Extend model construction with assignment exclusion set (#3377)
[cvc5.git] / src / theory / theory_model_builder.cpp
1 /********************* */
2 /*! \file theory_model_builder.cpp
3 ** \verbatim
4 ** Top contributors (to current version):
5 ** Andrew Reynolds, Clark Barrett, Andres Noetzli
6 ** This file is part of the CVC4 project.
7 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
8 ** in the top-level source directory) and their institutional affiliations.
9 ** All rights reserved. See the file COPYING in the top-level source
10 ** directory for licensing information.\endverbatim
11 **
12 ** \brief Implementation of theory model buidler class
13 **/
14 #include "theory/theory_model_builder.h"
15
16 #include "expr/dtype.h"
17 #include "options/quantifiers_options.h"
18 #include "options/smt_options.h"
19 #include "options/uf_options.h"
20 #include "theory/theory_engine.h"
21 #include "theory/uf/theory_uf_model.h"
22
23 using namespace std;
24 using namespace CVC4::kind;
25 using namespace CVC4::context;
26
27 namespace CVC4 {
28 namespace theory {
29
30 void TheoryEngineModelBuilder::Assigner::initialize(
31 TypeNode tn, TypeEnumeratorProperties* tep, const std::vector<Node>& aes)
32 {
33 d_te.reset(new TypeEnumerator(tn, tep));
34 d_assignExcSet.insert(d_assignExcSet.end(), aes.begin(), aes.end());
35 }
36
37 Node TheoryEngineModelBuilder::Assigner::getNextAssignment()
38 {
39 Assert(d_te != nullptr);
40 Node n;
41 bool success = false;
42 TypeEnumerator& te = *d_te;
43 // Check if we have run out of elements. This should never happen; if it
44 // does we assert false and return null.
45 if (te.isFinished())
46 {
47 Assert(false);
48 return Node::null();
49 }
50 // must increment until we find one that is not in the assignment
51 // exclusion set
52 do
53 {
54 n = *te;
55 success = std::find(d_assignExcSet.begin(), d_assignExcSet.end(), n)
56 == d_assignExcSet.end();
57 // increment regardless of fail or succeed, to set up the next value
58 ++te;
59 } while (!success);
60 return n;
61 }
62
63 TheoryEngineModelBuilder::TheoryEngineModelBuilder(TheoryEngine* te) : d_te(te)
64 {
65 }
66
67 Node TheoryEngineModelBuilder::evaluateEqc(TheoryModel* m, TNode r)
68 {
69 eq::EqClassIterator eqc_i = eq::EqClassIterator(r, m->d_equalityEngine);
70 for (; !eqc_i.isFinished(); ++eqc_i)
71 {
72 Node n = *eqc_i;
73 Trace("model-builder-debug") << "Look at term : " << n << std::endl;
74 if (!isAssignable(n))
75 {
76 Trace("model-builder-debug") << "...try to normalize" << std::endl;
77 Node normalized = normalize(m, n, true);
78 if (normalized.isConst())
79 {
80 return normalized;
81 }
82 }
83 }
84 return Node::null();
85 }
86
87 bool TheoryEngineModelBuilder::isAssignerActive(TheoryModel* tm, Assigner& a)
88 {
89 if (a.d_isActive)
90 {
91 return true;
92 }
93 std::vector<Node>& eset = a.d_assignExcSet;
94 std::map<Node, Node>::iterator it;
95 for (unsigned i = 0, size = eset.size(); i < size; i++)
96 {
97 // Members of exclusion set must have values, otherwise we are not yet
98 // assignable.
99 Node er = eset[i];
100 if (er.isConst())
101 {
102 // already processed
103 continue;
104 }
105 // Assignable members of assignment exclusion set should be representatives
106 // of their equivalence classes. This ensures we look up the constant
107 // representatives for assignable members of assignment exclusion sets.
108 Assert(er == tm->getRepresentative(er));
109 it = d_constantReps.find(er);
110 if (it == d_constantReps.end())
111 {
112 Trace("model-build-aes")
113 << "isAssignerActive: not active due to " << er << std::endl;
114 return false;
115 }
116 // update
117 eset[i] = it->second;
118 }
119 Trace("model-build-aes") << "isAssignerActive: active!" << std::endl;
120 a.d_isActive = true;
121 return true;
122 }
123
124 bool TheoryEngineModelBuilder::isAssignable(TNode n)
125 {
126 if (n.getKind() == kind::SELECT || n.getKind() == kind::APPLY_SELECTOR_TOTAL)
127 {
128 // selectors are always assignable (where we guarantee that they are not
129 // evaluatable here)
130 if (!options::ufHo())
131 {
132 Assert(!n.getType().isFunction());
133 return true;
134 }
135 else
136 {
137 // might be a function field
138 return !n.getType().isFunction();
139 }
140 }
141 else if (n.getKind() == kind::FLOATINGPOINT_COMPONENT_SIGN)
142 {
143 // Extracting the sign of a floating-point number acts similar to a
144 // selector on a datatype, i.e. if `(sign x)` wasn't assigned a value, we
145 // can pick an arbitrary one. Note that the other components of a
146 // floating-point number should always be assigned a value.
147 return true;
148 }
149 else
150 {
151 // non-function variables, and fully applied functions
152 if (!options::ufHo())
153 {
154 // no functions exist, all functions are fully applied
155 Assert(n.getKind() != kind::HO_APPLY);
156 Assert(!n.getType().isFunction());
157 return n.isVar() || n.getKind() == kind::APPLY_UF;
158 }
159 else
160 {
161 // Assert( n.getKind() != kind::APPLY_UF );
162 return (n.isVar() && !n.getType().isFunction())
163 || n.getKind() == kind::APPLY_UF
164 || (n.getKind() == kind::HO_APPLY
165 && n[0].getType().getNumChildren() == 2);
166 }
167 }
168 }
169
170 void TheoryEngineModelBuilder::addAssignableSubterms(TNode n,
171 TheoryModel* tm,
172 NodeSet& cache)
173 {
174 if (n.isClosure())
175 {
176 return;
177 }
178 if (cache.find(n) != cache.end())
179 {
180 return;
181 }
182 if (isAssignable(n))
183 {
184 tm->d_equalityEngine->addTerm(n);
185 }
186 for (TNode::iterator child_it = n.begin(); child_it != n.end(); ++child_it)
187 {
188 addAssignableSubterms(*child_it, tm, cache);
189 }
190 cache.insert(n);
191 }
192
193 void TheoryEngineModelBuilder::assignConstantRep(TheoryModel* tm,
194 Node eqc,
195 Node const_rep)
196 {
197 d_constantReps[eqc] = const_rep;
198 Trace("model-builder") << " Assign: Setting constant rep of " << eqc
199 << " to " << const_rep << endl;
200 tm->d_rep_set.setTermForRepresentative(const_rep, eqc);
201 }
202
203 bool TheoryEngineModelBuilder::isExcludedCdtValue(
204 Node val,
205 std::set<Node>* repSet,
206 std::map<Node, Node>& assertedReps,
207 Node eqc)
208 {
209 Trace("model-builder-debug")
210 << "Is " << val << " and excluded codatatype value for " << eqc << "? "
211 << std::endl;
212 for (set<Node>::iterator i = repSet->begin(); i != repSet->end(); ++i)
213 {
214 Assert(assertedReps.find(*i) != assertedReps.end());
215 Node rep = assertedReps[*i];
216 Trace("model-builder-debug") << " Rep : " << rep << std::endl;
217 // check matching val to rep with eqc as a free variable
218 Node eqc_m;
219 if (isCdtValueMatch(val, rep, eqc, eqc_m))
220 {
221 Trace("model-builder-debug") << " ...matches with " << eqc << " -> "
222 << eqc_m << std::endl;
223 if (eqc_m.getKind() == kind::UNINTERPRETED_CONSTANT)
224 {
225 Trace("model-builder-debug") << "*** " << val
226 << " is excluded datatype for " << eqc
227 << std::endl;
228 return true;
229 }
230 }
231 }
232 return false;
233 }
234
235 bool TheoryEngineModelBuilder::isCdtValueMatch(Node v,
236 Node r,
237 Node eqc,
238 Node& eqc_m)
239 {
240 if (r == v)
241 {
242 return true;
243 }
244 else if (r == eqc)
245 {
246 if (eqc_m.isNull())
247 {
248 // only if an uninterpreted constant?
249 eqc_m = v;
250 return true;
251 }
252 else
253 {
254 return v == eqc_m;
255 }
256 }
257 else if (v.getKind() == kind::APPLY_CONSTRUCTOR
258 && r.getKind() == kind::APPLY_CONSTRUCTOR)
259 {
260 if (v.getOperator() == r.getOperator())
261 {
262 for (unsigned i = 0; i < v.getNumChildren(); i++)
263 {
264 if (!isCdtValueMatch(v[i], r[i], eqc, eqc_m))
265 {
266 return false;
267 }
268 }
269 return true;
270 }
271 }
272 return false;
273 }
274
275 bool TheoryEngineModelBuilder::involvesUSort(TypeNode tn)
276 {
277 if (tn.isSort())
278 {
279 return true;
280 }
281 else if (tn.isArray())
282 {
283 return involvesUSort(tn.getArrayIndexType())
284 || involvesUSort(tn.getArrayConstituentType());
285 }
286 else if (tn.isSet())
287 {
288 return involvesUSort(tn.getSetElementType());
289 }
290 else if (tn.isDatatype())
291 {
292 const DType& dt = tn.getDType();
293 return dt.involvesUninterpretedType();
294 }
295 else
296 {
297 return false;
298 }
299 }
300
301 bool TheoryEngineModelBuilder::isExcludedUSortValue(
302 std::map<TypeNode, unsigned>& eqc_usort_count,
303 Node v,
304 std::map<Node, bool>& visited)
305 {
306 Assert(v.isConst());
307 if (visited.find(v) == visited.end())
308 {
309 visited[v] = true;
310 TypeNode tn = v.getType();
311 if (tn.isSort())
312 {
313 Trace("model-builder-debug") << "Is excluded usort value : " << v << " "
314 << tn << std::endl;
315 unsigned card = eqc_usort_count[tn];
316 Trace("model-builder-debug") << " Cardinality is " << card << std::endl;
317 unsigned index =
318 v.getConst<UninterpretedConstant>().getIndex().toUnsignedInt();
319 Trace("model-builder-debug") << " Index is " << index << std::endl;
320 return index > 0 && index >= card;
321 }
322 for (unsigned i = 0; i < v.getNumChildren(); i++)
323 {
324 if (isExcludedUSortValue(eqc_usort_count, v[i], visited))
325 {
326 return true;
327 }
328 }
329 }
330 return false;
331 }
332
333 void TheoryEngineModelBuilder::addToTypeList(
334 TypeNode tn,
335 std::vector<TypeNode>& type_list,
336 std::unordered_set<TypeNode, TypeNodeHashFunction>& visiting)
337 {
338 if (std::find(type_list.begin(), type_list.end(), tn) == type_list.end())
339 {
340 if (visiting.find(tn) == visiting.end())
341 {
342 visiting.insert(tn);
343 /* This must make a recursive call on all types that are subterms of
344 * values of the current type.
345 * Note that recursive traversal here is over enumerated expressions
346 * (very low expression depth). */
347 if (tn.isArray())
348 {
349 addToTypeList(tn.getArrayIndexType(), type_list, visiting);
350 addToTypeList(tn.getArrayConstituentType(), type_list, visiting);
351 }
352 else if (tn.isSet())
353 {
354 addToTypeList(tn.getSetElementType(), type_list, visiting);
355 }
356 else if (tn.isDatatype())
357 {
358 const DType& dt = tn.getDType();
359 for (unsigned i = 0; i < dt.getNumConstructors(); i++)
360 {
361 for (unsigned j = 0; j < dt[i].getNumArgs(); j++)
362 {
363 TypeNode ctn = dt[i][j].getRangeType();
364 addToTypeList(ctn, type_list, visiting);
365 }
366 }
367 }
368 Assert(std::find(type_list.begin(), type_list.end(), tn)
369 == type_list.end());
370 type_list.push_back(tn);
371 }
372 }
373 }
374
375 bool TheoryEngineModelBuilder::buildModel(Model* m)
376 {
377 Trace("model-builder") << "TheoryEngineModelBuilder: buildModel" << std::endl;
378 TheoryModel* tm = (TheoryModel*)m;
379 eq::EqualityEngine* ee = tm->d_equalityEngine;
380
381 // buildModel should only be called once per check
382 Assert(!tm->isBuilt());
383
384 // Reset model
385 tm->reset();
386
387 // mark as built
388 tm->d_modelBuilt = true;
389 tm->d_modelBuiltSuccess = false;
390
391 // Collect model info from the theories
392 Trace("model-builder") << "TheoryEngineModelBuilder: Collect model info..."
393 << std::endl;
394 if (!d_te->collectModelInfo(tm))
395 {
396 Trace("model-builder")
397 << "TheoryEngineModelBuilder: fail collect model info" << std::endl;
398 return false;
399 }
400
401 Trace("model-builder")
402 << "TheoryEngineModelBuilder: Preprocess build model..." << std::endl;
403 // model-builder specific initialization
404 if (!preProcessBuildModel(tm))
405 {
406 Trace("model-builder")
407 << "TheoryEngineModelBuilder: fail preprocess build model."
408 << std::endl;
409 return false;
410 }
411
412 Trace("model-builder")
413 << "TheoryEngineModelBuilder: Add assignable subterms..." << std::endl;
414 // Loop through all terms and make sure that assignable sub-terms are in the
415 // equality engine
416 // Also, record #eqc per type (for finite model finding)
417 std::map<TypeNode, unsigned> eqc_usort_count;
418 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
419 {
420 NodeSet cache;
421 for (; !eqcs_i.isFinished(); ++eqcs_i)
422 {
423 eq::EqClassIterator eqc_i = eq::EqClassIterator((*eqcs_i), ee);
424 for (; !eqc_i.isFinished(); ++eqc_i)
425 {
426 addAssignableSubterms(*eqc_i, tm, cache);
427 }
428 TypeNode tn = (*eqcs_i).getType();
429 if (tn.isSort())
430 {
431 if (eqc_usort_count.find(tn) == eqc_usort_count.end())
432 {
433 eqc_usort_count[tn] = 1;
434 }
435 else
436 {
437 eqc_usort_count[tn]++;
438 }
439 }
440 }
441 }
442
443 Trace("model-builder") << "Collect representatives..." << std::endl;
444
445 // Process all terms in the equality engine, store representatives for each EC
446 d_constantReps.clear();
447 std::map<Node, Node> assertedReps;
448 TypeSet typeConstSet, typeRepSet, typeNoRepSet;
449 // Compute type enumerator properties. This code ensures we do not
450 // enumerate terms that have uninterpreted constants that violate the
451 // bounds imposed by finite model finding. For example, if finite
452 // model finding insists that there are only 2 values { U1, U2 } of type U,
453 // then the type enumerator for list of U should enumerate:
454 // nil, (cons U1 nil), (cons U2 nil), (cons U1 (cons U1 nil)), ...
455 // instead of enumerating (cons U3 nil).
456 TypeEnumeratorProperties tep;
457 if (options::finiteModelFind())
458 {
459 tep.d_fixed_usort_card = true;
460 for (std::map<TypeNode, unsigned>::iterator it = eqc_usort_count.begin();
461 it != eqc_usort_count.end();
462 ++it)
463 {
464 Trace("model-builder") << "Fixed bound (#eqc) for " << it->first << " : "
465 << it->second << std::endl;
466 tep.d_fixed_card[it->first] = Integer(it->second);
467 }
468 typeConstSet.setTypeEnumeratorProperties(&tep);
469 }
470
471 // AJR: build ordered list of types that ensures that base types are
472 // enumerated first.
473 // (I think) this is only strictly necessary for finite model finding +
474 // parametric types instantiated with uninterpreted sorts, but is probably
475 // a good idea to do in general since it leads to models with smaller term
476 // sizes.
477 std::vector<TypeNode> type_list;
478 eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
479 for (; !eqcs_i.isFinished(); ++eqcs_i)
480 {
481 // eqc is the equivalence class representative
482 Node eqc = (*eqcs_i);
483 Trace("model-builder") << "Processing EC: " << eqc << endl;
484 Assert(tm->d_equalityEngine->getRepresentative(eqc) == eqc);
485 TypeNode eqct = eqc.getType();
486 Assert(assertedReps.find(eqc) == assertedReps.end());
487 Assert(d_constantReps.find(eqc) == d_constantReps.end());
488
489 // Loop through terms in this EC
490 Node rep, const_rep;
491 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
492 for (; !eqc_i.isFinished(); ++eqc_i)
493 {
494 Node n = *eqc_i;
495 Trace("model-builder") << " Processing Term: " << n << endl;
496 // Record as rep if this node was specified as a representative
497 if (tm->d_reps.find(n) != tm->d_reps.end())
498 {
499 // AJR: I believe this assertion is too strict,
500 // e.g. datatypes may assert representative for two constructor terms
501 // that are not in the care graph and are merged during
502 // collectModelInfo.
503 // Assert(rep.isNull());
504 rep = tm->d_reps[n];
505 Assert(!rep.isNull());
506 Trace("model-builder") << " Rep( " << eqc << " ) = " << rep
507 << std::endl;
508 }
509 // Record as const_rep if this node is constant
510 if (n.isConst())
511 {
512 Assert(const_rep.isNull());
513 const_rep = n;
514 Trace("model-builder") << " ConstRep( " << eqc << " ) = " << const_rep
515 << std::endl;
516 }
517 // model-specific processing of the term
518 tm->addTermInternal(n);
519 }
520
521 // Assign representative for this EC
522 if (!const_rep.isNull())
523 {
524 // Theories should not specify a rep if there is already a constant in the
525 // EC
526 // AJR: I believe this assertion is too strict, eqc with asserted reps may
527 // merge with constant eqc
528 // Assert(rep.isNull() || rep == const_rep);
529 assignConstantRep(tm, eqc, const_rep);
530 typeConstSet.add(eqct.getBaseType(), const_rep);
531 }
532 else if (!rep.isNull())
533 {
534 assertedReps[eqc] = rep;
535 typeRepSet.add(eqct.getBaseType(), eqc);
536 std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
537 addToTypeList(eqct.getBaseType(), type_list, visiting);
538 }
539 else
540 {
541 typeNoRepSet.add(eqct, eqc);
542 std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
543 addToTypeList(eqct, type_list, visiting);
544 }
545 }
546
547 Trace("model-builder") << "Compute assignable information..." << std::endl;
548 // The set of equivalence classes that are "assignable"
549 std::unordered_set<Node, NodeHashFunction> assignableEqc;
550 // The set of equivalence classes that are "evaluable"
551 std::unordered_set<Node, NodeHashFunction> evaluableEqc;
552 // Assigner objects for relevant equivalence classes
553 std::map<Node, Assigner> eqcToAssigner;
554 // Maps equivalence classes to the equivalence class that maps to its assigner
555 // object in the above map.
556 std::map<Node, Node> eqcToAssignerMaster;
557 // Compute the above information
558 computeAssignableInfo(
559 tm, tep, assignableEqc, evaluableEqc, eqcToAssigner, eqcToAssignerMaster);
560
561 // Need to ensure that each EC has a constant representative.
562
563 Trace("model-builder") << "Processing EC's..." << std::endl;
564
565 TypeSet::iterator it;
566 vector<TypeNode>::iterator type_it;
567 set<Node>::iterator i, i2;
568 bool changed, unassignedAssignable, assignOne = false;
569 set<TypeNode> evaluableSet;
570
571 // Double-fixed-point loop
572 // Outer loop handles a special corner case (see code at end of loop for
573 // details)
574 for (;;)
575 {
576 // Inner fixed-point loop: we are trying to learn constant values for every
577 // EC. Each time through this loop, we process all of the
578 // types by type and may learn some new EC values. EC's in one type may
579 // depend on EC's in another type, so we need a fixed-point loop
580 // to ensure that we learn as many EC values as possible
581 do
582 {
583 changed = false;
584 unassignedAssignable = false;
585 evaluableSet.clear();
586
587 // Iterate over all types we've seen
588 for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
589 {
590 TypeNode t = *type_it;
591 TypeNode tb = t.getBaseType();
592 set<Node>* noRepSet = typeNoRepSet.getSet(t);
593
594 // 1. Try to evaluate the EC's in this type
595 if (noRepSet != NULL && !noRepSet->empty())
596 {
597 Trace("model-builder") << " Eval phase, working on type: " << t
598 << endl;
599 bool evaluable;
600 d_normalizedCache.clear();
601 for (i = noRepSet->begin(); i != noRepSet->end();)
602 {
603 i2 = i;
604 ++i;
605 Trace("model-builder-debug") << "Look at eqc : " << (*i2)
606 << std::endl;
607 Node normalized;
608 // only possible to normalize if we are evaluable
609 evaluable = evaluableEqc.find(*i2) != evaluableEqc.end();
610 if (evaluable)
611 {
612 normalized = evaluateEqc(tm, *i2);
613 }
614 if (!normalized.isNull())
615 {
616 Assert(normalized.isConst());
617 typeConstSet.add(tb, normalized);
618 assignConstantRep(tm, *i2, normalized);
619 Trace("model-builder") << " Eval: Setting constant rep of "
620 << (*i2) << " to " << normalized << endl;
621 changed = true;
622 noRepSet->erase(i2);
623 }
624 else
625 {
626 if (evaluable)
627 {
628 evaluableSet.insert(tb);
629 }
630 // If assignable, remember there is an equivalence class that is
631 // not assigned and assignable.
632 if (assignableEqc.find(*i2) != assignableEqc.end())
633 {
634 unassignedAssignable = true;
635 }
636 }
637 }
638 }
639
640 // 2. Normalize any non-const representative terms for this type
641 set<Node>* repSet = typeRepSet.getSet(t);
642 if (repSet != NULL && !repSet->empty())
643 {
644 Trace("model-builder")
645 << " Normalization phase, working on type: " << t << endl;
646 d_normalizedCache.clear();
647 for (i = repSet->begin(); i != repSet->end();)
648 {
649 Assert(assertedReps.find(*i) != assertedReps.end());
650 Node rep = assertedReps[*i];
651 Node normalized = normalize(tm, rep, false);
652 Trace("model-builder") << " Normalizing rep (" << rep
653 << "), normalized to (" << normalized << ")"
654 << endl;
655 if (normalized.isConst())
656 {
657 changed = true;
658 typeConstSet.add(tb, normalized);
659 assignConstantRep(tm, *i, normalized);
660 assertedReps.erase(*i);
661 i2 = i;
662 ++i;
663 repSet->erase(i2);
664 }
665 else
666 {
667 if (normalized != rep)
668 {
669 assertedReps[*i] = normalized;
670 changed = true;
671 }
672 ++i;
673 }
674 }
675 }
676 }
677 } while (changed);
678
679 if (!unassignedAssignable)
680 {
681 break;
682 }
683
684 // 3. Assign unassigned assignable EC's using type enumeration - assign a
685 // value *different* from all other EC's if the type is infinite
686 // Assign first value from type enumerator otherwise - for finite types, we
687 // rely on polite framework to ensure that EC's that have to be
688 // different are different.
689
690 // Only make assignments on a type if:
691 // 1. there are no terms that share the same base type with un-normalized
692 // representatives
693 // 2. there are no terms that share teh same base type that are unevaluated
694 // evaluable terms
695 // Alternatively, if 2 or 3 don't hold but we are in a special
696 // deadlock-breaking mode where assignOne is true, go ahead and make one
697 // assignment
698 changed = false;
699 // must iterate over the ordered type list to ensure that we do not
700 // enumerate values with subterms
701 // having types that we are currently enumerating (when possible)
702 // for example, this ensures we enumerate uninterpreted sort U before (List
703 // of U) and (Array U U)
704 // however, it does not break cyclic type dependencies for mutually
705 // recursive datatypes, but this is handled
706 // by recording all subterms of enumerated values in TypeSet::addSubTerms.
707 for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
708 {
709 TypeNode t = *type_it;
710 // continue if there are no more equivalence classes of this type to
711 // assign
712 std::set<Node>* noRepSetPtr = typeNoRepSet.getSet(t);
713 if (noRepSetPtr == NULL)
714 {
715 continue;
716 }
717 set<Node>& noRepSet = *noRepSetPtr;
718 if (noRepSet.empty())
719 {
720 continue;
721 }
722
723 // get properties of this type
724 bool isCorecursive = false;
725 if (t.isDatatype())
726 {
727 const DType& dt = t.getDType();
728 isCorecursive = dt.isCodatatype()
729 && (!dt.isFinite(t) || dt.isRecursiveSingleton(t));
730 }
731 #ifdef CVC4_ASSERTIONS
732 bool isUSortFiniteRestricted = false;
733 if (options::finiteModelFind())
734 {
735 isUSortFiniteRestricted = !t.isSort() && involvesUSort(t);
736 }
737 #endif
738
739 set<Node>* repSet = typeRepSet.getSet(t);
740 TypeNode tb = t.getBaseType();
741 if (!assignOne)
742 {
743 set<Node>* repSet = typeRepSet.getSet(tb);
744 if (repSet != NULL && !repSet->empty())
745 {
746 continue;
747 }
748 if (evaluableSet.find(tb) != evaluableSet.end())
749 {
750 continue;
751 }
752 }
753 Trace("model-builder") << " Assign phase, working on type: " << t
754 << endl;
755 bool assignable, evaluable CVC4_UNUSED;
756 std::map<Node, Assigner>::iterator itAssigner;
757 std::map<Node, Node>::iterator itAssignerM;
758 for (i = noRepSet.begin(); i != noRepSet.end();)
759 {
760 i2 = i;
761 ++i;
762 // check whether it has an assigner object
763 itAssignerM = eqcToAssignerMaster.find(*i2);
764 if (itAssignerM != eqcToAssignerMaster.end())
765 {
766 // Take the master's assigner. Notice we don't care which order
767 // equivalence classes are assigned. For instance, the master can
768 // be assigned after one of its slaves.
769 itAssigner = eqcToAssigner.find(itAssignerM->second);
770 }
771 else
772 {
773 itAssigner = eqcToAssigner.find(*i2);
774 }
775 if (itAssigner != eqcToAssigner.end())
776 {
777 assignable = isAssignerActive(tm, itAssigner->second);
778 }
779 else
780 {
781 assignable = assignableEqc.find(*i2) != assignableEqc.end();
782 }
783 evaluable = evaluableEqc.find(*i2) != evaluableEqc.end();
784 Trace("model-builder-debug")
785 << " eqc " << *i2 << " is assignable=" << assignable
786 << ", evaluable=" << evaluable << std::endl;
787 if (assignable)
788 {
789 Assert(!evaluable || assignOne);
790 // this assertion ensures that if we are assigning to a term of
791 // Boolean type, then the term is either a variable or an APPLY_UF.
792 // Note we only assign to terms of Boolean type if the term occurs in
793 // a singleton equivalence class; otherwise the term would have been
794 // in the equivalence class of true or false and would not need
795 // assigning.
796 Assert(!t.isBoolean() || (*i2).isVar()
797 || (*i2).getKind() == kind::APPLY_UF);
798 Node n;
799 if (itAssigner != eqcToAssigner.end())
800 {
801 Trace("model-builder-debug")
802 << "Get value from assigner for finite type..." << std::endl;
803 // if it has an assigner, get the value from the assigner.
804 n = itAssigner->second.getNextAssignment();
805 Assert(!n.isNull());
806 }
807 else if (!t.isFinite())
808 {
809 // if its infinite, we get a fresh value that does not occur in
810 // the model.
811 bool success;
812 do
813 {
814 Trace("model-builder-debug") << "Enumerate term of type " << t
815 << std::endl;
816 n = typeConstSet.nextTypeEnum(t, true);
817 //--- AJR: this code checks whether n is a legal value
818 Assert(!n.isNull());
819 success = true;
820 Trace("model-builder-debug") << "Check if excluded : " << n
821 << std::endl;
822 #ifdef CVC4_ASSERTIONS
823 if (isUSortFiniteRestricted)
824 {
825 // must not involve uninterpreted constants beyond cardinality
826 // bound (which assumed to coincide with #eqc)
827 // this is just an assertion now, since TypeEnumeratorProperties
828 // should ensure that only legal values are enumerated wrt this
829 // constraint.
830 std::map<Node, bool> visited;
831 success = !isExcludedUSortValue(eqc_usort_count, n, visited);
832 if (!success)
833 {
834 Trace("model-builder")
835 << "Excluded value for " << t << " : " << n
836 << " due to out of range uninterpreted constant."
837 << std::endl;
838 }
839 Assert(success);
840 }
841 #endif
842 if (success && isCorecursive)
843 {
844 if (repSet != NULL && !repSet->empty())
845 {
846 // in the case of codatatypes, check if it is in the set of
847 // values that we cannot assign
848 success = !isExcludedCdtValue(n, repSet, assertedReps, *i2);
849 if (!success)
850 {
851 Trace("model-builder")
852 << "Excluded value : " << n
853 << " due to alpha-equivalent codatatype expression."
854 << std::endl;
855 }
856 }
857 }
858 //---
859 } while (!success);
860 Assert(!n.isNull());
861 }
862 else
863 {
864 Trace("model-builder-debug")
865 << "Get first value from finite type..." << std::endl;
866 // Otherwise, we get the first value from the type enumerator.
867 TypeEnumerator te(t);
868 n = *te;
869 }
870 Trace("model-builder-debug") << "...got " << n << std::endl;
871 assignConstantRep(tm, *i2, n);
872 changed = true;
873 noRepSet.erase(i2);
874 if (assignOne)
875 {
876 assignOne = false;
877 break;
878 }
879 }
880 }
881 }
882
883 // Corner case - I'm not sure this can even happen - but it's theoretically
884 // possible to have a cyclical dependency
885 // in EC assignment/evaluation, e.g. EC1 = {a, b + 1}; EC2 = {b, a - 1}. In
886 // this case, neither one will get assigned because we are waiting
887 // to be able to evaluate. But we will never be able to evaluate because
888 // the variables that need to be assigned are in
889 // these same EC's. In this case, repeat the whole fixed-point computation
890 // with the difference that the first EC
891 // that has both assignable and evaluable expressions will get assigned.
892 if (!changed)
893 {
894 Assert(!assignOne); // check for infinite loop!
895 assignOne = true;
896 }
897 }
898
899 #ifdef CVC4_ASSERTIONS
900 // Assert that all representatives have been converted to constants
901 for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it)
902 {
903 set<Node>& repSet = TypeSet::getSet(it);
904 if (!repSet.empty())
905 {
906 Trace("model-builder") << "***Non-empty repSet, size = " << repSet.size()
907 << ", first = " << *(repSet.begin()) << endl;
908 Assert(false);
909 }
910 }
911 #endif /* CVC4_ASSERTIONS */
912
913 Trace("model-builder") << "Copy representatives to model..." << std::endl;
914 tm->d_reps.clear();
915 std::map<Node, Node>::iterator itMap;
916 for (itMap = d_constantReps.begin(); itMap != d_constantReps.end(); ++itMap)
917 {
918 tm->d_reps[itMap->first] = itMap->second;
919 tm->d_rep_set.add(itMap->second.getType(), itMap->second);
920 }
921
922 Trace("model-builder") << "Make sure ECs have reps..." << std::endl;
923 // Make sure every EC has a rep
924 for (itMap = assertedReps.begin(); itMap != assertedReps.end(); ++itMap)
925 {
926 tm->d_reps[itMap->first] = itMap->second;
927 tm->d_rep_set.add(itMap->second.getType(), itMap->second);
928 }
929 for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it)
930 {
931 set<Node>& noRepSet = TypeSet::getSet(it);
932 set<Node>::iterator i;
933 for (i = noRepSet.begin(); i != noRepSet.end(); ++i)
934 {
935 tm->d_reps[*i] = *i;
936 tm->d_rep_set.add((*i).getType(), *i);
937 }
938 }
939
940 // modelBuilder-specific initialization
941 if (!processBuildModel(tm))
942 {
943 Trace("model-builder")
944 << "TheoryEngineModelBuilder: fail process build model." << std::endl;
945 return false;
946 }
947 Trace("model-builder") << "TheoryEngineModelBuilder: success" << std::endl;
948 tm->d_modelBuiltSuccess = true;
949 return true;
950 }
951 void TheoryEngineModelBuilder::computeAssignableInfo(
952 TheoryModel* tm,
953 TypeEnumeratorProperties& tep,
954 std::unordered_set<Node, NodeHashFunction>& assignableEqc,
955 std::unordered_set<Node, NodeHashFunction>& evaluableEqc,
956 std::map<Node, Assigner>& eqcToAssigner,
957 std::map<Node, Node>& eqcToAssignerMaster)
958 {
959 eq::EqualityEngine* ee = tm->d_equalityEngine;
960 bool computeAssigners = tm->hasAssignmentExclusionSets();
961 std::unordered_set<Node, NodeHashFunction> processed;
962 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(ee);
963 // A flag set to true if the current equivalence class is assignable (see
964 // assignableEqc).
965 bool assignable = false;
966 // Set to true if the current equivalence class is evaluatable (see
967 // evaluableEqc).
968 bool evaluable = false;
969 // Set to true if a term in the current equivalence class has been given an
970 // assignment exclusion set.
971 bool hasESet = false;
972 // Set to true if we found that a term in the current equivalence class has
973 // been given an assignment exclusion set, and we have not seen this term
974 // as part of a previous assignment exclusion group. In other words, when
975 // this flag is true we construct a new assigner object with the current
976 // equivalence class as its master.
977 bool foundESet = false;
978 // Look at all equivalence classes in the model
979 for (; !eqcs_i.isFinished(); ++eqcs_i)
980 {
981 Node eqc = *eqcs_i;
982 if (d_constantReps.find(eqc) != d_constantReps.end())
983 {
984 // already assigned above, skip
985 continue;
986 }
987 // reset information for the current equivalence classe
988 assignable = false;
989 evaluable = false;
990 hasESet = false;
991 foundESet = false;
992 // the assignment exclusion set for the current equivalence class
993 std::vector<Node> eset;
994 // the group to which this equivalence class belongs when exclusion sets
995 // were assigned (see the argument group of
996 // TheoryModel::getAssignmentExclusionSet).
997 std::vector<Node> group;
998 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
999 // For each term in the current equivalence class, we update the above
1000 // information. We may terminate this loop before looking at all terms if we
1001 // have inferred the value of all of the information above.
1002 for (; !eqc_i.isFinished(); ++eqc_i)
1003 {
1004 Node n = *eqc_i;
1005 if (!isAssignable(n))
1006 {
1007 evaluable = true;
1008 if (!computeAssigners)
1009 {
1010 if (assignable)
1011 {
1012 // both flags set, we are done
1013 break;
1014 }
1015 }
1016 // expressions that are not assignable should not be given assignment
1017 // exclusion sets
1018 Assert(!tm->getAssignmentExclusionSet(n, group, eset));
1019 continue;
1020 }
1021 else
1022 {
1023 assignable = true;
1024 if (!computeAssigners)
1025 {
1026 if (evaluable)
1027 {
1028 // both flags set, we are done
1029 break;
1030 }
1031 // we don't compute assigners, skip
1032 continue;
1033 }
1034 }
1035 // process the assignment exclusion set for term n
1036 // was it processed as a slave of a group?
1037 if (processed.find(n) != processed.end())
1038 {
1039 // Should not have two assignment exclusion sets for the same
1040 // equivalence class
1041 Assert(!hasESet);
1042 Assert(eqcToAssignerMaster.find(eqc) != eqcToAssignerMaster.end());
1043 // already processed as a slave term
1044 hasESet = true;
1045 continue;
1046 }
1047 // was it assigned one?
1048 if (tm->getAssignmentExclusionSet(n, group, eset))
1049 {
1050 // Should not have two assignment exclusion sets for the same
1051 // equivalence class
1052 Assert(!hasESet);
1053 foundESet = true;
1054 hasESet = true;
1055 }
1056 }
1057 if (assignable)
1058 {
1059 assignableEqc.insert(eqc);
1060 }
1061 if (evaluable)
1062 {
1063 evaluableEqc.insert(eqc);
1064 }
1065 // If we found an assignment exclusion set, we construct a new assigner
1066 // object.
1067 if (foundESet)
1068 {
1069 // we don't accept assignment exclusion sets for evaluable eqc
1070 Assert(!evaluable);
1071 // construct the assigner
1072 Assigner& a = eqcToAssigner[eqc];
1073 // Take the representatives of each term in the assignment exclusion
1074 // set, which ensures we can look up their value in d_constReps later.
1075 std::vector<Node> aes;
1076 for (const Node& e : eset)
1077 {
1078 // Should only supply terms that occur in the model or constants
1079 // in assignment exclusion sets.
1080 Assert(tm->hasTerm(e) || e.isConst());
1081 Node er = tm->hasTerm(e) ? tm->getRepresentative(e) : e;
1082 aes.push_back(er);
1083 }
1084 // initialize
1085 a.initialize(eqc.getType(), &tep, aes);
1086 // all others in the group are slaves of this
1087 for (const Node& g : group)
1088 {
1089 Assert(isAssignable(g));
1090 if (!tm->hasTerm(g))
1091 {
1092 // Ignore those that aren't in the model, in the case the user
1093 // has supplied an assignment exclusion set to a variable not in
1094 // the model.
1095 continue;
1096 }
1097 Node gr = tm->getRepresentative(g);
1098 if (gr != eqc)
1099 {
1100 eqcToAssignerMaster[gr] = eqc;
1101 // remember that this term has been processed
1102 processed.insert(g);
1103 }
1104 }
1105 }
1106 }
1107 }
1108
1109 void TheoryEngineModelBuilder::postProcessModel(bool incomplete, Model* m)
1110 {
1111 // if we are incomplete, there is no guarantee on the model.
1112 // thus, we do not check the model here.
1113 if (incomplete)
1114 {
1115 return;
1116 }
1117 TheoryModel* tm = static_cast<TheoryModel*>(m);
1118 Assert(tm != nullptr);
1119 // debug-check the model if the checkModels() is enabled.
1120 if (options::checkModels())
1121 {
1122 debugCheckModel(tm);
1123 }
1124 }
1125
1126 void TheoryEngineModelBuilder::debugCheckModel(TheoryModel* tm)
1127 {
1128 #ifdef CVC4_ASSERTIONS
1129 Assert(tm->isBuilt());
1130 eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
1131 std::map<Node, Node>::iterator itMap;
1132 // Check that every term evaluates to its representative in the model
1133 for (eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
1134 !eqcs_i.isFinished();
1135 ++eqcs_i)
1136 {
1137 // eqc is the equivalence class representative
1138 Node eqc = (*eqcs_i);
1139 // get the representative
1140 Node rep = tm->getRepresentative(eqc);
1141 if (!rep.isConst() && eqc.getType().isBoolean())
1142 {
1143 // if Boolean, it does not necessarily have a constant representative, use
1144 // get value instead
1145 rep = tm->getValue(eqc);
1146 Assert(rep.isConst());
1147 }
1148 eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
1149 for (; !eqc_i.isFinished(); ++eqc_i)
1150 {
1151 Node n = *eqc_i;
1152 static int repCheckInstance = 0;
1153 ++repCheckInstance;
1154
1155 // non-linear mult is not necessarily accurate wrt getValue
1156 if (n.getKind() != kind::NONLINEAR_MULT)
1157 {
1158 Debug("check-model::rep-checking") << "( " << repCheckInstance << ") "
1159 << "n: " << n << endl
1160 << "getValue(n): " << tm->getValue(n)
1161 << endl
1162 << "rep: " << rep << endl;
1163 Assert(tm->getValue(*eqc_i) == rep)
1164 << "run with -d check-model::rep-checking for details";
1165 }
1166 }
1167 }
1168 #endif /* CVC4_ASSERTIONS */
1169
1170 // builder-specific debugging
1171 debugModel(tm);
1172 }
1173
1174 Node TheoryEngineModelBuilder::normalize(TheoryModel* m, TNode r, bool evalOnly)
1175 {
1176 std::map<Node, Node>::iterator itMap = d_constantReps.find(r);
1177 if (itMap != d_constantReps.end())
1178 {
1179 return (*itMap).second;
1180 }
1181 NodeMap::iterator it = d_normalizedCache.find(r);
1182 if (it != d_normalizedCache.end())
1183 {
1184 return (*it).second;
1185 }
1186 Trace("model-builder-debug") << "do normalize on " << r << std::endl;
1187 Node retNode = r;
1188 if (r.getNumChildren() > 0)
1189 {
1190 std::vector<Node> children;
1191 if (r.getMetaKind() == kind::metakind::PARAMETERIZED)
1192 {
1193 children.push_back(r.getOperator());
1194 }
1195 bool childrenConst = true;
1196 for (size_t i = 0; i < r.getNumChildren(); ++i)
1197 {
1198 Node ri = r[i];
1199 bool recurse = true;
1200 if (!ri.isConst())
1201 {
1202 if (m->d_equalityEngine->hasTerm(ri))
1203 {
1204 itMap =
1205 d_constantReps.find(m->d_equalityEngine->getRepresentative(ri));
1206 if (itMap != d_constantReps.end())
1207 {
1208 ri = (*itMap).second;
1209 recurse = false;
1210 }
1211 else if (!evalOnly)
1212 {
1213 recurse = false;
1214 }
1215 }
1216 if (recurse)
1217 {
1218 ri = normalize(m, ri, evalOnly);
1219 }
1220 if (!ri.isConst())
1221 {
1222 childrenConst = false;
1223 }
1224 }
1225 children.push_back(ri);
1226 }
1227 retNode = NodeManager::currentNM()->mkNode(r.getKind(), children);
1228 if (childrenConst)
1229 {
1230 retNode = Rewriter::rewrite(retNode);
1231 Assert(retNode.getKind() == kind::APPLY_UF
1232 || !retNode.getType().isFirstClass() || retNode.isConst());
1233 }
1234 }
1235 d_normalizedCache[r] = retNode;
1236 return retNode;
1237 }
1238
1239 bool TheoryEngineModelBuilder::preProcessBuildModel(TheoryModel* m)
1240 {
1241 return true;
1242 }
1243
1244 bool TheoryEngineModelBuilder::processBuildModel(TheoryModel* m)
1245 {
1246 if (m->areFunctionValuesEnabled())
1247 {
1248 assignFunctions(m);
1249 }
1250 return true;
1251 }
1252
1253 void TheoryEngineModelBuilder::assignFunction(TheoryModel* m, Node f)
1254 {
1255 Assert(!options::ufHo());
1256 uf::UfModelTree ufmt(f);
1257 Node default_v;
1258 for (size_t i = 0; i < m->d_uf_terms[f].size(); i++)
1259 {
1260 Node un = m->d_uf_terms[f][i];
1261 vector<TNode> children;
1262 children.push_back(f);
1263 Trace("model-builder-debug") << " process term : " << un << std::endl;
1264 for (size_t j = 0; j < un.getNumChildren(); ++j)
1265 {
1266 Node rc = m->getRepresentative(un[j]);
1267 Trace("model-builder-debug2") << " get rep : " << un[j] << " returned "
1268 << rc << std::endl;
1269 Assert(rc.isConst());
1270 children.push_back(rc);
1271 }
1272 Node simp = NodeManager::currentNM()->mkNode(un.getKind(), children);
1273 Node v = m->getRepresentative(un);
1274 Trace("model-builder") << " Setting (" << simp << ") to (" << v << ")"
1275 << endl;
1276 ufmt.setValue(m, simp, v);
1277 default_v = v;
1278 }
1279 if (default_v.isNull())
1280 {
1281 // choose default value from model if none exists
1282 TypeEnumerator te(f.getType().getRangeType());
1283 default_v = (*te);
1284 }
1285 ufmt.setDefaultValue(m, default_v);
1286 bool condenseFuncValues = options::condenseFunctionValues();
1287 if (condenseFuncValues)
1288 {
1289 ufmt.simplify();
1290 }
1291 std::stringstream ss;
1292 ss << "_arg_";
1293 Node val = ufmt.getFunctionValue(ss.str().c_str(), condenseFuncValues);
1294 m->assignFunctionDefinition(f, val);
1295 // ufmt.debugPrint( std::cout, m );
1296 }
1297
1298 void TheoryEngineModelBuilder::assignHoFunction(TheoryModel* m, Node f)
1299 {
1300 Assert(options::ufHo());
1301 TypeNode type = f.getType();
1302 std::vector<TypeNode> argTypes = type.getArgTypes();
1303 std::vector<Node> args;
1304 std::vector<TNode> apply_args;
1305 for (unsigned i = 0; i < argTypes.size(); i++)
1306 {
1307 Node v = NodeManager::currentNM()->mkBoundVar(argTypes[i]);
1308 args.push_back(v);
1309 if (i > 0)
1310 {
1311 apply_args.push_back(v);
1312 }
1313 }
1314 // start with the base return value (currently we use the same default value
1315 // for all functions)
1316 TypeEnumerator te(type.getRangeType());
1317 Node curr = (*te);
1318 std::map<Node, std::vector<Node> >::iterator itht = m->d_ho_uf_terms.find(f);
1319 if (itht != m->d_ho_uf_terms.end())
1320 {
1321 for (size_t i = 0; i < itht->second.size(); i++)
1322 {
1323 Node hn = itht->second[i];
1324 Trace("model-builder-debug") << " process : " << hn << std::endl;
1325 Assert(hn.getKind() == kind::HO_APPLY);
1326 Assert(m->areEqual(hn[0], f));
1327 Node hni = m->getRepresentative(hn[1]);
1328 Trace("model-builder-debug2") << " get rep : " << hn[0]
1329 << " returned " << hni << std::endl;
1330 Assert(hni.isConst());
1331 Assert(hni.getType().isSubtypeOf(args[0].getType()));
1332 hni = Rewriter::rewrite(args[0].eqNode(hni));
1333 Node hnv = m->getRepresentative(hn);
1334 Trace("model-builder-debug2") << " get rep val : " << hn
1335 << " returned " << hnv << std::endl;
1336 Assert(hnv.isConst());
1337 if (!apply_args.empty())
1338 {
1339 Assert(hnv.getKind() == kind::LAMBDA
1340 && hnv[0].getNumChildren() + 1 == args.size());
1341 std::vector<TNode> largs;
1342 for (unsigned j = 0; j < hnv[0].getNumChildren(); j++)
1343 {
1344 largs.push_back(hnv[0][j]);
1345 }
1346 Assert(largs.size() == apply_args.size());
1347 hnv = hnv[1].substitute(
1348 largs.begin(), largs.end(), apply_args.begin(), apply_args.end());
1349 hnv = Rewriter::rewrite(hnv);
1350 }
1351 Assert(!TypeNode::leastCommonTypeNode(hnv.getType(), curr.getType())
1352 .isNull());
1353 curr = NodeManager::currentNM()->mkNode(kind::ITE, hni, hnv, curr);
1354 }
1355 }
1356 Node val = NodeManager::currentNM()->mkNode(
1357 kind::LAMBDA,
1358 NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, args),
1359 curr);
1360 m->assignFunctionDefinition(f, val);
1361 }
1362
1363 // This struct is used to sort terms by the "size" of their type
1364 // The size of the type is the number of nodes in the type, for example
1365 // size of Int is 1
1366 // size of Function( Int, Int ) is 3
1367 // size of Function( Function( Bool, Int ), Int ) is 5
1368 struct sortTypeSize
1369 {
1370 // stores the size of the type
1371 std::map<TypeNode, unsigned> d_type_size;
1372 // get the size of type tn
1373 unsigned getTypeSize(TypeNode tn)
1374 {
1375 std::map<TypeNode, unsigned>::iterator it = d_type_size.find(tn);
1376 if (it != d_type_size.end())
1377 {
1378 return it->second;
1379 }
1380 else
1381 {
1382 unsigned sum = 1;
1383 for (unsigned i = 0; i < tn.getNumChildren(); i++)
1384 {
1385 sum += getTypeSize(tn[i]);
1386 }
1387 d_type_size[tn] = sum;
1388 return sum;
1389 }
1390 }
1391
1392 public:
1393 // compares the type size of i and j
1394 // returns true iff the size of i is less than that of j
1395 // tiebreaks are determined by node value
1396 bool operator()(Node i, Node j)
1397 {
1398 int si = getTypeSize(i.getType());
1399 int sj = getTypeSize(j.getType());
1400 if (si < sj)
1401 {
1402 return true;
1403 }
1404 else if (si == sj)
1405 {
1406 return i < j;
1407 }
1408 else
1409 {
1410 return false;
1411 }
1412 }
1413 };
1414
1415 void TheoryEngineModelBuilder::assignFunctions(TheoryModel* m)
1416 {
1417 if (!options::assignFunctionValues())
1418 {
1419 return;
1420 }
1421 Trace("model-builder") << "Assigning function values..." << std::endl;
1422 std::vector<Node> funcs_to_assign = m->getFunctionsToAssign();
1423
1424 if (options::ufHo())
1425 {
1426 // sort based on type size if higher-order
1427 Trace("model-builder") << "Sort functions by type..." << std::endl;
1428 sortTypeSize sts;
1429 std::sort(funcs_to_assign.begin(), funcs_to_assign.end(), sts);
1430 }
1431
1432 if (Trace.isOn("model-builder"))
1433 {
1434 Trace("model-builder") << "...have " << funcs_to_assign.size()
1435 << " functions to assign:" << std::endl;
1436 for (unsigned k = 0; k < funcs_to_assign.size(); k++)
1437 {
1438 Node f = funcs_to_assign[k];
1439 Trace("model-builder") << " [" << k << "] : " << f << " : "
1440 << f.getType() << std::endl;
1441 }
1442 }
1443
1444 // construct function values
1445 for (unsigned k = 0; k < funcs_to_assign.size(); k++)
1446 {
1447 Node f = funcs_to_assign[k];
1448 Trace("model-builder") << " Function #" << k << " is " << f << std::endl;
1449 // std::map< Node, std::vector< Node > >::iterator itht =
1450 // m->d_ho_uf_terms.find( f );
1451 if (!options::ufHo())
1452 {
1453 Trace("model-builder") << " Assign function value for " << f
1454 << " based on APPLY_UF" << std::endl;
1455 assignFunction(m, f);
1456 }
1457 else
1458 {
1459 Trace("model-builder") << " Assign function value for " << f
1460 << " based on curried HO_APPLY" << std::endl;
1461 assignHoFunction(m, f);
1462 }
1463 }
1464 Trace("model-builder") << "Finished assigning function values." << std::endl;
1465 }
1466
1467 } /* namespace CVC4::theory */
1468 } /* namespace CVC4 */