SyGuS: Add default grammar for FP. (#5133)
[cvc5.git] / src / theory / theory_model_builder.cpp
1 /********************* */
2 /*! \file theory_model_builder.cpp
3 ** \verbatim
4 ** Top contributors (to current version):
5 ** Andrew Reynolds, Clark Barrett, Andres Noetzli
6 ** This file is part of the CVC4 project.
7 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
8 ** in the top-level source directory and their institutional affiliations.
9 ** All rights reserved. See the file COPYING in the top-level source
10 ** directory for licensing information.\endverbatim
11 **
12 ** \brief Implementation of theory model buidler class
13 **/
14 #include "theory/theory_model_builder.h"
15
16 #include "expr/dtype.h"
17 #include "options/quantifiers_options.h"
18 #include "options/smt_options.h"
19 #include "options/uf_options.h"
20 #include "theory/theory_engine.h"
21 #include "theory/uf/theory_uf_model.h"
22
23 using namespace std;
24 using namespace CVC4::kind;
25 using namespace CVC4::context;
26
27 namespace CVC4 {
28 namespace theory {
29
30 void TheoryEngineModelBuilder::Assigner::initialize(
31 TypeNode tn, TypeEnumeratorProperties* tep, const std::vector<Node>& aes)
32 {
33 d_te.reset(new TypeEnumerator(tn, tep));
34 d_assignExcSet.insert(d_assignExcSet.end(), aes.begin(), aes.end());
35 }
36
37 Node TheoryEngineModelBuilder::Assigner::getNextAssignment()
38 {
39 Assert(d_te != nullptr);
40 Node n;
41 bool success = false;
42 TypeEnumerator& te = *d_te;
43 // Check if we have run out of elements. This should never happen; if it
44 // does we assert false and return null.
45 if (te.isFinished())
46 {
47 Assert(false);
48 return Node::null();
49 }
50 // must increment until we find one that is not in the assignment
51 // exclusion set
52 do
53 {
54 n = *te;
55 success = std::find(d_assignExcSet.begin(), d_assignExcSet.end(), n)
56 == d_assignExcSet.end();
57 // increment regardless of fail or succeed, to set up the next value
58 ++te;
59 } while (!success);
60 return n;
61 }
62
63 TheoryEngineModelBuilder::TheoryEngineModelBuilder(TheoryEngine* te) : d_te(te)
64 {
65 }
66
67 Node TheoryEngineModelBuilder::evaluateEqc(TheoryModel* m, TNode r)
68 {
69 eq::EqClassIterator eqc_i = eq::EqClassIterator(r, m->d_equalityEngine);
70 for (; !eqc_i.isFinished(); ++eqc_i)
71 {
72 Node n = *eqc_i;
73 Trace("model-builder-debug") << "Look at term : " << n << std::endl;
74 if (!isAssignable(n))
75 {
76 Trace("model-builder-debug") << "...try to normalize" << std::endl;
77 Node normalized = normalize(m, n, true);
78 if (normalized.isConst())
79 {
80 return normalized;
81 }
82 }
83 }
84 return Node::null();
85 }
86
87 bool TheoryEngineModelBuilder::isAssignerActive(TheoryModel* tm, Assigner& a)
88 {
89 if (a.d_isActive)
90 {
91 return true;
92 }
93 std::vector<Node>& eset = a.d_assignExcSet;
94 std::map<Node, Node>::iterator it;
95 for (unsigned i = 0, size = eset.size(); i < size; i++)
96 {
97 // Members of exclusion set must have values, otherwise we are not yet
98 // assignable.
99 Node er = eset[i];
100 if (er.isConst())
101 {
102 // already processed
103 continue;
104 }
105 // Assignable members of assignment exclusion set should be representatives
106 // of their equivalence classes. This ensures we look up the constant
107 // representatives for assignable members of assignment exclusion sets.
108 Assert(er == tm->getRepresentative(er));
109 it = d_constantReps.find(er);
110 if (it == d_constantReps.end())
111 {
112 Trace("model-build-aes")
113 << "isAssignerActive: not active due to " << er << std::endl;
114 return false;
115 }
116 // update
117 eset[i] = it->second;
118 }
119 Trace("model-build-aes") << "isAssignerActive: active!" << std::endl;
120 a.d_isActive = true;
121 return true;
122 }
123
124 bool TheoryEngineModelBuilder::isAssignable(TNode n)
125 {
126 if (n.getKind() == kind::SELECT || n.getKind() == kind::APPLY_SELECTOR_TOTAL)
127 {
128 // selectors are always assignable (where we guarantee that they are not
129 // evaluatable here)
130 if (!options::ufHo())
131 {
132 Assert(!n.getType().isFunction());
133 return true;
134 }
135 else
136 {
137 // might be a function field
138 return !n.getType().isFunction();
139 }
140 }
141 else if (n.getKind() == kind::FLOATINGPOINT_COMPONENT_SIGN)
142 {
143 // Extracting the sign of a floating-point number acts similar to a
144 // selector on a datatype, i.e. if `(sign x)` wasn't assigned a value, we
145 // can pick an arbitrary one. Note that the other components of a
146 // floating-point number should always be assigned a value.
147 return true;
148 }
149 else
150 {
151 // non-function variables, and fully applied functions
152 if (!options::ufHo())
153 {
154 // no functions exist, all functions are fully applied
155 Assert(n.getKind() != kind::HO_APPLY);
156 Assert(!n.getType().isFunction());
157 return n.isVar() || n.getKind() == kind::APPLY_UF;
158 }
159 else
160 {
161 // Assert( n.getKind() != kind::APPLY_UF );
162 return (n.isVar() && !n.getType().isFunction())
163 || n.getKind() == kind::APPLY_UF
164 || (n.getKind() == kind::HO_APPLY
165 && n[0].getType().getNumChildren() == 2);
166 }
167 }
168 }
169
170 void TheoryEngineModelBuilder::addAssignableSubterms(TNode n,
171 TheoryModel* tm,
172 NodeSet& cache)
173 {
174 if (n.isClosure())
175 {
176 return;
177 }
178 if (cache.find(n) != cache.end())
179 {
180 return;
181 }
182 if (isAssignable(n))
183 {
184 tm->d_equalityEngine->addTerm(n);
185 }
186 for (TNode::iterator child_it = n.begin(); child_it != n.end(); ++child_it)
187 {
188 addAssignableSubterms(*child_it, tm, cache);
189 }
190 cache.insert(n);
191 }
192
193 void TheoryEngineModelBuilder::assignConstantRep(TheoryModel* tm,
194 Node eqc,
195 Node const_rep)
196 {
197 d_constantReps[eqc] = const_rep;
198 Trace("model-builder") << " Assign: Setting constant rep of " << eqc
199 << " to " << const_rep << endl;
200 tm->d_rep_set.setTermForRepresentative(const_rep, eqc);
201 }
202
203 bool TheoryEngineModelBuilder::isExcludedCdtValue(
204 Node val,
205 std::set<Node>* repSet,
206 std::map<Node, Node>& assertedReps,
207 Node eqc)
208 {
209 Trace("model-builder-debug")
210 << "Is " << val << " and excluded codatatype value for " << eqc << "? "
211 << std::endl;
212 for (set<Node>::iterator i = repSet->begin(); i != repSet->end(); ++i)
213 {
214 Assert(assertedReps.find(*i) != assertedReps.end());
215 Node rep = assertedReps[*i];
216 Trace("model-builder-debug") << " Rep : " << rep << std::endl;
217 // check matching val to rep with eqc as a free variable
218 Node eqc_m;
219 if (isCdtValueMatch(val, rep, eqc, eqc_m))
220 {
221 Trace("model-builder-debug") << " ...matches with " << eqc << " -> "
222 << eqc_m << std::endl;
223 if (eqc_m.getKind() == kind::UNINTERPRETED_CONSTANT)
224 {
225 Trace("model-builder-debug") << "*** " << val
226 << " is excluded datatype for " << eqc
227 << std::endl;
228 return true;
229 }
230 }
231 }
232 return false;
233 }
234
235 bool TheoryEngineModelBuilder::isCdtValueMatch(Node v,
236 Node r,
237 Node eqc,
238 Node& eqc_m)
239 {
240 if (r == v)
241 {
242 return true;
243 }
244 else if (r == eqc)
245 {
246 if (eqc_m.isNull())
247 {
248 // only if an uninterpreted constant?
249 eqc_m = v;
250 return true;
251 }
252 else
253 {
254 return v == eqc_m;
255 }
256 }
257 else if (v.getKind() == kind::APPLY_CONSTRUCTOR
258 && r.getKind() == kind::APPLY_CONSTRUCTOR)
259 {
260 if (v.getOperator() == r.getOperator())
261 {
262 for (unsigned i = 0; i < v.getNumChildren(); i++)
263 {
264 if (!isCdtValueMatch(v[i], r[i], eqc, eqc_m))
265 {
266 return false;
267 }
268 }
269 return true;
270 }
271 }
272 return false;
273 }
274
275 bool TheoryEngineModelBuilder::involvesUSort(TypeNode tn)
276 {
277 if (tn.isSort())
278 {
279 return true;
280 }
281 else if (tn.isArray())
282 {
283 return involvesUSort(tn.getArrayIndexType())
284 || involvesUSort(tn.getArrayConstituentType());
285 }
286 else if (tn.isSet())
287 {
288 return involvesUSort(tn.getSetElementType());
289 }
290 else if (tn.isDatatype())
291 {
292 const DType& dt = tn.getDType();
293 return dt.involvesUninterpretedType();
294 }
295 else
296 {
297 return false;
298 }
299 }
300
301 bool TheoryEngineModelBuilder::isExcludedUSortValue(
302 std::map<TypeNode, unsigned>& eqc_usort_count,
303 Node v,
304 std::map<Node, bool>& visited)
305 {
306 Assert(v.isConst());
307 if (visited.find(v) == visited.end())
308 {
309 visited[v] = true;
310 TypeNode tn = v.getType();
311 if (tn.isSort())
312 {
313 Trace("model-builder-debug") << "Is excluded usort value : " << v << " "
314 << tn << std::endl;
315 unsigned card = eqc_usort_count[tn];
316 Trace("model-builder-debug") << " Cardinality is " << card << std::endl;
317 unsigned index =
318 v.getConst<UninterpretedConstant>().getIndex().toUnsignedInt();
319 Trace("model-builder-debug") << " Index is " << index << std::endl;
320 return index > 0 && index >= card;
321 }
322 for (unsigned i = 0; i < v.getNumChildren(); i++)
323 {
324 if (isExcludedUSortValue(eqc_usort_count, v[i], visited))
325 {
326 return true;
327 }
328 }
329 }
330 return false;
331 }
332
333 void TheoryEngineModelBuilder::addToTypeList(
334 TypeNode tn,
335 std::vector<TypeNode>& type_list,
336 std::unordered_set<TypeNode, TypeNodeHashFunction>& visiting)
337 {
338 if (std::find(type_list.begin(), type_list.end(), tn) == type_list.end())
339 {
340 if (visiting.find(tn) == visiting.end())
341 {
342 visiting.insert(tn);
343 /* This must make a recursive call on all types that are subterms of
344 * values of the current type.
345 * Note that recursive traversal here is over enumerated expressions
346 * (very low expression depth). */
347 if (tn.isArray())
348 {
349 addToTypeList(tn.getArrayIndexType(), type_list, visiting);
350 addToTypeList(tn.getArrayConstituentType(), type_list, visiting);
351 }
352 else if (tn.isSet())
353 {
354 addToTypeList(tn.getSetElementType(), type_list, visiting);
355 }
356 else if (tn.isDatatype())
357 {
358 const DType& dt = tn.getDType();
359 for (unsigned i = 0; i < dt.getNumConstructors(); i++)
360 {
361 for (unsigned j = 0; j < dt[i].getNumArgs(); j++)
362 {
363 TypeNode ctn = dt[i][j].getRangeType();
364 addToTypeList(ctn, type_list, visiting);
365 }
366 }
367 }
368 Assert(std::find(type_list.begin(), type_list.end(), tn)
369 == type_list.end());
370 type_list.push_back(tn);
371 }
372 }
373 }
374
375 bool TheoryEngineModelBuilder::buildModel(TheoryModel* tm)
376 {
377 Trace("model-builder") << "TheoryEngineModelBuilder: buildModel" << std::endl;
378 eq::EqualityEngine* ee = tm->d_equalityEngine;
379
380 Trace("model-builder")
381 << "TheoryEngineModelBuilder: Preprocess build model..." << std::endl;
382 // model-builder specific initialization
383 if (!preProcessBuildModel(tm))
384 {
385 Trace("model-builder")
386 << "TheoryEngineModelBuilder: fail preprocess build model."
387 << std::endl;
388 return false;
389 }
390
391 Trace("model-builder")
392 << "TheoryEngineModelBuilder: Add assignable subterms..." << std::endl;
393 // Loop through all terms and make sure that assignable sub-terms are in the
394 // equality engine
395 // Also, record #eqc per type (for finite model finding)
396 std::map<TypeNode, unsigned> eqc_usort_count;
397 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
398 {
399 NodeSet cache;
400 for (; !eqcs_i.isFinished(); ++eqcs_i)
401 {
402 eq::EqClassIterator eqc_i = eq::EqClassIterator((*eqcs_i), ee);
403 for (; !eqc_i.isFinished(); ++eqc_i)
404 {
405 addAssignableSubterms(*eqc_i, tm, cache);
406 }
407 TypeNode tn = (*eqcs_i).getType();
408 if (tn.isSort())
409 {
410 if (eqc_usort_count.find(tn) == eqc_usort_count.end())
411 {
412 eqc_usort_count[tn] = 1;
413 }
414 else
415 {
416 eqc_usort_count[tn]++;
417 }
418 }
419 }
420 }
421
422 Trace("model-builder") << "Collect representatives..." << std::endl;
423
424 // Process all terms in the equality engine, store representatives for each EC
425 d_constantReps.clear();
426 std::map<Node, Node> assertedReps;
427 TypeSet typeConstSet, typeRepSet, typeNoRepSet;
428 // Compute type enumerator properties. This code ensures we do not
429 // enumerate terms that have uninterpreted constants that violate the
430 // bounds imposed by finite model finding. For example, if finite
431 // model finding insists that there are only 2 values { U1, U2 } of type U,
432 // then the type enumerator for list of U should enumerate:
433 // nil, (cons U1 nil), (cons U2 nil), (cons U1 (cons U1 nil)), ...
434 // instead of enumerating (cons U3 nil).
435 TypeEnumeratorProperties tep;
436 if (options::finiteModelFind())
437 {
438 tep.d_fixed_usort_card = true;
439 for (std::map<TypeNode, unsigned>::iterator it = eqc_usort_count.begin();
440 it != eqc_usort_count.end();
441 ++it)
442 {
443 Trace("model-builder") << "Fixed bound (#eqc) for " << it->first << " : "
444 << it->second << std::endl;
445 tep.d_fixed_card[it->first] = Integer(it->second);
446 }
447 typeConstSet.setTypeEnumeratorProperties(&tep);
448 }
449
450 // AJR: build ordered list of types that ensures that base types are
451 // enumerated first.
452 // (I think) this is only strictly necessary for finite model finding +
453 // parametric types instantiated with uninterpreted sorts, but is probably
454 // a good idea to do in general since it leads to models with smaller term
455 // sizes.
456 std::vector<TypeNode> type_list;
457 eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
458 for (; !eqcs_i.isFinished(); ++eqcs_i)
459 {
460 // eqc is the equivalence class representative
461 Node eqc = (*eqcs_i);
462 Trace("model-builder") << "Processing EC: " << eqc << endl;
463 Assert(tm->d_equalityEngine->getRepresentative(eqc) == eqc);
464 TypeNode eqct = eqc.getType();
465 Assert(assertedReps.find(eqc) == assertedReps.end());
466 Assert(d_constantReps.find(eqc) == d_constantReps.end());
467
468 // Loop through terms in this EC
469 Node rep, const_rep;
470 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
471 for (; !eqc_i.isFinished(); ++eqc_i)
472 {
473 Node n = *eqc_i;
474 Trace("model-builder") << " Processing Term: " << n << endl;
475 // Record as rep if this node was specified as a representative
476 if (tm->d_reps.find(n) != tm->d_reps.end())
477 {
478 // AJR: I believe this assertion is too strict,
479 // e.g. datatypes may assert representative for two constructor terms
480 // that are not in the care graph and are merged during
481 // collectModelInfo.
482 // Assert(rep.isNull());
483 rep = tm->d_reps[n];
484 Assert(!rep.isNull());
485 Trace("model-builder") << " Rep( " << eqc << " ) = " << rep
486 << std::endl;
487 }
488 // Record as const_rep if this node is constant
489 if (n.isConst())
490 {
491 Assert(const_rep.isNull());
492 const_rep = n;
493 Trace("model-builder") << " ConstRep( " << eqc << " ) = " << const_rep
494 << std::endl;
495 }
496 // model-specific processing of the term
497 tm->addTermInternal(n);
498 }
499
500 // Assign representative for this EC
501 if (!const_rep.isNull())
502 {
503 // Theories should not specify a rep if there is already a constant in the
504 // EC
505 // AJR: I believe this assertion is too strict, eqc with asserted reps may
506 // merge with constant eqc
507 // Assert(rep.isNull() || rep == const_rep);
508 assignConstantRep(tm, eqc, const_rep);
509 typeConstSet.add(eqct.getBaseType(), const_rep);
510 }
511 else if (!rep.isNull())
512 {
513 assertedReps[eqc] = rep;
514 typeRepSet.add(eqct.getBaseType(), eqc);
515 std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
516 addToTypeList(eqct.getBaseType(), type_list, visiting);
517 }
518 else
519 {
520 typeNoRepSet.add(eqct, eqc);
521 std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
522 addToTypeList(eqct, type_list, visiting);
523 }
524 }
525
526 Trace("model-builder") << "Compute assignable information..." << std::endl;
527 // The set of equivalence classes that are "assignable"
528 std::unordered_set<Node, NodeHashFunction> assignableEqc;
529 // The set of equivalence classes that are "evaluable"
530 std::unordered_set<Node, NodeHashFunction> evaluableEqc;
531 // Assigner objects for relevant equivalence classes
532 std::map<Node, Assigner> eqcToAssigner;
533 // Maps equivalence classes to the equivalence class that maps to its assigner
534 // object in the above map.
535 std::map<Node, Node> eqcToAssignerMaster;
536 // Compute the above information
537 computeAssignableInfo(
538 tm, tep, assignableEqc, evaluableEqc, eqcToAssigner, eqcToAssignerMaster);
539
540 // Need to ensure that each EC has a constant representative.
541
542 Trace("model-builder") << "Processing EC's..." << std::endl;
543
544 TypeSet::iterator it;
545 vector<TypeNode>::iterator type_it;
546 set<Node>::iterator i, i2;
547 bool changed, unassignedAssignable, assignOne = false;
548 set<TypeNode> evaluableSet;
549
550 // Double-fixed-point loop
551 // Outer loop handles a special corner case (see code at end of loop for
552 // details)
553 for (;;)
554 {
555 // Inner fixed-point loop: we are trying to learn constant values for every
556 // EC. Each time through this loop, we process all of the
557 // types by type and may learn some new EC values. EC's in one type may
558 // depend on EC's in another type, so we need a fixed-point loop
559 // to ensure that we learn as many EC values as possible
560 do
561 {
562 changed = false;
563 unassignedAssignable = false;
564 evaluableSet.clear();
565
566 // Iterate over all types we've seen
567 for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
568 {
569 TypeNode t = *type_it;
570 TypeNode tb = t.getBaseType();
571 set<Node>* noRepSet = typeNoRepSet.getSet(t);
572
573 // 1. Try to evaluate the EC's in this type
574 if (noRepSet != NULL && !noRepSet->empty())
575 {
576 Trace("model-builder") << " Eval phase, working on type: " << t
577 << endl;
578 bool evaluable;
579 d_normalizedCache.clear();
580 for (i = noRepSet->begin(); i != noRepSet->end();)
581 {
582 i2 = i;
583 ++i;
584 Trace("model-builder-debug") << "Look at eqc : " << (*i2)
585 << std::endl;
586 Node normalized;
587 // only possible to normalize if we are evaluable
588 evaluable = evaluableEqc.find(*i2) != evaluableEqc.end();
589 if (evaluable)
590 {
591 normalized = evaluateEqc(tm, *i2);
592 }
593 if (!normalized.isNull())
594 {
595 Assert(normalized.isConst());
596 typeConstSet.add(tb, normalized);
597 assignConstantRep(tm, *i2, normalized);
598 Trace("model-builder") << " Eval: Setting constant rep of "
599 << (*i2) << " to " << normalized << endl;
600 changed = true;
601 noRepSet->erase(i2);
602 }
603 else
604 {
605 if (evaluable)
606 {
607 evaluableSet.insert(tb);
608 }
609 // If assignable, remember there is an equivalence class that is
610 // not assigned and assignable.
611 if (assignableEqc.find(*i2) != assignableEqc.end())
612 {
613 unassignedAssignable = true;
614 }
615 }
616 }
617 }
618
619 // 2. Normalize any non-const representative terms for this type
620 set<Node>* repSet = typeRepSet.getSet(t);
621 if (repSet != NULL && !repSet->empty())
622 {
623 Trace("model-builder")
624 << " Normalization phase, working on type: " << t << endl;
625 d_normalizedCache.clear();
626 for (i = repSet->begin(); i != repSet->end();)
627 {
628 Assert(assertedReps.find(*i) != assertedReps.end());
629 Node rep = assertedReps[*i];
630 Node normalized = normalize(tm, rep, false);
631 Trace("model-builder") << " Normalizing rep (" << rep
632 << "), normalized to (" << normalized << ")"
633 << endl;
634 if (normalized.isConst())
635 {
636 changed = true;
637 typeConstSet.add(tb, normalized);
638 assignConstantRep(tm, *i, normalized);
639 assertedReps.erase(*i);
640 i2 = i;
641 ++i;
642 repSet->erase(i2);
643 }
644 else
645 {
646 if (normalized != rep)
647 {
648 assertedReps[*i] = normalized;
649 changed = true;
650 }
651 ++i;
652 }
653 }
654 }
655 }
656 } while (changed);
657
658 if (!unassignedAssignable)
659 {
660 break;
661 }
662
663 // 3. Assign unassigned assignable EC's using type enumeration - assign a
664 // value *different* from all other EC's if the type is infinite
665 // Assign first value from type enumerator otherwise - for finite types, we
666 // rely on polite framework to ensure that EC's that have to be
667 // different are different.
668
669 // Only make assignments on a type if:
670 // 1. there are no terms that share the same base type with un-normalized
671 // representatives
672 // 2. there are no terms that share teh same base type that are unevaluated
673 // evaluable terms
674 // Alternatively, if 2 or 3 don't hold but we are in a special
675 // deadlock-breaking mode where assignOne is true, go ahead and make one
676 // assignment
677 changed = false;
678 // must iterate over the ordered type list to ensure that we do not
679 // enumerate values with subterms
680 // having types that we are currently enumerating (when possible)
681 // for example, this ensures we enumerate uninterpreted sort U before (List
682 // of U) and (Array U U)
683 // however, it does not break cyclic type dependencies for mutually
684 // recursive datatypes, but this is handled
685 // by recording all subterms of enumerated values in TypeSet::addSubTerms.
686 for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
687 {
688 TypeNode t = *type_it;
689 // continue if there are no more equivalence classes of this type to
690 // assign
691 std::set<Node>* noRepSetPtr = typeNoRepSet.getSet(t);
692 if (noRepSetPtr == NULL)
693 {
694 continue;
695 }
696 set<Node>& noRepSet = *noRepSetPtr;
697 if (noRepSet.empty())
698 {
699 continue;
700 }
701
702 // get properties of this type
703 bool isCorecursive = false;
704 if (t.isDatatype())
705 {
706 const DType& dt = t.getDType();
707 isCorecursive = dt.isCodatatype()
708 && (!dt.isFinite(t) || dt.isRecursiveSingleton(t));
709 }
710 #ifdef CVC4_ASSERTIONS
711 bool isUSortFiniteRestricted = false;
712 if (options::finiteModelFind())
713 {
714 isUSortFiniteRestricted = !t.isSort() && involvesUSort(t);
715 }
716 #endif
717
718 TypeNode tb = t.getBaseType();
719 if (!assignOne)
720 {
721 set<Node>* repSet = typeRepSet.getSet(tb);
722 if (repSet != NULL && !repSet->empty())
723 {
724 continue;
725 }
726 if (evaluableSet.find(tb) != evaluableSet.end())
727 {
728 continue;
729 }
730 }
731 Trace("model-builder") << " Assign phase, working on type: " << t
732 << endl;
733 bool assignable, evaluable CVC4_UNUSED;
734 std::map<Node, Assigner>::iterator itAssigner;
735 std::map<Node, Node>::iterator itAssignerM;
736 set<Node>* repSet = typeRepSet.getSet(t);
737 for (i = noRepSet.begin(); i != noRepSet.end();)
738 {
739 i2 = i;
740 ++i;
741 // check whether it has an assigner object
742 itAssignerM = eqcToAssignerMaster.find(*i2);
743 if (itAssignerM != eqcToAssignerMaster.end())
744 {
745 // Take the master's assigner. Notice we don't care which order
746 // equivalence classes are assigned. For instance, the master can
747 // be assigned after one of its slaves.
748 itAssigner = eqcToAssigner.find(itAssignerM->second);
749 }
750 else
751 {
752 itAssigner = eqcToAssigner.find(*i2);
753 }
754 if (itAssigner != eqcToAssigner.end())
755 {
756 assignable = isAssignerActive(tm, itAssigner->second);
757 }
758 else
759 {
760 assignable = assignableEqc.find(*i2) != assignableEqc.end();
761 }
762 evaluable = evaluableEqc.find(*i2) != evaluableEqc.end();
763 Trace("model-builder-debug")
764 << " eqc " << *i2 << " is assignable=" << assignable
765 << ", evaluable=" << evaluable << std::endl;
766 if (assignable)
767 {
768 Assert(!evaluable || assignOne);
769 // this assertion ensures that if we are assigning to a term of
770 // Boolean type, then the term must be assignable.
771 // Note we only assign to terms of Boolean type if the term occurs in
772 // a singleton equivalence class; otherwise the term would have been
773 // in the equivalence class of true or false and would not need
774 // assigning.
775 Assert(!t.isBoolean() || isAssignable(*i2));
776 Node n;
777 if (itAssigner != eqcToAssigner.end())
778 {
779 Trace("model-builder-debug")
780 << "Get value from assigner for finite type..." << std::endl;
781 // if it has an assigner, get the value from the assigner.
782 n = itAssigner->second.getNextAssignment();
783 Assert(!n.isNull());
784 }
785 else if (!t.isFinite())
786 {
787 // if its infinite, we get a fresh value that does not occur in
788 // the model.
789 bool success;
790 do
791 {
792 Trace("model-builder-debug") << "Enumerate term of type " << t
793 << std::endl;
794 n = typeConstSet.nextTypeEnum(t, true);
795 //--- AJR: this code checks whether n is a legal value
796 Assert(!n.isNull());
797 success = true;
798 Trace("model-builder-debug") << "Check if excluded : " << n
799 << std::endl;
800 #ifdef CVC4_ASSERTIONS
801 if (isUSortFiniteRestricted)
802 {
803 // must not involve uninterpreted constants beyond cardinality
804 // bound (which assumed to coincide with #eqc)
805 // this is just an assertion now, since TypeEnumeratorProperties
806 // should ensure that only legal values are enumerated wrt this
807 // constraint.
808 std::map<Node, bool> visited;
809 success = !isExcludedUSortValue(eqc_usort_count, n, visited);
810 if (!success)
811 {
812 Trace("model-builder")
813 << "Excluded value for " << t << " : " << n
814 << " due to out of range uninterpreted constant."
815 << std::endl;
816 }
817 Assert(success);
818 }
819 #endif
820 if (success && isCorecursive)
821 {
822 if (repSet != NULL && !repSet->empty())
823 {
824 // in the case of codatatypes, check if it is in the set of
825 // values that we cannot assign
826 success = !isExcludedCdtValue(n, repSet, assertedReps, *i2);
827 if (!success)
828 {
829 Trace("model-builder")
830 << "Excluded value : " << n
831 << " due to alpha-equivalent codatatype expression."
832 << std::endl;
833 }
834 }
835 }
836 //---
837 } while (!success);
838 Assert(!n.isNull());
839 }
840 else
841 {
842 Trace("model-builder-debug")
843 << "Get first value from finite type..." << std::endl;
844 // Otherwise, we get the first value from the type enumerator.
845 TypeEnumerator te(t);
846 n = *te;
847 }
848 Trace("model-builder-debug") << "...got " << n << std::endl;
849 assignConstantRep(tm, *i2, n);
850 changed = true;
851 noRepSet.erase(i2);
852 if (assignOne)
853 {
854 assignOne = false;
855 break;
856 }
857 }
858 }
859 }
860
861 // Corner case - I'm not sure this can even happen - but it's theoretically
862 // possible to have a cyclical dependency
863 // in EC assignment/evaluation, e.g. EC1 = {a, b + 1}; EC2 = {b, a - 1}. In
864 // this case, neither one will get assigned because we are waiting
865 // to be able to evaluate. But we will never be able to evaluate because
866 // the variables that need to be assigned are in
867 // these same EC's. In this case, repeat the whole fixed-point computation
868 // with the difference that the first EC
869 // that has both assignable and evaluable expressions will get assigned.
870 if (!changed)
871 {
872 Assert(!assignOne); // check for infinite loop!
873 assignOne = true;
874 }
875 }
876
877 #ifdef CVC4_ASSERTIONS
878 // Assert that all representatives have been converted to constants
879 for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it)
880 {
881 set<Node>& repSet = TypeSet::getSet(it);
882 if (!repSet.empty())
883 {
884 Trace("model-builder") << "***Non-empty repSet, size = " << repSet.size()
885 << ", first = " << *(repSet.begin()) << endl;
886 Assert(false);
887 }
888 }
889 #endif /* CVC4_ASSERTIONS */
890
891 Trace("model-builder") << "Copy representatives to model..." << std::endl;
892 tm->d_reps.clear();
893 std::map<Node, Node>::iterator itMap;
894 for (itMap = d_constantReps.begin(); itMap != d_constantReps.end(); ++itMap)
895 {
896 tm->d_reps[itMap->first] = itMap->second;
897 tm->d_rep_set.add(itMap->second.getType(), itMap->second);
898 }
899
900 Trace("model-builder") << "Make sure ECs have reps..." << std::endl;
901 // Make sure every EC has a rep
902 for (itMap = assertedReps.begin(); itMap != assertedReps.end(); ++itMap)
903 {
904 tm->d_reps[itMap->first] = itMap->second;
905 tm->d_rep_set.add(itMap->second.getType(), itMap->second);
906 }
907 for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it)
908 {
909 set<Node>& noRepSet = TypeSet::getSet(it);
910 for (const Node& node : noRepSet)
911 {
912 tm->d_reps[node] = node;
913 tm->d_rep_set.add(node.getType(), node);
914 }
915 }
916
917 // modelBuilder-specific initialization
918 if (!processBuildModel(tm))
919 {
920 Trace("model-builder")
921 << "TheoryEngineModelBuilder: fail process build model." << std::endl;
922 return false;
923 }
924 Trace("model-builder") << "TheoryEngineModelBuilder: success" << std::endl;
925 return true;
926 }
927 void TheoryEngineModelBuilder::computeAssignableInfo(
928 TheoryModel* tm,
929 TypeEnumeratorProperties& tep,
930 std::unordered_set<Node, NodeHashFunction>& assignableEqc,
931 std::unordered_set<Node, NodeHashFunction>& evaluableEqc,
932 std::map<Node, Assigner>& eqcToAssigner,
933 std::map<Node, Node>& eqcToAssignerMaster)
934 {
935 eq::EqualityEngine* ee = tm->d_equalityEngine;
936 bool computeAssigners = tm->hasAssignmentExclusionSets();
937 std::unordered_set<Node, NodeHashFunction> processed;
938 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
939 // A flag set to true if the current equivalence class is assignable (see
940 // assignableEqc).
941 bool assignable = false;
942 // Set to true if the current equivalence class is evaluatable (see
943 // evaluableEqc).
944 bool evaluable = false;
945 // Set to true if a term in the current equivalence class has been given an
946 // assignment exclusion set.
947 bool hasESet CVC4_UNUSED = false;
948 // Set to true if we found that a term in the current equivalence class has
949 // been given an assignment exclusion set, and we have not seen this term
950 // as part of a previous assignment exclusion group. In other words, when
951 // this flag is true we construct a new assigner object with the current
952 // equivalence class as its master.
953 bool foundESet = false;
954 // Look at all equivalence classes in the model
955 for (; !eqcs_i.isFinished(); ++eqcs_i)
956 {
957 Node eqc = *eqcs_i;
958 if (d_constantReps.find(eqc) != d_constantReps.end())
959 {
960 // already assigned above, skip
961 continue;
962 }
963 // reset information for the current equivalence classe
964 assignable = false;
965 evaluable = false;
966 hasESet = false;
967 foundESet = false;
968 // the assignment exclusion set for the current equivalence class
969 std::vector<Node> eset;
970 // the group to which this equivalence class belongs when exclusion sets
971 // were assigned (see the argument group of
972 // TheoryModel::getAssignmentExclusionSet).
973 std::vector<Node> group;
974 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
975 // For each term in the current equivalence class, we update the above
976 // information. We may terminate this loop before looking at all terms if we
977 // have inferred the value of all of the information above.
978 for (; !eqc_i.isFinished(); ++eqc_i)
979 {
980 Node n = *eqc_i;
981 if (!isAssignable(n))
982 {
983 evaluable = true;
984 if (!computeAssigners)
985 {
986 if (assignable)
987 {
988 // both flags set, we are done
989 break;
990 }
991 }
992 // expressions that are not assignable should not be given assignment
993 // exclusion sets
994 Assert(!tm->getAssignmentExclusionSet(n, group, eset));
995 continue;
996 }
997 else
998 {
999 assignable = true;
1000 if (!computeAssigners)
1001 {
1002 if (evaluable)
1003 {
1004 // both flags set, we are done
1005 break;
1006 }
1007 // we don't compute assigners, skip
1008 continue;
1009 }
1010 }
1011 // process the assignment exclusion set for term n
1012 // was it processed as a slave of a group?
1013 if (processed.find(n) != processed.end())
1014 {
1015 // Should not have two assignment exclusion sets for the same
1016 // equivalence class
1017 Assert(!hasESet);
1018 Assert(eqcToAssignerMaster.find(eqc) != eqcToAssignerMaster.end());
1019 // already processed as a slave term
1020 hasESet = true;
1021 continue;
1022 }
1023 // was it assigned one?
1024 if (tm->getAssignmentExclusionSet(n, group, eset))
1025 {
1026 // Should not have two assignment exclusion sets for the same
1027 // equivalence class
1028 Assert(!hasESet);
1029 foundESet = true;
1030 hasESet = true;
1031 }
1032 }
1033 if (assignable)
1034 {
1035 assignableEqc.insert(eqc);
1036 }
1037 if (evaluable)
1038 {
1039 evaluableEqc.insert(eqc);
1040 }
1041 // If we found an assignment exclusion set, we construct a new assigner
1042 // object.
1043 if (foundESet)
1044 {
1045 // we don't accept assignment exclusion sets for evaluable eqc
1046 Assert(!evaluable);
1047 // construct the assigner
1048 Assigner& a = eqcToAssigner[eqc];
1049 // Take the representatives of each term in the assignment exclusion
1050 // set, which ensures we can look up their value in d_constReps later.
1051 std::vector<Node> aes;
1052 for (const Node& e : eset)
1053 {
1054 // Should only supply terms that occur in the model or constants
1055 // in assignment exclusion sets.
1056 Assert(tm->hasTerm(e) || e.isConst());
1057 Node er = tm->hasTerm(e) ? tm->getRepresentative(e) : e;
1058 aes.push_back(er);
1059 }
1060 // initialize
1061 a.initialize(eqc.getType(), &tep, aes);
1062 // all others in the group are slaves of this
1063 for (const Node& g : group)
1064 {
1065 Assert(isAssignable(g));
1066 if (!tm->hasTerm(g))
1067 {
1068 // Ignore those that aren't in the model, in the case the user
1069 // has supplied an assignment exclusion set to a variable not in
1070 // the model.
1071 continue;
1072 }
1073 Node gr = tm->getRepresentative(g);
1074 if (gr != eqc)
1075 {
1076 eqcToAssignerMaster[gr] = eqc;
1077 // remember that this term has been processed
1078 processed.insert(g);
1079 }
1080 }
1081 }
1082 }
1083 }
1084
1085 void TheoryEngineModelBuilder::postProcessModel(bool incomplete, Model* m)
1086 {
1087 // if we are incomplete, there is no guarantee on the model.
1088 // thus, we do not check the model here.
1089 if (incomplete)
1090 {
1091 return;
1092 }
1093 TheoryModel* tm = static_cast<TheoryModel*>(m);
1094 Assert(tm != nullptr);
1095 // debug-check the model if the checkModels() is enabled.
1096 if (options::debugCheckModels())
1097 {
1098 debugCheckModel(tm);
1099 }
1100 }
1101
1102 void TheoryEngineModelBuilder::debugCheckModel(TheoryModel* tm)
1103 {
1104 #ifdef CVC4_ASSERTIONS
1105 if (tm->hasApproximations())
1106 {
1107 // models with approximations may fail the assertions below
1108 return;
1109 }
1110 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
1111 std::map<Node, Node>::iterator itMap;
1112 // Check that every term evaluates to its representative in the model
1113 for (eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
1114 !eqcs_i.isFinished();
1115 ++eqcs_i)
1116 {
1117 // eqc is the equivalence class representative
1118 Node eqc = (*eqcs_i);
1119 // get the representative
1120 Node rep = tm->getRepresentative(eqc);
1121 if (!rep.isConst() && eqc.getType().isBoolean())
1122 {
1123 // if Boolean, it does not necessarily have a constant representative, use
1124 // get value instead
1125 rep = tm->getValue(eqc);
1126 Assert(rep.isConst());
1127 }
1128 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
1129 for (; !eqc_i.isFinished(); ++eqc_i)
1130 {
1131 Node n = *eqc_i;
1132 static int repCheckInstance = 0;
1133 ++repCheckInstance;
1134
1135 // non-linear mult is not necessarily accurate wrt getValue
1136 if (n.getKind() != kind::NONLINEAR_MULT)
1137 {
1138 Debug("check-model::rep-checking") << "( " << repCheckInstance << ") "
1139 << "n: " << n << endl
1140 << "getValue(n): " << tm->getValue(n)
1141 << endl
1142 << "rep: " << rep << endl;
1143 Assert(tm->getValue(*eqc_i) == rep)
1144 << "run with -d check-model::rep-checking for details";
1145 }
1146 }
1147 }
1148 #endif /* CVC4_ASSERTIONS */
1149
1150 // builder-specific debugging
1151 debugModel(tm);
1152 }
1153
1154 Node TheoryEngineModelBuilder::normalize(TheoryModel* m, TNode r, bool evalOnly)
1155 {
1156 std::map<Node, Node>::iterator itMap = d_constantReps.find(r);
1157 if (itMap != d_constantReps.end())
1158 {
1159 return (*itMap).second;
1160 }
1161 NodeMap::iterator it = d_normalizedCache.find(r);
1162 if (it != d_normalizedCache.end())
1163 {
1164 return (*it).second;
1165 }
1166 Trace("model-builder-debug") << "do normalize on " << r << std::endl;
1167 Node retNode = r;
1168 if (r.getNumChildren() > 0)
1169 {
1170 std::vector<Node> children;
1171 if (r.getMetaKind() == kind::metakind::PARAMETERIZED)
1172 {
1173 children.push_back(r.getOperator());
1174 }
1175 bool childrenConst = true;
1176 for (size_t i = 0; i < r.getNumChildren(); ++i)
1177 {
1178 Node ri = r[i];
1179 bool recurse = true;
1180 if (!ri.isConst())
1181 {
1182 if (m->d_equalityEngine->hasTerm(ri))
1183 {
1184 itMap =
1185 d_constantReps.find(m->d_equalityEngine->getRepresentative(ri));
1186 if (itMap != d_constantReps.end())
1187 {
1188 ri = (*itMap).second;
1189 recurse = false;
1190 }
1191 else if (!evalOnly)
1192 {
1193 recurse = false;
1194 }
1195 }
1196 if (recurse)
1197 {
1198 ri = normalize(m, ri, evalOnly);
1199 }
1200 if (!ri.isConst())
1201 {
1202 childrenConst = false;
1203 }
1204 }
1205 children.push_back(ri);
1206 }
1207 retNode = NodeManager::currentNM()->mkNode(r.getKind(), children);
1208 if (childrenConst)
1209 {
1210 retNode = Rewriter::rewrite(retNode);
1211 }
1212 }
1213 d_normalizedCache[r] = retNode;
1214 return retNode;
1215 }
1216
1217 bool TheoryEngineModelBuilder::preProcessBuildModel(TheoryModel* m)
1218 {
1219 return true;
1220 }
1221
1222 bool TheoryEngineModelBuilder::processBuildModel(TheoryModel* m)
1223 {
1224 if (m->areFunctionValuesEnabled())
1225 {
1226 assignFunctions(m);
1227 }
1228 return true;
1229 }
1230
1231 void TheoryEngineModelBuilder::assignFunction(TheoryModel* m, Node f)
1232 {
1233 Assert(!options::ufHo());
1234 uf::UfModelTree ufmt(f);
1235 Node default_v;
1236 for (size_t i = 0; i < m->d_uf_terms[f].size(); i++)
1237 {
1238 Node un = m->d_uf_terms[f][i];
1239 vector<TNode> children;
1240 children.push_back(f);
1241 Trace("model-builder-debug") << " process term : " << un << std::endl;
1242 for (size_t j = 0; j < un.getNumChildren(); ++j)
1243 {
1244 Node rc = m->getRepresentative(un[j]);
1245 Trace("model-builder-debug2") << " get rep : " << un[j] << " returned "
1246 << rc << std::endl;
1247 Assert(rc.isConst());
1248 children.push_back(rc);
1249 }
1250 Node simp = NodeManager::currentNM()->mkNode(un.getKind(), children);
1251 Node v = m->getRepresentative(un);
1252 Trace("model-builder") << " Setting (" << simp << ") to (" << v << ")"
1253 << endl;
1254 ufmt.setValue(m, simp, v);
1255 default_v = v;
1256 }
1257 if (default_v.isNull())
1258 {
1259 // choose default value from model if none exists
1260 TypeEnumerator te(f.getType().getRangeType());
1261 default_v = (*te);
1262 }
1263 ufmt.setDefaultValue(m, default_v);
1264 bool condenseFuncValues = options::condenseFunctionValues();
1265 if (condenseFuncValues)
1266 {
1267 ufmt.simplify();
1268 }
1269 std::stringstream ss;
1270 ss << "_arg_";
1271 Node val = ufmt.getFunctionValue(ss.str().c_str(), condenseFuncValues);
1272 m->assignFunctionDefinition(f, val);
1273 // ufmt.debugPrint( std::cout, m );
1274 }
1275
1276 void TheoryEngineModelBuilder::assignHoFunction(TheoryModel* m, Node f)
1277 {
1278 Assert(options::ufHo());
1279 TypeNode type = f.getType();
1280 std::vector<TypeNode> argTypes = type.getArgTypes();
1281 std::vector<Node> args;
1282 std::vector<TNode> apply_args;
1283 for (unsigned i = 0; i < argTypes.size(); i++)
1284 {
1285 Node v = NodeManager::currentNM()->mkBoundVar(argTypes[i]);
1286 args.push_back(v);
1287 if (i > 0)
1288 {
1289 apply_args.push_back(v);
1290 }
1291 }
1292 // start with the base return value (currently we use the same default value
1293 // for all functions)
1294 TypeEnumerator te(type.getRangeType());
1295 Node curr = (*te);
1296 std::map<Node, std::vector<Node> >::iterator itht = m->d_ho_uf_terms.find(f);
1297 if (itht != m->d_ho_uf_terms.end())
1298 {
1299 for (size_t i = 0; i < itht->second.size(); i++)
1300 {
1301 Node hn = itht->second[i];
1302 Trace("model-builder-debug") << " process : " << hn << std::endl;
1303 Assert(hn.getKind() == kind::HO_APPLY);
1304 Assert(m->areEqual(hn[0], f));
1305 Node hni = m->getRepresentative(hn[1]);
1306 Trace("model-builder-debug2") << " get rep : " << hn[0]
1307 << " returned " << hni << std::endl;
1308 Assert(hni.isConst());
1309 Assert(hni.getType().isSubtypeOf(args[0].getType()));
1310 hni = Rewriter::rewrite(args[0].eqNode(hni));
1311 Node hnv = m->getRepresentative(hn);
1312 Trace("model-builder-debug2") << " get rep val : " << hn
1313 << " returned " << hnv << std::endl;
1314 Assert(hnv.isConst());
1315 if (!apply_args.empty())
1316 {
1317 Assert(hnv.getKind() == kind::LAMBDA
1318 && hnv[0].getNumChildren() + 1 == args.size());
1319 std::vector<TNode> largs;
1320 for (unsigned j = 0; j < hnv[0].getNumChildren(); j++)
1321 {
1322 largs.push_back(hnv[0][j]);
1323 }
1324 Assert(largs.size() == apply_args.size());
1325 hnv = hnv[1].substitute(
1326 largs.begin(), largs.end(), apply_args.begin(), apply_args.end());
1327 hnv = Rewriter::rewrite(hnv);
1328 }
1329 Assert(!TypeNode::leastCommonTypeNode(hnv.getType(), curr.getType())
1330 .isNull());
1331 curr = NodeManager::currentNM()->mkNode(kind::ITE, hni, hnv, curr);
1332 }
1333 }
1334 Node val = NodeManager::currentNM()->mkNode(
1335 kind::LAMBDA,
1336 NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, args),
1337 curr);
1338 m->assignFunctionDefinition(f, val);
1339 }
1340
1341 // This struct is used to sort terms by the "size" of their type
1342 // The size of the type is the number of nodes in the type, for example
1343 // size of Int is 1
1344 // size of Function( Int, Int ) is 3
1345 // size of Function( Function( Bool, Int ), Int ) is 5
1346 struct sortTypeSize
1347 {
1348 // stores the size of the type
1349 std::map<TypeNode, unsigned> d_type_size;
1350 // get the size of type tn
1351 unsigned getTypeSize(TypeNode tn)
1352 {
1353 std::map<TypeNode, unsigned>::iterator it = d_type_size.find(tn);
1354 if (it != d_type_size.end())
1355 {
1356 return it->second;
1357 }
1358 else
1359 {
1360 unsigned sum = 1;
1361 for (unsigned i = 0; i < tn.getNumChildren(); i++)
1362 {
1363 sum += getTypeSize(tn[i]);
1364 }
1365 d_type_size[tn] = sum;
1366 return sum;
1367 }
1368 }
1369
1370 public:
1371 // compares the type size of i and j
1372 // returns true iff the size of i is less than that of j
1373 // tiebreaks are determined by node value
1374 bool operator()(Node i, Node j)
1375 {
1376 int si = getTypeSize(i.getType());
1377 int sj = getTypeSize(j.getType());
1378 if (si < sj)
1379 {
1380 return true;
1381 }
1382 else if (si == sj)
1383 {
1384 return i < j;
1385 }
1386 else
1387 {
1388 return false;
1389 }
1390 }
1391 };
1392
1393 void TheoryEngineModelBuilder::assignFunctions(TheoryModel* m)
1394 {
1395 if (!options::assignFunctionValues())
1396 {
1397 return;
1398 }
1399 Trace("model-builder") << "Assigning function values..." << std::endl;
1400 std::vector<Node> funcs_to_assign = m->getFunctionsToAssign();
1401
1402 if (options::ufHo())
1403 {
1404 // sort based on type size if higher-order
1405 Trace("model-builder") << "Sort functions by type..." << std::endl;
1406 sortTypeSize sts;
1407 std::sort(funcs_to_assign.begin(), funcs_to_assign.end(), sts);
1408 }
1409
1410 if (Trace.isOn("model-builder"))
1411 {
1412 Trace("model-builder") << "...have " << funcs_to_assign.size()
1413 << " functions to assign:" << std::endl;
1414 for (unsigned k = 0; k < funcs_to_assign.size(); k++)
1415 {
1416 Node f = funcs_to_assign[k];
1417 Trace("model-builder") << " [" << k << "] : " << f << " : "
1418 << f.getType() << std::endl;
1419 }
1420 }
1421
1422 // construct function values
1423 for (unsigned k = 0; k < funcs_to_assign.size(); k++)
1424 {
1425 Node f = funcs_to_assign[k];
1426 Trace("model-builder") << " Function #" << k << " is " << f << std::endl;
1427 // std::map< Node, std::vector< Node > >::iterator itht =
1428 // m->d_ho_uf_terms.find( f );
1429 if (!options::ufHo())
1430 {
1431 Trace("model-builder") << " Assign function value for " << f
1432 << " based on APPLY_UF" << std::endl;
1433 assignFunction(m, f);
1434 }
1435 else
1436 {
1437 Trace("model-builder") << " Assign function value for " << f
1438 << " based on curried HO_APPLY" << std::endl;
1439 assignHoFunction(m, f);
1440 }
1441 }
1442 Trace("model-builder") << "Finished assigning function values." << std::endl;
1443 }
1444
1445 } /* namespace CVC4::theory */
1446 } /* namespace CVC4 */