY_FALSE" :
495 // es == EQUALITY_TRUE_IN_MODEL ? "EQUALITY_TRUE_IN_MODEL" :
496 // es == EQUALITY_FALSE_IN_MODEL ? "EQUALITY_FALSE_IN_MODEL" :
497 // es == EQUALITY_UNKNOWN ? "EQUALITY_UNKNOWN" :
498 // "Unexpected case") << endl;
499
500 // We need to split on it
501 Debug("combineTheories") << "TheoryEngine::combineTheories(): requesting a split " << endl;
502 lemma(equality.orNode(equality.notNode()), false, false, false, carePair.theory);
503 // This code is supposed to force preference to follow what the theory models already have
504 // but it doesn't seem to make a big difference - need to explore more -Clark
505 // if (true) {
506 // if (es == EQUALITY_TRUE || es == EQUALITY_TRUE_IN_MODEL) {
507 Node e = ensureLiteral(equality);
508 d_propEngine->requirePhase(e, true);
509 // }
510 // else if (es == EQUALITY_FALSE_IN_MODEL) {
511 // Node e = ensureLiteral(equality);
512 // d_propEngine->requirePhase(e, false);
513 // }
514 // }
515 }
516 }
517
518 void TheoryEngine::propagate(Theory::Effort effort) {
519 // Reset the interrupt flag
520 d_interrupted = false;
521
522 // Definition of the statement that is to be run by every theory
523 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
524 #undef CVC4_FOR_EACH_THEORY_STATEMENT
525 #endif
526 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
527 if (theory::TheoryTraits<THEORY>::hasPropagate && d_logicInfo.isTheoryEnabled(THEORY)) { \
528 theoryOf(THEORY)->propagate(effort); \
529 }
530
531 // Reset the interrupt flag
532 d_interrupted = false;
533
534 // Propagate for each theory using the statement above
535 CVC4_FOR_EACH_THEORY;
536
537 if(Dump.isOn("missed-t-propagations")) {
538 for(unsigned i = 0; i < d_possiblePropagations.size(); ++i) {
539 Node atom = d_possiblePropagations[i];
540 bool value;
541 if(d_propEngine->hasValue(atom, value)) {
542 continue;
543 }
544 // Doesn't have a value, check it (and the negation)
545 if(d_hasPropagated.find(atom) == d_hasPropagated.end()) {
546 Dump("missed-t-propagations")
547 << CommentCommand("Completeness check for T-propagations; expect invalid")
548 << EchoCommand(atom.toString())
549 << QueryCommand(atom.toExpr())
550 << EchoCommand(atom.notNode().toString())
551 << QueryCommand(atom.notNode().toExpr());
552 }
553 }
554 }
555 }
556
557 Node TheoryEngine::getNextDecisionRequest() {
558 // Definition of the statement that is to be run by every theory
559 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
560 #undef CVC4_FOR_EACH_THEORY_STATEMENT
561 #endif
562 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
563 if (theory::TheoryTraits<THEORY>::hasGetNextDecisionRequest && d_logicInfo.isTheoryEnabled(THEORY)) { \
564 Node n = theoryOf(THEORY)->getNextDecisionRequest(); \
565 if(! n.isNull()) { \
566 return n; \
567 } \
568 }
569
570 // Request decision from each theory using the statement above
571 CVC4_FOR_EACH_THEORY;
572
573 return TNode();
574 }
575
576 bool TheoryEngine::properConflict(TNode conflict) const {
577 bool value;
578 if (conflict.getKind() == kind::AND) {
579 for (unsigned i = 0; i < conflict.getNumChildren(); ++ i) {
580 if (! getPropEngine()->hasValue(conflict[i], value)) {
581 Debug("properConflict") << "Bad conflict is due to unassigned atom: "
582 << conflict[i] << endl;
583 return false;
584 }
585 if (! value) {
586 Debug("properConflict") << "Bad conflict is due to false atom: "
587 << conflict[i] << endl;
588 return false;
589 }
590 if (conflict[i] != Rewriter::rewrite(conflict[i])) {
591 Debug("properConflict") << "Bad conflict is due to atom not in normal form: "
592 << conflict[i] << " vs " << Rewriter::rewrite(conflict[i]) << endl;
593 return false;
594 }
595 }
596 } else {
597 if (! getPropEngine()->hasValue(conflict, value)) {
598 Debug("properConflict") << "Bad conflict is due to unassigned atom: "
599 << conflict << endl;
600 return false;
601 }
602 if(! value) {
603 Debug("properConflict") << "Bad conflict is due to false atom: "
604 << conflict << endl;
605 return false;
606 }
607 if (conflict != Rewriter::rewrite(conflict)) {
608 Debug("properConflict") << "Bad conflict is due to atom not in normal form: "
609 << conflict << " vs " << Rewriter::rewrite(conflict) << endl;
610 return false;
611 }
612 }
613 return true;
614 }
615
616 bool TheoryEngine::properPropagation(TNode lit) const {
617 if(!getPropEngine()->isSatLiteral(lit)) {
618 return false;
619 }
620 bool b;
621 return !getPropEngine()->hasValue(lit, b);
622 }
623
624 bool TheoryEngine::properExplanation(TNode node, TNode expl) const {
625 // Explanation must be either a conjunction of true literals that have true SAT values already
626 // or a singled literal that has a true SAT value already.
627 if (expl.getKind() == kind::AND) {
628 for (unsigned i = 0; i < expl.getNumChildren(); ++ i) {
629 bool value;
630 if (!d_propEngine->hasValue(expl[i], value) || !value) {
631 return false;
632 }
633 }
634 } else {
635 bool value;
636 return d_propEngine->hasValue(expl, value) && value;
637 }
638 return true;
639 }
640
641 void TheoryEngine::collectModelInfo( theory::TheoryModel* m, bool fullModel ){
642 //have shared term engine collectModelInfo
643 // d_sharedTerms.collectModelInfo( m, fullModel );
644 // Consult each active theory to get all relevant information
645 // concerning the model.
646 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId < theory::THEORY_LAST; ++theoryId) {
647 if(d_logicInfo.isTheoryEnabled(theoryId)) {
648 Trace("model-builder") << " CollectModelInfo on theory: " << theoryId << endl;
649 d_theoryTable[theoryId]->collectModelInfo( m, fullModel );
650 }
651 }
652 // Get the Boolean variables
653 vector<TNode> boolVars;
654 d_propEngine->getBooleanVariables(boolVars);
655 vector<TNode>::iterator it, iend = boolVars.end();
656 bool hasValue, value;
657 for (it = boolVars.begin(); it != iend; ++it) {
658 TNode var = *it;
659 hasValue = d_propEngine->hasValue(var, value);
660 // TODO: Assert that hasValue is true?
661 if (!hasValue) {
662 value = false;
663 }
664 Trace("model-builder-assertions") << "(assert" << (value ? " " : " (not ") << var << (value ? ");" : "));") << endl;
665 m->assertPredicate(var, value);
666 }
667 }
668
669 /* get model */
670 TheoryModel* TheoryEngine::getModel() {
671 Debug("model") << "TheoryEngine::getModel()" << endl;
672 if( d_logicInfo.isQuantified() ) {
673 Debug("model") << "Get model from quantifiers engine." << endl;
674 return d_quantEngine->getModel();
675 } else {
676 Debug("model") << "Get default model." << endl;
677 return d_curr_model;
678 }
679 }
680
681 bool TheoryEngine::presolve() {
682 // Reset the interrupt flag
683 d_interrupted = false;
684
685 try {
686 // Definition of the statement that is to be run by every theory
687 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
688 #undef CVC4_FOR_EACH_THEORY_STATEMENT
689 #endif
690 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
691 if (theory::TheoryTraits<THEORY>::hasPresolve) { \
692 theoryOf(THEORY)->presolve(); \
693 if(d_inConflict) { \
694 return true; \
695 } \
696 }
697
698 // Presolve for each theory using the statement above
699 CVC4_FOR_EACH_THEORY;
700 } catch(const theory::Interrupted&) {
701 Trace("theory") << "TheoryEngine::presolve() => interrupted" << endl;
702 }
703 // return whether we have a conflict
704 return false;
705 }/* TheoryEngine::presolve() */
706
707 void TheoryEngine::postsolve() {
708 // Reset the interrupt flag
709 d_interrupted = false;
710 bool CVC4_UNUSED wasInConflict = d_inConflict;
711
712 try {
713 // Definition of the statement that is to be run by every theory
714 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
715 #undef CVC4_FOR_EACH_THEORY_STATEMENT
716 #endif
717 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
718 if (theory::TheoryTraits<THEORY>::hasPostsolve) { \
719 theoryOf(THEORY)->postsolve(); \
720 Assert(! d_inConflict || wasInConflict, "conflict raised during postsolve()"); \
721 }
722
723 // Postsolve for each theory using the statement above
724 CVC4_FOR_EACH_THEORY;
725 } catch(const theory::Interrupted&) {
726 Trace("theory") << "TheoryEngine::postsolve() => interrupted" << endl;
727 }
728 }/* TheoryEngine::postsolve() */
729
730
731 void TheoryEngine::notifyRestart() {
732 // Reset the interrupt flag
733 d_interrupted = false;
734
735 // Definition of the statement that is to be run by every theory
736 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
737 #undef CVC4_FOR_EACH_THEORY_STATEMENT
738 #endif
739 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
740 if (theory::TheoryTraits<THEORY>::hasNotifyRestart && d_logicInfo.isTheoryEnabled(THEORY)) { \
741 theoryOf(THEORY)->notifyRestart(); \
742 }
743
744 // notify each theory using the statement above
745 CVC4_FOR_EACH_THEORY;
746 }
747
748 void TheoryEngine::ppStaticLearn(TNode in, NodeBuilder<>& learned) {
749 // Reset the interrupt flag
750 d_interrupted = false;
751
752 // Definition of the statement that is to be run by every theory
753 #ifdef CVC4_FOR_EACH_THEORY_STATEMENT
754 #undef CVC4_FOR_EACH_THEORY_STATEMENT
755 #endif
756 #define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
757 if (theory::TheoryTraits<THEORY>::hasPpStaticLearn) { \
758 theoryOf(THEORY)->ppStaticLearn(in, learned); \
759 }
760
761 // static learning for each theory using the statement above
762 CVC4_FOR_EACH_THEORY;
763 }
764
765 void TheoryEngine::shutdown() {
766 // Set this first; if a Theory shutdown() throws an exception,
767 // at least the destruction of the TheoryEngine won't confound
768 // matters.
769 d_hasShutDown = true;
770
771 // Shutdown all the theories
772 for(TheoryId theoryId = theory::THEORY_FIRST; theoryId < theory::THEORY_LAST; ++theoryId) {
773 if(d_theoryTable[theoryId]) {
774 theoryOf(theoryId)->shutdown();
775 }
776 }
777
778 d_ppCache.clear();
779 }
780
781 theory::Theory::PPAssertStatus TheoryEngine::solve(TNode literal, SubstitutionMap& substitutionOut) {
782 // Reset the interrupt flag
783 d_interrupted = false;
784
785 TNode atom = literal.getKind() == kind::NOT ? literal[0] : literal;
786 Trace("theory::solve") << "TheoryEngine::solve(" << literal << "): solving with " << theoryOf(atom)->getId() << endl;
787
788 if(! d_logicInfo.isTheoryEnabled(Theory::theoryOf(atom)) &&
789 Theory::theoryOf(atom) != THEORY_SAT_SOLVER) {
790 stringstream ss;
791 ss << "The logic was specified as " << d_logicInfo.getLogicString()
792 << ", which doesn't include " << Theory::theoryOf(atom)
793 << ", but got a preprocessing-time fact for that theory." << endl
794 << "The fact:" << endl
795 << literal;
796 throw LogicException(ss.str());
797 }
798
799 Theory::PPAssertStatus solveStatus = theoryOf(atom)->ppAssert(literal, substitutionOut);
800 Trace("theory::solve") << "TheoryEngine::solve(" << literal << ") => " << solveStatus << endl;
801 return solveStatus;
802 }
803
804 // Recursively traverse a term and call the theory rewriter on its sub-terms
805 Node TheoryEngine::ppTheoryRewrite(TNode term) {
806 NodeMap::iterator find = d_ppCache.find(term);
807 if (find != d_ppCache.end()) {
808 return (*find).second;
809 }
810 unsigned nc = term.getNumChildren();
811 if (nc == 0) {
812 return theoryOf(term)->ppRewrite(term);
813 }
814 Trace("theory-pp") << "ppTheoryRewrite { " << term << endl;
815
816 Node newTerm;
817 if (theoryOf(term)->ppDontRewriteSubterm(term)) {
818 newTerm = Rewriter::rewrite(term);
819 } else {
820 NodeBuilder<> newNode(term.getKind());
821 if (term.getMetaKind() == kind::metakind::PARAMETERIZED) {
822 newNode << term.getOperator();
823 }
824 unsigned i;
825 for (i = 0; i < nc; ++i) {
826 newNode << ppTheoryRewrite(term[i]);
827 }
828 newTerm = Rewriter::rewrite(Node(newNode));
829 }
830 Node newTerm2 = theoryOf(newTerm)->ppRewrite(newTerm);
831 if (newTerm != newTerm2) {
832 newTerm = ppTheoryRewrite(Rewriter::rewrite(newTerm2));
833 }
834 d_ppCache[term] = newTerm;
835 Trace("theory-pp")<< "ppTheoryRewrite returning " << newTerm << "}" << endl;
836 return newTerm;
837 }
838
839
840 void TheoryEngine::preprocessStart()
841 {
842 d_ppCache.clear();
843 }
844
845
846 struct preprocess_stack_element {
847 TNode node;
848 bool children_added;
849 preprocess_stack_element(TNode node)
850 : node(node), children_added(false) {}
851 };/* struct preprocess_stack_element */
852
853
854 Node TheoryEngine::preprocess(TNode assertion) {
855
856 Trace("theory::preprocess") << "TheoryEngine::preprocess(" << assertion << ")" << endl;
857 // spendResource();
858
859 // Do a topological sort of the subexpressions and substitute them
860 vector<preprocess_stack_element> toVisit;
861 toVisit.push_back(assertion);
862
863 while (!toVisit.empty())
864 {
865 // The current node we are processing
866 preprocess_stack_element& stackHead = toVisit.back();
867 TNode current = stackHead.node;
868
869 Debug("theory::internal") << "TheoryEngine::preprocess(" << assertion << "): processing " << current << endl;
870
871 // If node already in the cache we're done, pop from the stack
872 NodeMap::iterator find = d_ppCache.find(current);
873 if (find != d_ppCache.end()) {
874 toVisit.pop_back();
875 continue;
876 }
877
878 if(! d_logicInfo.isTheoryEnabled(Theory::theoryOf(current)) &&
879 Theory::theoryOf(current) != THEORY_SAT_SOLVER) {
880 stringstream ss;
881 ss << "The logic was specified as " << d_logicInfo.getLogicString()
882 << ", which doesn't include " << Theory::theoryOf(current)
883 << ", but got a preprocessing-time fact for that theory." << endl
884 << "The fact:" << endl
885 << current;
886 throw LogicException(ss.str());
887 }
888
889 // If this is an atom, we preprocess its terms with the theory ppRewriter
890 if (Theory::theoryOf(current) != THEORY_BOOL) {
891 Node ppRewritten = ppTheoryRewrite(current);
892 d_ppCache[current] = ppRewritten;
893 Assert(Rewriter::rewrite(d_ppCache[current]) == d_ppCache[current]);
894 continue;
895 }
896
897 // Not yet substituted, so process
898 if (stackHead.children_added) {
899 // Children have been processed, so substitute
900 NodeBuilder<> builder(current.getKind());
901 if (current.getMetaKind() == kind::metakind::PARAMETERIZED) {
902 builder << current.getOperator();
903 }
904 for (unsigned i = 0; i < current.getNumChildren(); ++ i) {
905 Assert(d_ppCache.find(current[i]) != d_ppCache.end());
906 builder << d_ppCache[current[i]];
907 }
908 // Mark the substitution and continue
909 Node result = builder;
910 if (result != current) {
911 result = Rewriter::rewrite(result);
912 }
913 Debug("theory::internal") << "TheoryEngine::preprocess(" << assertion << "): setting " << current << " -> " << result << endl;
914 d_ppCache[current] = result;
915 toVisit.pop_back();
916 } else {
917 // Mark that we have added the children if any
918 if (current.getNumChildren() > 0) {
919 stackHead.children_added = true;
920 // We need to add the children
921 for(TNode::iterator child_it = current.begin(); child_it != current.end(); ++ child_it) {
922 TNode childNode = *child_it;
923 NodeMap::iterator childFind = d_ppCache.find(childNode);
924 if (childFind == d_ppCache.end()) {
925 toVisit.push_back(childNode);
926 }
927 }
928 } else {
929 // No children, so we're done
930 Debug("substitution::internal") << "SubstitutionMap::internalSubstitute(" << assertion << "): setting " << current << " -> " << current << endl;
931 d_ppCache[current] = current;
932 toVisit.pop_back();
933 }
934 }
935 }
936
937 // Return the substituted version
938 return d_ppCache[assertion];
939 }
940
941 bool TheoryEngine::markPropagation(TNode assertion, TNode originalAssertion, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId) {
942
943 // What and where we are asserting
944 NodeTheoryPair toAssert(assertion, toTheoryId, d_propagationMapTimestamp);
945 // What and where it came from
946 NodeTheoryPair toExplain(originalAssertion, fromTheoryId, d_propagationMapTimestamp);
947
948 // See if the theory already got this literal
949 PropagationMap::const_iterator find = d_propagationMap.find(toAssert);
950 if (find != d_propagationMap.end()) {
951 // The theory already knows this
952 Trace("theory::assertToTheory") << "TheoryEngine::markPropagation(): already there" << endl;
953 return false;
954 }
955
956 Trace("theory::assertToTheory") << "TheoryEngine::markPropagation(): marking [" << d_propagationMapTimestamp << "] " << assertion << ", " << toTheoryId << " from " << originalAssertion << ", " << fromTheoryId << endl;
957
958 // Mark the propagation
959 d_propagationMap[toAssert] = toExplain;
960 d_propagationMapTimestamp = d_propagationMapTimestamp + 1;
961
962 return true;
963 }
964
965
966 void TheoryEngine::assertToTheory(TNode assertion, TNode originalAssertion, theory::TheoryId toTheoryId, theory::TheoryId fromTheoryId) {
967
968 Trace("theory::assertToTheory") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << ")" << endl;
969
970 Assert(toTheoryId != fromTheoryId);
971 if(! d_logicInfo.isTheoryEnabled(toTheoryId) &&
972 toTheoryId != THEORY_SAT_SOLVER) {
973 stringstream ss;
974 ss << "The logic was specified as " << d_logicInfo.getLogicString()
975 << ", which doesn't include " << toTheoryId
976 << ", but got an asserted fact to that theory." << endl
977 << "The fact:" << endl
978 << assertion;
979 throw LogicException(ss.str());
980 }
981
982 if (d_inConflict) {
983 return;
984 }
985
986 // If sharing is disabled, things are easy
987 if (!d_logicInfo.isSharingEnabled()) {
988 Assert(assertion == originalAssertion);
989 if (fromTheoryId == THEORY_SAT_SOLVER) {
990 // Send to the apropriate theory
991 theory::Theory* toTheory = theoryOf(toTheoryId);
992 // We assert it, and we know it's preregistereed
993 toTheory->assertFact(assertion, true);
994 // Mark that we have more information
995 d_factsAsserted = true;
996 } else {
997 Assert(toTheoryId == THEORY_SAT_SOLVER);
998 // Check for propositional conflict
999 bool value;
1000 if (d_propEngine->hasValue(assertion, value)) {
1001 if (!value) {
1002 Trace("theory::propagate") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << "): conflict (no sharing)" << endl;
1003 d_inConflict = true;
1004 } else {
1005 return;
1006 }
1007 }
1008 d_propagatedLiterals.push_back(assertion);
1009 }
1010 return;
1011 }
1012
1013 // Polarity of the assertion
1014 bool polarity = assertion.getKind() != kind::NOT;
1015
1016 // Atom of the assertion
1017 TNode atom = polarity ? assertion : assertion[0];
1018
1019 // If sending to the shared terms database, it's also simple
1020 if (toTheoryId == THEORY_BUILTIN) {
1021 Assert(atom.getKind() == kind::EQUAL, "atom should be an EQUALity, not `%s'", atom.toString().c_str());
1022 if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
1023 d_sharedTerms.assertEquality(atom, polarity, assertion);
1024 }
1025 return;
1026 }
1027
1028 // Things from the SAT solver are already normalized, so they go
1029 // directly to the apropriate theory
1030 if (fromTheoryId == THEORY_SAT_SOLVER) {
1031 // We know that this is normalized, so just send it off to the theory
1032 if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
1033 // Is it preregistered
1034 bool preregistered = d_propEngine->isSatLiteral(assertion) && Theory::theoryOf(assertion) == toTheoryId;
1035 // We assert it
1036 theoryOf(toTheoryId)->assertFact(assertion, preregistered);
1037 // Mark that we have more information
1038 d_factsAsserted = true;
1039 }
1040 return;
1041 }
1042
1043 // Propagations to the SAT solver are just enqueued for pickup by
1044 // the SAT solver later
1045 if (toTheoryId == THEORY_SAT_SOLVER) {
1046 if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
1047 // Enqueue for propagation to the SAT solver
1048 d_propagatedLiterals.push_back(assertion);
1049 // Check for propositional conflicts
1050 bool value;
1051 if (d_propEngine->hasValue(assertion, value) && !value) {
1052 Trace("theory::propagate") << "TheoryEngine::assertToTheory(" << assertion << ", " << toTheoryId << ", " << fromTheoryId << "): conflict (sharing)" << endl;
1053 d_inConflict = true;
1054 }
1055 }
1056 return;
1057 }
1058
1059 Assert(atom.getKind() == kind::EQUAL);
1060
1061 // Normalize
1062 Node normalizedLiteral = Rewriter::rewrite(assertion);
1063
1064 // See if it rewrites false directly -> conflict
1065 if (normalizedLiteral.isConst()) {
1066 if (!normalizedLiteral.getConst<bool>()) {
1067 // Mark the propagation for explanations
1068 if (markPropagation(normalizedLiteral, originalAssertion, toTheoryId, fromTheoryId)) {
1069 // Get the explanation (conflict will figure out where it came from)
1070 conflict(normalizedLiteral, toTheoryId);
1071 } else {
1072 Unreachable();
1073 }
1074 return;
1075 }
1076 }
1077
1078 // Try and assert (note that we assert the non-normalized one)
1079 if (markPropagation(assertion, originalAssertion, toTheoryId, fromTheoryId)) {
1080 // Check if has been pre-registered with the theory
1081 bool preregistered = d_propEngine->isSatLiteral(assertion) && Theory::theoryOf(assertion) == toTheoryId;
1082 // Assert away
1083 theoryOf(toTheoryId)->assertFact(assertion, preregistered);
1084 d_factsAsserted = true;
1085 }
1086
1087 return;
1088 }
1089
1090 void TheoryEngine::assertFact(TNode literal)
1091 {
1092 Trace("theory") << "TheoryEngine::assertFact(" << literal << ")" << endl;
1093
1094 // spendResource();
1095
1096 // If we're in conflict, nothing to do
1097 if (d_inConflict) {
1098 return;
1099 }
1100
1101 // Get the atom
1102 bool polarity = literal.getKind() != kind::NOT;
1103 TNode atom = polarity ? literal : literal[0];
1104
1105 if (d_logicInfo.isSharingEnabled()) {
1106
1107 // If any shared terms, it's time to do sharing work
1108 if (d_sharedTerms.hasSharedTerms(atom)) {
1109 // Notify the theories the shared terms
1110 SharedTermsDatabase::shared_terms_iterator it = d_sharedTerms.begin(atom);
1111 SharedTermsDatabase::shared_terms_iterator it_end = d_sharedTerms.end(atom);
1112 for (; it != it_end; ++ it) {
1113 TNode term = *it;
1114 Theory::Set theories = d_sharedTerms.getTheoriesToNotify(atom, term);
1115 for (TheoryId id = THEORY_FIRST; id != THEORY_LAST; ++ id) {
1116 if (Theory::setContains(id, theories)) {
1117 theoryOf(id)->addSharedTermInternal(term);
1118 }
1119 }
1120 d_sharedTerms.markNotified(term, theories);
1121 }
1122 }
1123
1124 // If it's an equality, assert it to the shared term manager, even though the terms are not
1125 // yet shared. As the terms become shared later, the shared terms manager will then add them
1126 // to the assert the equality to the interested theories
1127 if (atom.getKind() == kind::EQUAL) {
1128 // Assert it to the the owning theory
1129 assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
1130 // Shared terms manager will assert to interested theories directly, as the terms become shared
1131 assertToTheory(literal, literal, /* to */ THEORY_BUILTIN, /* from */ THEORY_SAT_SOLVER);
1132
1133 // Now, let's check for any atom triggers from lemmas
1134 AtomRequests::atom_iterator it = d_atomRequests.getAtomIterator(atom);
1135 while (!it.done()) {
1136 const AtomRequests::Request& request = it.get();
1137 Node toAssert = polarity ? (Node) request.atom : request.atom.notNode();
1138 Debug("theory::atoms") << "TheoryEngine::assertFact(" << literal << "): sending requested " << toAssert << endl;
1139 assertToTheory(toAssert, literal, request.toTheory, THEORY_SAT_SOLVER);
1140 it.next();
1141 }
1142
1143 } else {
1144 // Not an equality, just assert to the appropriate theory
1145 assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
1146 }
1147 } else {
1148 // Assert the fact to the appropriate theory directly
1149 assertToTheory(literal, literal, /* to */ Theory::theoryOf(atom), /* from */ THEORY_SAT_SOLVER);
1150 }
1151 }
1152
1153 bool TheoryEngine::propagate(TNode literal, theory::TheoryId theory) {
1154
1155 Debug("theory::propagate") << "TheoryEngine::propagate(" << literal << ", " << theory << ")" << endl;
1156
1157 // spendResource();
1158
1159 if(Dump.isOn("t-propagations")) {
1160 Dump("t-propagations") << CommentCommand("negation of theory propagation: expect valid")
1161 << QueryCommand(literal.toExpr());
1162 }
1163 if(Dump.isOn("missed-t-propagations")) {
1164 d_hasPropagated.insert(literal);
1165 }
1166
1167 // Get the atom
1168 bool polarity = literal.getKind() != kind::NOT;
1169 TNode atom = polarity ? literal : literal[0];
1170
1171 if (d_logicInfo.isSharingEnabled() && atom.getKind() == kind::EQUAL) {
1172 if (d_propEngine->isSatLiteral(literal)) {
1173 // We propagate SAT literals to SAT
1174 assertToTheory(literal, literal, /* to */ THEORY_SAT_SOLVER, /* from */ theory);
1175 }
1176 if (theory != THEORY_BUILTIN) {
1177 // Assert to the shared terms database
1178 assertToTheory(literal, literal, /* to */ THEORY_BUILTIN, /* from */ theory);
1179 }
1180 } else {
1181 // Just send off to the SAT solver
1182 Assert(d_propEngine->isSatLiteral(literal));
1183 assertToTheory(literal, literal, /* to */ THEORY_SAT_SOLVER, /* from */ theory);
1184 }
1185
1186 return !d_inConflict;
1187 }
1188
1189
1190 theory::EqualityStatus TheoryEngine::getEqualityStatus(TNode a, TNode b) {
1191 Assert(a.getType().isComparableTo(b.getType()));
1192 if (d_sharedTerms.isShared(a) && d_sharedTerms.isShared(b)) {
1193 if (d_sharedTerms.areEqual(a,b)) {
1194 return EQUALITY_TRUE_AND_PROPAGATED;
1195 }
1196 else if (d_sharedTerms.areDisequal(a,b)) {
1197 return EQUALITY_FALSE_AND_PROPAGATED;
1198 }
1199 }
1200 return theoryOf(Theory::theoryOf(a.getType()))->getEqualityStatus(a, b);
1201 }
1202
1203 Node TheoryEngine::getModelValue(TNode var) {
1204 Assert(d_sharedTerms.isShared(var));
1205 return theoryOf(Theory::theoryOf(var.getType()))->getModelValue(var);
1206 }
1207
1208
1209 Node TheoryEngine::ensureLiteral(TNode n) {
1210 Debug("ensureLiteral") << "rewriting: " << n << std::endl;
1211 Node rewritten = Rewriter::rewrite(n);
1212 Debug("ensureLiteral") << " got: " << rewritten << std::endl;
1213 Node preprocessed = preprocess(rewritten);
1214 Debug("ensureLiteral") << "preprocessed: " << preprocessed << std::endl;
1215 d_propEngine->ensureLiteral(preprocessed);
1216 return preprocessed;
1217 }
1218
1219
1220 void TheoryEngine::printInstantiations( std::ostream& out ) {
1221 if( d_quantEngine ){
1222 d_quantEngine->printInstantiations( out );
1223 }
1224 }
1225
1226 static Node mkExplanation(const std::vector<NodeTheoryPair>& explanation) {
1227
1228 std::set<TNode> all;
1229 for (unsigned i = 0; i < explanation.size(); ++ i) {
1230 Assert(explanation[i].theory == THEORY_SAT_SOLVER);
1231 all.insert(explanation[i].node);
1232 }
1233
1234 if (all.size() == 0) {
1235 // Normalize to true
1236 return NodeManager::currentNM()->mkConst<bool>(true);
1237 }
1238
1239 if (all.size() == 1) {
1240 // All the same, or just one
1241 return explanation[0].node;
1242 }
1243
1244 NodeBuilder<> conjunction(kind::AND);
1245 std::set<TNode>::const_iterator it = all.begin();
1246 std::set<TNode>::const_iterator it_end = all.end();
1247 while (it != it_end) {
1248 conjunction << *it;
1249 ++ it;
1250 }
1251
1252 return conjunction;
1253 }
1254
1255
1256 Node TheoryEngine::getExplanation(TNode node) {
1257 Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << "): current propagation index = " << d_propagationMapTimestamp << endl;
1258
1259 bool polarity = node.getKind() != kind::NOT;
1260 TNode atom = polarity ? node : node[0];
1261
1262 // If we're not in shared mode, explanations are simple
1263 if (!d_logicInfo.isSharingEnabled()) {
1264 Node explanation = theoryOf(atom)->explain(node);
1265 Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << ") => " << explanation << endl;
1266 return explanation;
1267 }
1268
1269 // Initial thing to explain
1270 NodeTheoryPair toExplain(node, THEORY_SAT_SOLVER, d_propagationMapTimestamp);
1271 Assert(d_propagationMap.find(toExplain) != d_propagationMap.end());
1272 // Create the workplace for explanations
1273 std::vector<NodeTheoryPair> explanationVector;
1274 explanationVector.push_back(d_propagationMap[toExplain]);
1275 // Process the explanation
1276 getExplanation(explanationVector);
1277 Node explanation = mkExplanation(explanationVector);
1278
1279 Debug("theory::explain") << "TheoryEngine::getExplanation(" << node << ") => " << explanation << endl;
1280
1281 return explanation;
1282 }
1283
1284 struct AtomsCollect {
1285
1286 std::vector<TNode> d_atoms;
1287 std::hash_set<TNode, TNodeHashFunction> d_visited;
1288
1289 public:
1290
1291 typedef void return_type;
1292
1293 bool alreadyVisited(TNode current, TNode parent) {
1294 // Check if already visited
1295 if (d_visited.find(current) != d_visited.end()) return true;
1296 // Don't visit non-boolean
1297 if (!current.getType().isBoolean()) return true;
1298 // New node
1299 return false;
1300 }
1301
1302 void visit(TNode current, TNode parent) {
1303 if (Theory::theoryOf(current) != theory::THEORY_BOOL) {
1304 d_atoms.push_back(current);
1305 }
1306 d_visited.insert(current);
1307 }
1308
1309 void start(TNode node) {}
1310 void done(TNode node) {}
1311
1312 std::vector<TNode> getAtoms() const {
1313 return d_atoms;
1314 }
1315 };
1316
1317 void TheoryEngine::ensureLemmaAtoms(const std::vector<TNode>& atoms, theory::TheoryId atomsTo) {
1318 for (unsigned i = 0; i < atoms.size(); ++ i) {
1319
1320 // Non-equality atoms are either owned by theory or they don't make sense
1321 if (atoms[i].getKind() != kind::EQUAL) {
1322 continue;
1323 }
1324
1325 // The equality
1326 Node eq = atoms[i];
1327 // Simple normalization to not repeat stuff
1328 if (eq[0] > eq[1]) {
1329 eq = eq[1].eqNode(eq[0]);
1330 }
1331
1332 // Rewrite the equality
1333 Node eqNormalized = Rewriter::rewrite(atoms[i]);
1334
1335 Debug("theory::atoms") << "TheoryEngine::ensureLemmaAtoms(): " << eq << " with nf " << eqNormalized << endl;
1336
1337 // If the equality is a boolean constant, we send immediately
1338 if (eqNormalized.isConst()) {
1339 if (eqNormalized.getConst<bool>()) {
1340 assertToTheory(eq, eqNormalized, /** to */ atomsTo, /** Sat solver */ theory::THEORY_SAT_SOLVER);
1341 } else {
1342 assertToTheory(eq.notNode(), eqNormalized.notNode(), /** to */ atomsTo, /** Sat solver */ theory::THEORY_SAT_SOLVER);
1343 }
1344 continue;
1345 }
1346
1347 Assert(eqNormalized.getKind() == kind::EQUAL);
1348
1349
1350 // If the normalization did the just flips, keep the flip
1351 if (eqNormalized[0] == eq[1] && eqNormalized[1] == eq[0]) {
1352 eq = eqNormalized;
1353 }
1354
1355 // Check if the equality is already known by the sat solver
1356 if (d_propEngine->isSatLiteral(eqNormalized)) {
1357 bool value;
1358 if (d_propEngine->hasValue(eqNormalized, value)) {
1359 if (value) {
1360 assertToTheory(eq, eqNormalized, atomsTo, theory::THEORY_SAT_SOLVER);
1361 continue;
1362 } else {
1363 assertToTheory(eq.notNode(), eqNormalized.notNode(), atomsTo, theory::THEORY_SAT_SOLVER);
1364 continue;
1365 }
1366 }
1367 }
1368
1369 // If the theory is asking about a different form, or the form is ok but if will go to a different theory
1370 // then we must figure it out
1371 if (eqNormalized != eq || Theory::theoryOf(eq) != atomsTo) {
1372 // If you get eqNormalized, send atoms[i] to atomsTo
1373 d_atomRequests.add(eqNormalized, eq, atomsTo);
1374 }
1375 }
1376 }
1377
1378 theory::LemmaStatus TheoryEngine::lemma(TNode node, bool negated, bool removable, bool preprocess, theory::TheoryId atomsTo) {
1379 // For resource-limiting (also does a time check).
1380 // spendResource();
1381
1382 // Do we need to check atoms
1383 if (atomsTo != theory::THEORY_LAST) {
1384 Debug("theory::atoms") << "TheoryEngine::lemma(" << node << ", " << atomsTo << ")" << endl;
1385 AtomsCollect collectAtoms;
1386 NodeVisitor<AtomsCollect>::run(collectAtoms, node);
1387 ensureLemmaAtoms(collectAtoms.getAtoms(), atomsTo);
1388 }
1389
1390 if(Dump.isOn("t-lemmas")) {
1391 Node n = node;
1392 if (negated) {
1393 n = node.negate();
1394 }
1395 Dump("t-lemmas") << CommentCommand("theory lemma: expect valid")
1396 << QueryCommand(n.toExpr());
1397 }
1398
1399 // Share with other portfolio threads
1400 if(options::lemmaOutputChannel() != NULL) {
1401 options::lemmaOutputChannel()->notifyNewLemma(node.toExpr());
1402 }
1403
1404 // Run theory preprocessing, maybe
1405 Node ppNode = preprocess ? this->preprocess(node) : Node(node);
1406
1407 // Remove the ITEs
1408 std::vector<Node> additionalLemmas;
1409 IteSkolemMap iteSkolemMap;
1410 additionalLemmas.push_back(ppNode);
1411 d_iteRemover.run(additionalLemmas, iteSkolemMap);
1412 additionalLemmas[0] = theory::Rewriter::rewrite(additionalLemmas[0]);
1413
1414 if(Debug.isOn("lemma-ites")) {
1415 Debug("lemma-ites") << "removed ITEs from lemma: " << ppNode << endl;
1416 Debug("lemma-ites") << " + now have the following "
1417 << additionalLemmas.size() << " lemma(s):" << endl;
1418 for(std::vector<Node>::const_iterator i = additionalLemmas.begin();
1419 i != additionalLemmas.end();
1420 ++i) {
1421 Debug("lemma-ites") << " + " << *i << endl;
1422 }
1423 Debug("lemma-ites") << endl;
1424 }
1425
1426 // assert to prop engine
1427 d_propEngine->assertLemma(additionalLemmas[0], negated, removable, RULE_INVALID, node);
1428 for (unsigned i = 1; i < additionalLemmas.size(); ++ i) {
1429 additionalLemmas[i] = theory::Rewriter::rewrite(additionalLemmas[i]);
1430 d_propEngine->assertLemma(additionalLemmas[i], false, removable, RULE_INVALID, node);
1431 }
1432
1433 // WARNING: Below this point don't assume additionalLemmas[0] to be not negated.
1434 if(negated) {
1435 additionalLemmas[0] = additionalLemmas[0].notNode();
1436 negated = false;
1437 }
1438
1439 // assert to decision engine
1440 if(!removable) {
1441 d_decisionEngine->addAssertions(additionalLemmas, 1, iteSkolemMap);
1442 }
1443
1444 // Mark that we added some lemmas
1445 d_lemmasAdded = true;
1446
1447 // Lemma analysis isn't online yet; this lemma may only live for this
1448 // user level.
1449 return theory::LemmaStatus(additionalLemmas[0], d_userContext->getLevel());
1450 }
1451
1452 void TheoryEngine::conflict(TNode conflict, TheoryId theoryId) {
1453
1454 Debug("theory::conflict") << "TheoryEngine::conflict(" << conflict << ", " << theoryId << ")" << endl;
1455
1456 // Mark that we are in conflict
1457 d_inConflict = true;
1458
1459 if(Dump.isOn("t-conflicts")) {
1460 Dump("t-conflicts") << CommentCommand("theory conflict: expect unsat")
1461 << CheckSatCommand(conflict.toExpr());
1462 }
1463
1464 // In the multiple-theories case, we need to reconstruct the conflict
1465 if (d_logicInfo.isSharingEnabled()) {
1466 // Create the workplace for explanations
1467 std::vector<NodeTheoryPair> explanationVector;
1468 explanationVector.push_back(NodeTheoryPair(conflict, theoryId, d_propagationMapTimestamp));
1469 // Process the explanation
1470 getExplanation(explanationVector);
1471 Node fullConflict = mkExplanation(explanationVector);
1472 Debug("theory::conflict") << "TheoryEngine::conflict(" << conflict << ", " << theoryId << "): full = " << fullConflict << endl;
1473 Assert(properConflict(fullConflict));
1474 lemma(fullConflict, true, true, false, THEORY_LAST);
1475 } else {
1476 // When only one theory, the conflict should need no processing
1477 Assert(properConflict(conflict));
1478 lemma(conflict, true, true, false, THEORY_LAST);
1479 }
1480 }
1481
1482 void TheoryEngine::staticInitializeBVOptions(const std::vector<Node>& assertions) {
1483 bool useSlicer = true;
1484 if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_ON) {
1485 if (options::incrementalSolving())
1486 throw ModalException("Slicer does not currently support incremental mode. Use --bv-eq-slicer=off");
1487 if (options::produceModels())
1488 throw ModalException("Slicer does not currently support model generation. Use --bv-eq-slicer=off");
1489 useSlicer = true;
1490
1491 } else if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_OFF) {
1492 return;
1493
1494 } else if (options::bitvectorEqualitySlicer() == bv::BITVECTOR_SLICER_AUTO) {
1495 if (options::incrementalSolving() ||
1496 options::produceModels())
1497 return;
1498
1499 useSlicer = true;
1500 bv::utils::TNodeBoolMap cache;
1501 for (unsigned i = 0; i < assertions.size(); ++i) {
1502 useSlicer = useSlicer && bv::utils::isCoreTerm(assertions[i], cache);
1503 }
1504 }
1505
1506 if (useSlicer) {
1507 bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
1508 bv_theory->enableCoreTheorySlicer();
1509 }
1510
1511 }
1512
1513 void TheoryEngine::ppBvToBool(const std::vector<Node>& assertions, std::vector<Node>& new_assertions) {
1514 d_bvToBoolPreprocessor.liftBvToBool(assertions, new_assertions);
1515 }
1516
1517 bool TheoryEngine::ppBvAbstraction(const std::vector<Node>& assertions, std::vector<Node>& new_assertions) {
1518 bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
1519 return bv_theory->applyAbstraction(assertions, new_assertions);
1520 }
1521
1522 void TheoryEngine::mkAckermanizationAsssertions(std::vector<Node>& assertions) {
1523 bv::TheoryBV* bv_theory = (bv::TheoryBV*)d_theoryTable[THEORY_BV];
1524 bv_theory->mkAckermanizationAsssertions(assertions);
1525 }
1526
1527 Node TheoryEngine::ppSimpITE(TNode assertion)
1528 {
1529 if(!d_iteRemover.containsTermITE(assertion)){
1530 return assertion;
1531 }else{
1532
1533 Node result = d_iteUtilities->simpITE(assertion);
1534 Node res_rewritten = Rewriter::rewrite(result);
1535
1536 if(options::simplifyWithCareEnabled()){
1537 Chat() << "starting simplifyWithCare()" << endl;
1538 Node postSimpWithCare = d_iteUtilities->simplifyWithCare(res_rewritten);
1539 Chat() << "ending simplifyWithCare()"
1540 << " post simplifyWithCare()" << postSimpWithCare.getId() << endl;
1541 result = Rewriter::rewrite(postSimpWithCare);
1542 }else{
1543 result = res_rewritten;
1544 }
1545
1546 return result;
1547 }
1548 }
1549
1550 bool TheoryEngine::donePPSimpITE(std::vector<Node>& assertions){
1551 bool result = true;
1552 bool simpDidALotOfWork = d_iteUtilities->simpIteDidALotOfWorkHeuristic();
1553 if(simpDidALotOfWork){
1554 if(options::compressItes()){
1555 result = d_iteUtilities->compress(assertions);
1556 }
1557
1558 if(result){
1559 // if false, don't bother to reclaim memory here.
1560 NodeManager* nm = NodeManager::currentNM();
1561 if(nm->poolSize() >= options::zombieHuntThreshold()){
1562 Chat() << "..ite simplifier did quite a bit of work.. " << nm->poolSize() << endl;
1563 Chat() << "....node manager contains " << nm->poolSize() << " nodes before cleanup" << endl;
1564 d_iteUtilities->clear();
1565 Rewriter::clearCaches();
1566 d_iteRemover.garbageCollect();
1567 nm->reclaimZombiesUntil(options::zombieHuntThreshold());
1568 Chat() << "....node manager contains " << nm->poolSize() << " nodes after cleanup" << endl;
1569 }
1570 }
1571 }
1572
1573 // Do theory specific preprocessing passes
1574 if(d_logicInfo.isTheoryEnabled(theory::THEORY_ARITH)){
1575 if(!simpDidALotOfWork){
1576 ContainsTermITEVisitor& contains = *d_iteRemover.getContainsVisitor();
1577 arith::ArithIteUtils aiteu(contains, d_userContext, getModel());
1578 bool anyItes = false;
1579 for(size_t i = 0; i < assertions.size(); ++i){
1580 Node curr = assertions[i];
1581 if(contains.containsTermITE(curr)){
1582 anyItes = true;
1583 Node res = aiteu.reduceVariablesInItes(curr);
1584 Debug("arith::ite::red") << "@ " << i << " ... " << curr << endl << " ->" << res << endl;
1585 if(curr != res){
1586 Node more = aiteu.reduceConstantIteByGCD(res);
1587 Debug("arith::ite::red") << " gcd->" << more << endl;
1588 assertions[i] = more;
1589 }
1590 }
1591 }
1592 if(!anyItes){
1593 unsigned prevSubCount = aiteu.getSubCount();
1594 aiteu.learnSubstitutions(assertions);
1595 if(prevSubCount < aiteu.getSubCount()){
1596 d_arithSubstitutionsAdded += aiteu.getSubCount() - prevSubCount;
1597 bool anySuccess = false;
1598 for(size_t i = 0, N = assertions.size(); i < N; ++i){
1599 Node curr = assertions[i];
1600 Node next = Rewriter::rewrite(aiteu.applySubstitutions(curr));
1601 Node res = aiteu.reduceVariablesInItes(next);
1602 Debug("arith::ite::red") << "@ " << i << " ... " << next << endl << " ->" << res << endl;
1603 Node more = aiteu.reduceConstantIteByGCD(res);
1604 Debug("arith::ite::red") << " gcd->" << more << endl;
1605 if(more != next){
1606 anySuccess = true;
1607 break;
1608 }
1609 }
1610 for(size_t i = 0, N = assertions.size(); anySuccess && i < N; ++i){
1611 Node curr = assertions[i];
1612 Node next = Rewriter::rewrite(aiteu.applySubstitutions(curr));
1613 Node res = aiteu.reduceVariablesInItes(next);
1614 Debug("arith::ite::red") << "@ " << i << " ... " << next << endl << " ->" << res << endl;
1615 Node more = aiteu.reduceConstantIteByGCD(res);
1616 Debug("arith::ite::red") << " gcd->" << more << endl;
1617 assertions[i] = Rewriter::rewrite(more);
1618 }
1619 }
1620 }
1621 }
1622 }
1623 return result;
1624 }
1625
1626 void TheoryEngine::getExplanation(std::vector<NodeTheoryPair>& explanationVector)
1627 {
1628 Assert(explanationVector.size() > 0);
1629
1630 unsigned i = 0; // Index of the current literal we are processing
1631 unsigned j = 0; // Index of the last literal we are keeping
1632
1633 while (i < explanationVector.size()) {
1634
1635 // Get the current literal to explain
1636 NodeTheoryPair toExplain = explanationVector[i];
1637
1638 Debug("theory::explain") << "TheoryEngine::explain(): processing [" << toExplain.timestamp << "] " << toExplain.node << " sent from " << toExplain.theory << endl;
1639
1640 // If a true constant or a negation of a false constant we can ignore it
1641 if (toExplain.node.isConst() && toExplain.node.getConst<bool>()) {
1642 ++ i;
1643 continue;
1644 }
1645 if (toExplain.node.getKind() == kind::NOT && toExplain.node[0].isConst() && !toExplain.node[0].getConst<bool>()) {
1646 ++ i;
1647 continue;
1648 }
1649
1650 // If from the SAT solver, keep it
1651 if (toExplain.theory == THEORY_SAT_SOLVER) {
1652 explanationVector[j++] = explanationVector[i++];
1653 continue;
1654 }
1655
1656 // If an and, expand it
1657 if (toExplain.node.getKind() == kind::AND) {
1658 Debug("theory::explain") << "TheoryEngine::explain(): expanding " << toExplain.node << " got from " << toExplain.theory << endl;
1659 for (unsigned k = 0; k < toExplain.node.getNumChildren(); ++ k) {
1660 NodeTheoryPair newExplain(toExplain.node[k], toExplain.theory, toExplain.timestamp);
1661 explanationVector.push_back(newExplain);
1662 }
1663 ++ i;
1664 continue;
1665 }
1666
1667 // See if it was sent to the theory by another theory
1668 PropagationMap::const_iterator find = d_propagationMap.find(toExplain);
1669 if (find != d_propagationMap.end()) {
1670 // There is some propagation, check if its a timely one
1671 if ((*find).second.timestamp < toExplain.timestamp) {
1672 explanationVector.push_back((*find).second);
1673 ++ i;
1674 continue;
1675 }
1676 }
1677
1678 // It was produced by the theory, so ask for an explanation
1679 Node explanation;
1680 if (toExplain.theory == THEORY_BUILTIN) {
1681 explanation = d_sharedTerms.explain(toExplain.node);
1682 } else {
1683 explanation = theoryOf(toExplain.theory)->explain(toExplain.node);
1684 }
1685 Debug("theory::explain") << "TheoryEngine::explain(): got explanation " << explanation << " got from " << toExplain.theory << endl;
1686 Assert(explanation != toExplain.node, "wasn't sent to you, so why are you explaining it trivially");
1687 // Mark the explanation
1688 NodeTheoryPair newExplain(explanation, toExplain.theory, toExplain.timestamp);
1689 explanationVector.push_back(newExplain);
1690 ++ i;
1691 }
1692
1693 // Keep only the relevant literals
1694 explanationVector.resize(j);
1695 }
1696
1697
1698 void TheoryEngine::ppUnconstrainedSimp(vector<Node>& assertions)
1699 {
1700 d_unconstrainedSimp->processAssertions(assertions);
1701 }
1702
1703
1704 void TheoryEngine::setUserAttribute(const std::string& attr, Node n, std::vector<Node> node_values, std::string str_value) {
1705 Trace("te-attr") << "set user attribute " << attr << " " << n << endl;
1706 if( d_attr_handle.find( attr )!=d_attr_handle.end() ){
1707 for( size_t i=0; i<d_attr_handle[attr].size(); i++ ){
1708 d_attr_handle[attr][i]->setUserAttribute(attr, n, node_values, str_value);
1709 }
1710 } else {
1711 //unhandled exception?
1712 }
1713 }
1714
1715 void TheoryEngine::handleUserAttribute(const char* attr, Theory* t) {
1716 Trace("te-attr") << "Handle user attribute " << attr << " " << t << endl;
1717 std::string str( attr );
1718 d_attr_handle[ str ].push_back( t );
1719 }
1720
1721 void TheoryEngine::checkTheoryAssertionsWithModel() {
1722 for(TheoryId theoryId = THEORY_FIRST; theoryId < THEORY_LAST; ++theoryId) {
1723 Theory* theory = d_theoryTable[theoryId];
1724 if(theory && d_logicInfo.isTheoryEnabled(theoryId)) {
1725 for(context::CDList<Assertion>::const_iterator it = theory->facts_begin(),
1726 it_end = theory->facts_end();
1727 it != it_end;
1728 ++it) {
1729 Node assertion = (*it).assertion;
1730 Node val = getModel()->getValue(assertion);
1731 if(val != d_true) {
1732 stringstream ss;
1733 ss << theoryId << " has an asserted fact that the model doesn't satisfy." << endl
1734 << "The fact: " << assertion << endl
1735 << "Model value: " << val << endl;
1736 InternalError(ss.str());
1737 }
1738 }
1739 }
1740 }
1741 }
1742
1743 std::pair<bool, Node> TheoryEngine::entailmentCheck(theory::TheoryOfMode mode, TNode lit, const EntailmentCheckParameters* params, EntailmentCheckSideEffects* seffects) {
1744 TNode atom = (lit.getKind() == kind::NOT) ? lit[0] : lit;
1745 theory::TheoryId tid = theory::Theory::theoryOf(mode, atom);
1746 theory::Theory* th = theoryOf(tid);
1747
1748 Assert(th != NULL);
1749 Assert(params == NULL || tid == params->getTheoryId());
1750 Assert(seffects == NULL || tid == seffects->getTheoryId());
1751
1752 return th->entailmentCheck(lit, params, seffects);
1753 }
1754
1755 void TheoryEngine::spendResource() {
1756 d_resourceManager->spendResource();
1757 }