util: Workaround lack of flock on Solaris
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <inttypes.h>
41 #include "zlib.h"
42
43 #include "util/crc32.h"
44 #include "util/debug.h"
45 #include "util/rand_xor.h"
46 #include "util/u_atomic.h"
47 #include "util/u_queue.h"
48 #include "util/mesa-sha1.h"
49 #include "util/ralloc.h"
50 #include "main/compiler.h"
51 #include "main/errors.h"
52
53 #include "disk_cache.h"
54
55 /* Number of bits to mask off from a cache key to get an index. */
56 #define CACHE_INDEX_KEY_BITS 16
57
58 /* Mask for computing an index from a key. */
59 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
60
61 /* The number of keys that can be stored in the index. */
62 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
63
64 /* The cache version should be bumped whenever a change is made to the
65 * structure of cache entries or the index. This will give any 3rd party
66 * applications reading the cache entries a chance to adjust to the changes.
67 *
68 * - The cache version is checked internally when reading a cache entry. If we
69 * ever have a mismatch we are in big trouble as this means we had a cache
70 * collision. In case of such an event please check the skys for giant
71 * asteroids and that the entire Mesa team hasn't been eaten by wolves.
72 *
73 * - There is no strict requirement that cache versions be backwards
74 * compatible but effort should be taken to limit disruption where possible.
75 */
76 #define CACHE_VERSION 1
77
78 struct disk_cache {
79 /* The path to the cache directory. */
80 char *path;
81 bool path_init_failed;
82
83 /* Thread queue for compressing and writing cache entries to disk */
84 struct util_queue cache_queue;
85
86 /* Seed for rand, which is used to pick a random directory */
87 uint64_t seed_xorshift128plus[2];
88
89 /* A pointer to the mmapped index file within the cache directory. */
90 uint8_t *index_mmap;
91 size_t index_mmap_size;
92
93 /* Pointer to total size of all objects in cache (within index_mmap) */
94 uint64_t *size;
95
96 /* Pointer to stored keys, (within index_mmap). */
97 uint8_t *stored_keys;
98
99 /* Maximum size of all cached objects (in bytes). */
100 uint64_t max_size;
101
102 /* Driver cache keys. */
103 uint8_t *driver_keys_blob;
104 size_t driver_keys_blob_size;
105
106 disk_cache_put_cb blob_put_cb;
107 disk_cache_get_cb blob_get_cb;
108 };
109
110 struct disk_cache_put_job {
111 struct util_queue_fence fence;
112
113 struct disk_cache *cache;
114
115 cache_key key;
116
117 /* Copy of cache data to be compressed and written. */
118 void *data;
119
120 /* Size of data to be compressed and written. */
121 size_t size;
122
123 struct cache_item_metadata cache_item_metadata;
124 };
125
126 /* Create a directory named 'path' if it does not already exist.
127 *
128 * Returns: 0 if path already exists as a directory or if created.
129 * -1 in all other cases.
130 */
131 static int
132 mkdir_if_needed(const char *path)
133 {
134 struct stat sb;
135
136 /* If the path exists already, then our work is done if it's a
137 * directory, but it's an error if it is not.
138 */
139 if (stat(path, &sb) == 0) {
140 if (S_ISDIR(sb.st_mode)) {
141 return 0;
142 } else {
143 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
144 "---disabling.\n", path);
145 return -1;
146 }
147 }
148
149 int ret = mkdir(path, 0755);
150 if (ret == 0 || (ret == -1 && errno == EEXIST))
151 return 0;
152
153 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
154 path, strerror(errno));
155
156 return -1;
157 }
158
159 /* Concatenate an existing path and a new name to form a new path. If the new
160 * path does not exist as a directory, create it then return the resulting
161 * name of the new path (ralloc'ed off of 'ctx').
162 *
163 * Returns NULL on any error, such as:
164 *
165 * <path> does not exist or is not a directory
166 * <path>/<name> exists but is not a directory
167 * <path>/<name> cannot be created as a directory
168 */
169 static char *
170 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
171 {
172 char *new_path;
173 struct stat sb;
174
175 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
176 return NULL;
177
178 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
179
180 if (mkdir_if_needed(new_path) == 0)
181 return new_path;
182 else
183 return NULL;
184 }
185
186 #define DRV_KEY_CPY(_dst, _src, _src_size) \
187 do { \
188 memcpy(_dst, _src, _src_size); \
189 _dst += _src_size; \
190 } while (0);
191
192 struct disk_cache *
193 disk_cache_create(const char *gpu_name, const char *driver_id,
194 uint64_t driver_flags)
195 {
196 void *local;
197 struct disk_cache *cache = NULL;
198 char *path, *max_size_str;
199 uint64_t max_size;
200 int fd = -1;
201 struct stat sb;
202 size_t size;
203
204 uint8_t cache_version = CACHE_VERSION;
205 size_t cv_size = sizeof(cache_version);
206
207 /* If running as a users other than the real user disable cache */
208 if (geteuid() != getuid())
209 return NULL;
210
211 /* A ralloc context for transient data during this invocation. */
212 local = ralloc_context(NULL);
213 if (local == NULL)
214 goto fail;
215
216 /* At user request, disable shader cache entirely. */
217 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
218 goto fail;
219
220 cache = rzalloc(NULL, struct disk_cache);
221 if (cache == NULL)
222 goto fail;
223
224 /* Assume failure. */
225 cache->path_init_failed = true;
226
227 /* Determine path for cache based on the first defined name as follows:
228 *
229 * $MESA_GLSL_CACHE_DIR
230 * $XDG_CACHE_HOME/mesa_shader_cache
231 * <pwd.pw_dir>/.cache/mesa_shader_cache
232 */
233 path = getenv("MESA_GLSL_CACHE_DIR");
234 if (path) {
235 if (mkdir_if_needed(path) == -1)
236 goto path_fail;
237
238 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
239 if (path == NULL)
240 goto path_fail;
241 }
242
243 if (path == NULL) {
244 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
245
246 if (xdg_cache_home) {
247 if (mkdir_if_needed(xdg_cache_home) == -1)
248 goto path_fail;
249
250 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
251 if (path == NULL)
252 goto path_fail;
253 }
254 }
255
256 if (path == NULL) {
257 char *buf;
258 size_t buf_size;
259 struct passwd pwd, *result;
260
261 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
262 if (buf_size == -1)
263 buf_size = 512;
264
265 /* Loop until buf_size is large enough to query the directory */
266 while (1) {
267 buf = ralloc_size(local, buf_size);
268
269 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
270 if (result)
271 break;
272
273 if (errno == ERANGE) {
274 ralloc_free(buf);
275 buf = NULL;
276 buf_size *= 2;
277 } else {
278 goto path_fail;
279 }
280 }
281
282 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
283 if (path == NULL)
284 goto path_fail;
285
286 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
287 if (path == NULL)
288 goto path_fail;
289 }
290
291 cache->path = ralloc_strdup(cache, path);
292 if (cache->path == NULL)
293 goto path_fail;
294
295 path = ralloc_asprintf(local, "%s/index", cache->path);
296 if (path == NULL)
297 goto path_fail;
298
299 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
300 if (fd == -1)
301 goto path_fail;
302
303 if (fstat(fd, &sb) == -1)
304 goto path_fail;
305
306 /* Force the index file to be the expected size. */
307 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
308 if (sb.st_size != size) {
309 if (ftruncate(fd, size) == -1)
310 goto path_fail;
311 }
312
313 /* We map this shared so that other processes see updates that we
314 * make.
315 *
316 * Note: We do use atomic addition to ensure that multiple
317 * processes don't scramble the cache size recorded in the
318 * index. But we don't use any locking to prevent multiple
319 * processes from updating the same entry simultaneously. The idea
320 * is that if either result lands entirely in the index, then
321 * that's equivalent to a well-ordered write followed by an
322 * eviction and a write. On the other hand, if the simultaneous
323 * writes result in a corrupt entry, that's not really any
324 * different than both entries being evicted, (since within the
325 * guarantees of the cryptographic hash, a corrupt entry is
326 * unlikely to ever match a real cache key).
327 */
328 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
329 MAP_SHARED, fd, 0);
330 if (cache->index_mmap == MAP_FAILED)
331 goto path_fail;
332 cache->index_mmap_size = size;
333
334 cache->size = (uint64_t *) cache->index_mmap;
335 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
336
337 max_size = 0;
338
339 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
340 if (max_size_str) {
341 char *end;
342 max_size = strtoul(max_size_str, &end, 10);
343 if (end == max_size_str) {
344 max_size = 0;
345 } else {
346 switch (*end) {
347 case 'K':
348 case 'k':
349 max_size *= 1024;
350 break;
351 case 'M':
352 case 'm':
353 max_size *= 1024*1024;
354 break;
355 case '\0':
356 case 'G':
357 case 'g':
358 default:
359 max_size *= 1024*1024*1024;
360 break;
361 }
362 }
363 }
364
365 /* Default to 1GB for maximum cache size. */
366 if (max_size == 0) {
367 max_size = 1024*1024*1024;
368 }
369
370 cache->max_size = max_size;
371
372 /* 4 threads were chosen below because just about all modern CPUs currently
373 * available that run Mesa have *at least* 4 cores. For these CPUs allowing
374 * more threads can result in the queue being processed faster, thus
375 * avoiding excessive memory use due to a backlog of cache entrys building
376 * up in the queue. Since we set the UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY
377 * flag this should have little negative impact on low core systems.
378 *
379 * The queue will resize automatically when it's full, so adding new jobs
380 * doesn't stall.
381 */
382 util_queue_init(&cache->cache_queue, "disk$", 32, 4,
383 UTIL_QUEUE_INIT_RESIZE_IF_FULL |
384 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
385 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
386
387 cache->path_init_failed = false;
388
389 path_fail:
390
391 if (fd != -1)
392 close(fd);
393
394 cache->driver_keys_blob_size = cv_size;
395
396 /* Create driver id keys */
397 size_t id_size = strlen(driver_id) + 1;
398 size_t gpu_name_size = strlen(gpu_name) + 1;
399 cache->driver_keys_blob_size += id_size;
400 cache->driver_keys_blob_size += gpu_name_size;
401
402 /* We sometimes store entire structs that contains a pointers in the cache,
403 * use pointer size as a key to avoid hard to debug issues.
404 */
405 uint8_t ptr_size = sizeof(void *);
406 size_t ptr_size_size = sizeof(ptr_size);
407 cache->driver_keys_blob_size += ptr_size_size;
408
409 size_t driver_flags_size = sizeof(driver_flags);
410 cache->driver_keys_blob_size += driver_flags_size;
411
412 cache->driver_keys_blob =
413 ralloc_size(cache, cache->driver_keys_blob_size);
414 if (!cache->driver_keys_blob)
415 goto fail;
416
417 uint8_t *drv_key_blob = cache->driver_keys_blob;
418 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
419 DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
420 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
421 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
422 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
423
424 /* Seed our rand function */
425 s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
426
427 ralloc_free(local);
428
429 return cache;
430
431 fail:
432 if (cache)
433 ralloc_free(cache);
434 ralloc_free(local);
435
436 return NULL;
437 }
438
439 void
440 disk_cache_destroy(struct disk_cache *cache)
441 {
442 if (cache && !cache->path_init_failed) {
443 util_queue_destroy(&cache->cache_queue);
444 munmap(cache->index_mmap, cache->index_mmap_size);
445 }
446
447 ralloc_free(cache);
448 }
449
450 /* Return a filename within the cache's directory corresponding to 'key'. The
451 * returned filename is ralloced with 'cache' as the parent context.
452 *
453 * Returns NULL if out of memory.
454 */
455 static char *
456 get_cache_file(struct disk_cache *cache, const cache_key key)
457 {
458 char buf[41];
459 char *filename;
460
461 if (cache->path_init_failed)
462 return NULL;
463
464 _mesa_sha1_format(buf, key);
465 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
466 buf[1], buf + 2) == -1)
467 return NULL;
468
469 return filename;
470 }
471
472 /* Create the directory that will be needed for the cache file for \key.
473 *
474 * Obviously, the implementation here must closely match
475 * _get_cache_file above.
476 */
477 static void
478 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
479 {
480 char *dir;
481 char buf[41];
482
483 _mesa_sha1_format(buf, key);
484 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
485 return;
486
487 mkdir_if_needed(dir);
488 free(dir);
489 }
490
491 /* Given a directory path and predicate function, find the entry with
492 * the oldest access time in that directory for which the predicate
493 * returns true.
494 *
495 * Returns: A malloc'ed string for the path to the chosen file, (or
496 * NULL on any error). The caller should free the string when
497 * finished.
498 */
499 static char *
500 choose_lru_file_matching(const char *dir_path,
501 bool (*predicate)(const char *dir_path,
502 const struct stat *,
503 const char *, const size_t))
504 {
505 DIR *dir;
506 struct dirent *entry;
507 char *filename;
508 char *lru_name = NULL;
509 time_t lru_atime = 0;
510
511 dir = opendir(dir_path);
512 if (dir == NULL)
513 return NULL;
514
515 while (1) {
516 entry = readdir(dir);
517 if (entry == NULL)
518 break;
519
520 struct stat sb;
521 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
522 if (!lru_atime || (sb.st_atime < lru_atime)) {
523 size_t len = strlen(entry->d_name);
524
525 if (!predicate(dir_path, &sb, entry->d_name, len))
526 continue;
527
528 char *tmp = realloc(lru_name, len + 1);
529 if (tmp) {
530 lru_name = tmp;
531 memcpy(lru_name, entry->d_name, len + 1);
532 lru_atime = sb.st_atime;
533 }
534 }
535 }
536 }
537
538 if (lru_name == NULL) {
539 closedir(dir);
540 return NULL;
541 }
542
543 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
544 filename = NULL;
545
546 free(lru_name);
547 closedir(dir);
548
549 return filename;
550 }
551
552 /* Is entry a regular file, and not having a name with a trailing
553 * ".tmp"
554 */
555 static bool
556 is_regular_non_tmp_file(const char *path, const struct stat *sb,
557 const char *d_name, const size_t len)
558 {
559 if (!S_ISREG(sb->st_mode))
560 return false;
561
562 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
563 return false;
564
565 return true;
566 }
567
568 /* Returns the size of the deleted file, (or 0 on any error). */
569 static size_t
570 unlink_lru_file_from_directory(const char *path)
571 {
572 struct stat sb;
573 char *filename;
574
575 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
576 if (filename == NULL)
577 return 0;
578
579 if (stat(filename, &sb) == -1) {
580 free (filename);
581 return 0;
582 }
583
584 unlink(filename);
585 free (filename);
586
587 return sb.st_blocks * 512;
588 }
589
590 /* Is entry a directory with a two-character name, (and not the
591 * special name of ".."). We also return false if the dir is empty.
592 */
593 static bool
594 is_two_character_sub_directory(const char *path, const struct stat *sb,
595 const char *d_name, const size_t len)
596 {
597 if (!S_ISDIR(sb->st_mode))
598 return false;
599
600 if (len != 2)
601 return false;
602
603 if (strcmp(d_name, "..") == 0)
604 return false;
605
606 char *subdir;
607 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
608 return false;
609 DIR *dir = opendir(subdir);
610 free(subdir);
611
612 if (dir == NULL)
613 return false;
614
615 unsigned subdir_entries = 0;
616 struct dirent *d;
617 while ((d = readdir(dir)) != NULL) {
618 if(++subdir_entries > 2)
619 break;
620 }
621 closedir(dir);
622
623 /* If dir only contains '.' and '..' it must be empty */
624 if (subdir_entries <= 2)
625 return false;
626
627 return true;
628 }
629
630 static void
631 evict_lru_item(struct disk_cache *cache)
632 {
633 char *dir_path;
634
635 /* With a reasonably-sized, full cache, (and with keys generated
636 * from a cryptographic hash), we can choose two random hex digits
637 * and reasonably expect the directory to exist with a file in it.
638 * Provides pseudo-LRU eviction to reduce checking all cache files.
639 */
640 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
641 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
642 return;
643
644 size_t size = unlink_lru_file_from_directory(dir_path);
645
646 free(dir_path);
647
648 if (size) {
649 p_atomic_add(cache->size, - (uint64_t)size);
650 return;
651 }
652
653 /* In the case where the random choice of directory didn't find
654 * something, we choose the least recently accessed from the
655 * existing directories.
656 *
657 * Really, the only reason this code exists is to allow the unit
658 * tests to work, (which use an artificially-small cache to be able
659 * to force a single cached item to be evicted).
660 */
661 dir_path = choose_lru_file_matching(cache->path,
662 is_two_character_sub_directory);
663 if (dir_path == NULL)
664 return;
665
666 size = unlink_lru_file_from_directory(dir_path);
667
668 free(dir_path);
669
670 if (size)
671 p_atomic_add(cache->size, - (uint64_t)size);
672 }
673
674 void
675 disk_cache_remove(struct disk_cache *cache, const cache_key key)
676 {
677 struct stat sb;
678
679 char *filename = get_cache_file(cache, key);
680 if (filename == NULL) {
681 return;
682 }
683
684 if (stat(filename, &sb) == -1) {
685 free(filename);
686 return;
687 }
688
689 unlink(filename);
690 free(filename);
691
692 if (sb.st_blocks)
693 p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
694 }
695
696 static ssize_t
697 read_all(int fd, void *buf, size_t count)
698 {
699 char *in = buf;
700 ssize_t read_ret;
701 size_t done;
702
703 for (done = 0; done < count; done += read_ret) {
704 read_ret = read(fd, in + done, count - done);
705 if (read_ret == -1 || read_ret == 0)
706 return -1;
707 }
708 return done;
709 }
710
711 static ssize_t
712 write_all(int fd, const void *buf, size_t count)
713 {
714 const char *out = buf;
715 ssize_t written;
716 size_t done;
717
718 for (done = 0; done < count; done += written) {
719 written = write(fd, out + done, count - done);
720 if (written == -1)
721 return -1;
722 }
723 return done;
724 }
725
726 /* From the zlib docs:
727 * "If the memory is available, buffers sizes on the order of 128K or 256K
728 * bytes should be used."
729 */
730 #define BUFSIZE 256 * 1024
731
732 /**
733 * Compresses cache entry in memory and writes it to disk. Returns the size
734 * of the data written to disk.
735 */
736 static size_t
737 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
738 const char *filename)
739 {
740 unsigned char *out;
741
742 /* allocate deflate state */
743 z_stream strm;
744 strm.zalloc = Z_NULL;
745 strm.zfree = Z_NULL;
746 strm.opaque = Z_NULL;
747 strm.next_in = (uint8_t *) in_data;
748 strm.avail_in = in_data_size;
749
750 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
751 if (ret != Z_OK)
752 return 0;
753
754 /* compress until end of in_data */
755 size_t compressed_size = 0;
756 int flush;
757
758 out = malloc(BUFSIZE * sizeof(unsigned char));
759 if (out == NULL)
760 return 0;
761
762 do {
763 int remaining = in_data_size - BUFSIZE;
764 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
765 in_data_size -= BUFSIZE;
766
767 /* Run deflate() on input until the output buffer is not full (which
768 * means there is no more data to deflate).
769 */
770 do {
771 strm.avail_out = BUFSIZE;
772 strm.next_out = out;
773
774 ret = deflate(&strm, flush); /* no bad return value */
775 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
776
777 size_t have = BUFSIZE - strm.avail_out;
778 compressed_size += have;
779
780 ssize_t written = write_all(dest, out, have);
781 if (written == -1) {
782 (void)deflateEnd(&strm);
783 free(out);
784 return 0;
785 }
786 } while (strm.avail_out == 0);
787
788 /* all input should be used */
789 assert(strm.avail_in == 0);
790
791 } while (flush != Z_FINISH);
792
793 /* stream should be complete */
794 assert(ret == Z_STREAM_END);
795
796 /* clean up and return */
797 (void)deflateEnd(&strm);
798 free(out);
799 return compressed_size;
800 }
801
802 static struct disk_cache_put_job *
803 create_put_job(struct disk_cache *cache, const cache_key key,
804 const void *data, size_t size,
805 struct cache_item_metadata *cache_item_metadata)
806 {
807 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
808 malloc(sizeof(struct disk_cache_put_job) + size);
809
810 if (dc_job) {
811 dc_job->cache = cache;
812 memcpy(dc_job->key, key, sizeof(cache_key));
813 dc_job->data = dc_job + 1;
814 memcpy(dc_job->data, data, size);
815 dc_job->size = size;
816
817 /* Copy the cache item metadata */
818 if (cache_item_metadata) {
819 dc_job->cache_item_metadata.type = cache_item_metadata->type;
820 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
821 dc_job->cache_item_metadata.num_keys =
822 cache_item_metadata->num_keys;
823 dc_job->cache_item_metadata.keys = (cache_key *)
824 malloc(cache_item_metadata->num_keys * sizeof(cache_key));
825
826 if (!dc_job->cache_item_metadata.keys)
827 goto fail;
828
829 memcpy(dc_job->cache_item_metadata.keys,
830 cache_item_metadata->keys,
831 sizeof(cache_key) * cache_item_metadata->num_keys);
832 }
833 } else {
834 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
835 dc_job->cache_item_metadata.keys = NULL;
836 }
837 }
838
839 return dc_job;
840
841 fail:
842 free(dc_job);
843
844 return NULL;
845 }
846
847 static void
848 destroy_put_job(void *job, int thread_index)
849 {
850 if (job) {
851 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
852 free(dc_job->cache_item_metadata.keys);
853
854 free(job);
855 }
856 }
857
858 struct cache_entry_file_data {
859 uint32_t crc32;
860 uint32_t uncompressed_size;
861 };
862
863 static void
864 cache_put(void *job, int thread_index)
865 {
866 assert(job);
867
868 int fd = -1, fd_final = -1, err, ret;
869 unsigned i = 0;
870 char *filename = NULL, *filename_tmp = NULL;
871 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
872
873 filename = get_cache_file(dc_job->cache, dc_job->key);
874 if (filename == NULL)
875 goto done;
876
877 /* If the cache is too large, evict something else first. */
878 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
879 i < 8) {
880 evict_lru_item(dc_job->cache);
881 i++;
882 }
883
884 /* Write to a temporary file to allow for an atomic rename to the
885 * final destination filename, (to prevent any readers from seeing
886 * a partially written file).
887 */
888 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
889 goto done;
890
891 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
892
893 /* Make the two-character subdirectory within the cache as needed. */
894 if (fd == -1) {
895 if (errno != ENOENT)
896 goto done;
897
898 make_cache_file_directory(dc_job->cache, dc_job->key);
899
900 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
901 if (fd == -1)
902 goto done;
903 }
904
905 /* With the temporary file open, we take an exclusive flock on
906 * it. If the flock fails, then another process still has the file
907 * open with the flock held. So just let that file be responsible
908 * for writing the file.
909 */
910 #ifdef HAVE_FLOCK
911 err = flock(fd, LOCK_EX | LOCK_NB);
912 #else
913 struct flock lock = {
914 .l_start = 0,
915 .l_len = 0, /* entire file */
916 .l_type = F_WRLCK,
917 .l_whence = SEEK_SET
918 };
919 err = fcntl(fd, F_SETLK, &lock);
920 #endif
921 if (err == -1)
922 goto done;
923
924 /* Now that we have the lock on the open temporary file, we can
925 * check to see if the destination file already exists. If so,
926 * another process won the race between when we saw that the file
927 * didn't exist and now. In this case, we don't do anything more,
928 * (to ensure the size accounting of the cache doesn't get off).
929 */
930 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
931 if (fd_final != -1) {
932 unlink(filename_tmp);
933 goto done;
934 }
935
936 /* OK, we're now on the hook to write out a file that we know is
937 * not in the cache, and is also not being written out to the cache
938 * by some other process.
939 */
940
941 /* Write the driver_keys_blob, this can be used find information about the
942 * mesa version that produced the entry or deal with hash collisions,
943 * should that ever become a real problem.
944 */
945 ret = write_all(fd, dc_job->cache->driver_keys_blob,
946 dc_job->cache->driver_keys_blob_size);
947 if (ret == -1) {
948 unlink(filename_tmp);
949 goto done;
950 }
951
952 /* Write the cache item metadata. This data can be used to deal with
953 * hash collisions, as well as providing useful information to 3rd party
954 * tools reading the cache files.
955 */
956 ret = write_all(fd, &dc_job->cache_item_metadata.type,
957 sizeof(uint32_t));
958 if (ret == -1) {
959 unlink(filename_tmp);
960 goto done;
961 }
962
963 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
964 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
965 sizeof(uint32_t));
966 if (ret == -1) {
967 unlink(filename_tmp);
968 goto done;
969 }
970
971 ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
972 dc_job->cache_item_metadata.num_keys *
973 sizeof(cache_key));
974 if (ret == -1) {
975 unlink(filename_tmp);
976 goto done;
977 }
978 }
979
980 /* Create CRC of the data. We will read this when restoring the cache and
981 * use it to check for corruption.
982 */
983 struct cache_entry_file_data cf_data;
984 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
985 cf_data.uncompressed_size = dc_job->size;
986
987 size_t cf_data_size = sizeof(cf_data);
988 ret = write_all(fd, &cf_data, cf_data_size);
989 if (ret == -1) {
990 unlink(filename_tmp);
991 goto done;
992 }
993
994 /* Now, finally, write out the contents to the temporary file, then
995 * rename them atomically to the destination filename, and also
996 * perform an atomic increment of the total cache size.
997 */
998 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
999 fd, filename_tmp);
1000 if (file_size == 0) {
1001 unlink(filename_tmp);
1002 goto done;
1003 }
1004 ret = rename(filename_tmp, filename);
1005 if (ret == -1) {
1006 unlink(filename_tmp);
1007 goto done;
1008 }
1009
1010 struct stat sb;
1011 if (stat(filename, &sb) == -1) {
1012 /* Something went wrong remove the file */
1013 unlink(filename);
1014 goto done;
1015 }
1016
1017 p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
1018
1019 done:
1020 if (fd_final != -1)
1021 close(fd_final);
1022 /* This close finally releases the flock, (now that the final file
1023 * has been renamed into place and the size has been added).
1024 */
1025 if (fd != -1)
1026 close(fd);
1027 free(filename_tmp);
1028 free(filename);
1029 }
1030
1031 void
1032 disk_cache_put(struct disk_cache *cache, const cache_key key,
1033 const void *data, size_t size,
1034 struct cache_item_metadata *cache_item_metadata)
1035 {
1036 if (cache->blob_put_cb) {
1037 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1038 return;
1039 }
1040
1041 if (cache->path_init_failed)
1042 return;
1043
1044 struct disk_cache_put_job *dc_job =
1045 create_put_job(cache, key, data, size, cache_item_metadata);
1046
1047 if (dc_job) {
1048 util_queue_fence_init(&dc_job->fence);
1049 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1050 cache_put, destroy_put_job, dc_job->size);
1051 }
1052 }
1053
1054 /**
1055 * Decompresses cache entry, returns true if successful.
1056 */
1057 static bool
1058 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1059 uint8_t *out_data, size_t out_data_size)
1060 {
1061 z_stream strm;
1062
1063 /* allocate inflate state */
1064 strm.zalloc = Z_NULL;
1065 strm.zfree = Z_NULL;
1066 strm.opaque = Z_NULL;
1067 strm.next_in = in_data;
1068 strm.avail_in = in_data_size;
1069 strm.next_out = out_data;
1070 strm.avail_out = out_data_size;
1071
1072 int ret = inflateInit(&strm);
1073 if (ret != Z_OK)
1074 return false;
1075
1076 ret = inflate(&strm, Z_NO_FLUSH);
1077 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
1078
1079 /* Unless there was an error we should have decompressed everything in one
1080 * go as we know the uncompressed file size.
1081 */
1082 if (ret != Z_STREAM_END) {
1083 (void)inflateEnd(&strm);
1084 return false;
1085 }
1086 assert(strm.avail_out == 0);
1087
1088 /* clean up and return */
1089 (void)inflateEnd(&strm);
1090 return true;
1091 }
1092
1093 void *
1094 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1095 {
1096 int fd = -1, ret;
1097 struct stat sb;
1098 char *filename = NULL;
1099 uint8_t *data = NULL;
1100 uint8_t *uncompressed_data = NULL;
1101 uint8_t *file_header = NULL;
1102
1103 if (size)
1104 *size = 0;
1105
1106 if (cache->blob_get_cb) {
1107 /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1108 * class implementation.
1109 */
1110 const signed long max_blob_size = 64 * 1024;
1111 void *blob = malloc(max_blob_size);
1112 if (!blob)
1113 return NULL;
1114
1115 signed long bytes =
1116 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1117
1118 if (!bytes) {
1119 free(blob);
1120 return NULL;
1121 }
1122
1123 if (size)
1124 *size = bytes;
1125 return blob;
1126 }
1127
1128 filename = get_cache_file(cache, key);
1129 if (filename == NULL)
1130 goto fail;
1131
1132 fd = open(filename, O_RDONLY | O_CLOEXEC);
1133 if (fd == -1)
1134 goto fail;
1135
1136 if (fstat(fd, &sb) == -1)
1137 goto fail;
1138
1139 data = malloc(sb.st_size);
1140 if (data == NULL)
1141 goto fail;
1142
1143 size_t ck_size = cache->driver_keys_blob_size;
1144 file_header = malloc(ck_size);
1145 if (!file_header)
1146 goto fail;
1147
1148 if (sb.st_size < ck_size)
1149 goto fail;
1150
1151 ret = read_all(fd, file_header, ck_size);
1152 if (ret == -1)
1153 goto fail;
1154
1155 /* Check for extremely unlikely hash collisions */
1156 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1157 assert(!"Mesa cache keys mismatch!");
1158 goto fail;
1159 }
1160
1161 size_t cache_item_md_size = sizeof(uint32_t);
1162 uint32_t md_type;
1163 ret = read_all(fd, &md_type, cache_item_md_size);
1164 if (ret == -1)
1165 goto fail;
1166
1167 if (md_type == CACHE_ITEM_TYPE_GLSL) {
1168 uint32_t num_keys;
1169 cache_item_md_size += sizeof(uint32_t);
1170 ret = read_all(fd, &num_keys, sizeof(uint32_t));
1171 if (ret == -1)
1172 goto fail;
1173
1174 /* The cache item metadata is currently just used for distributing
1175 * precompiled shaders, they are not used by Mesa so just skip them for
1176 * now.
1177 * TODO: pass the metadata back to the caller and do some basic
1178 * validation.
1179 */
1180 cache_item_md_size += num_keys * sizeof(cache_key);
1181 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1182 if (ret == -1)
1183 goto fail;
1184 }
1185
1186 /* Load the CRC that was created when the file was written. */
1187 struct cache_entry_file_data cf_data;
1188 size_t cf_data_size = sizeof(cf_data);
1189 ret = read_all(fd, &cf_data, cf_data_size);
1190 if (ret == -1)
1191 goto fail;
1192
1193 /* Load the actual cache data. */
1194 size_t cache_data_size =
1195 sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1196 ret = read_all(fd, data, cache_data_size);
1197 if (ret == -1)
1198 goto fail;
1199
1200 /* Uncompress the cache data */
1201 uncompressed_data = malloc(cf_data.uncompressed_size);
1202 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1203 cf_data.uncompressed_size))
1204 goto fail;
1205
1206 /* Check the data for corruption */
1207 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1208 cf_data.uncompressed_size))
1209 goto fail;
1210
1211 free(data);
1212 free(filename);
1213 free(file_header);
1214 close(fd);
1215
1216 if (size)
1217 *size = cf_data.uncompressed_size;
1218
1219 return uncompressed_data;
1220
1221 fail:
1222 if (data)
1223 free(data);
1224 if (uncompressed_data)
1225 free(uncompressed_data);
1226 if (filename)
1227 free(filename);
1228 if (file_header)
1229 free(file_header);
1230 if (fd != -1)
1231 close(fd);
1232
1233 return NULL;
1234 }
1235
1236 void
1237 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1238 {
1239 const uint32_t *key_chunk = (const uint32_t *) key;
1240 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1241 unsigned char *entry;
1242
1243 if (cache->blob_put_cb) {
1244 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1245 return;
1246 }
1247
1248 if (cache->path_init_failed)
1249 return;
1250
1251 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1252
1253 memcpy(entry, key, CACHE_KEY_SIZE);
1254 }
1255
1256 /* This function lets us test whether a given key was previously
1257 * stored in the cache with disk_cache_put_key(). The implement is
1258 * efficient by not using syscalls or hitting the disk. It's not
1259 * race-free, but the races are benign. If we race with someone else
1260 * calling disk_cache_put_key, then that's just an extra cache miss and an
1261 * extra recompile.
1262 */
1263 bool
1264 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1265 {
1266 const uint32_t *key_chunk = (const uint32_t *) key;
1267 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1268 unsigned char *entry;
1269
1270 if (cache->blob_get_cb) {
1271 uint32_t blob;
1272 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1273 }
1274
1275 if (cache->path_init_failed)
1276 return false;
1277
1278 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1279
1280 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1281 }
1282
1283 void
1284 disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1285 cache_key key)
1286 {
1287 struct mesa_sha1 ctx;
1288
1289 _mesa_sha1_init(&ctx);
1290 _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1291 cache->driver_keys_blob_size);
1292 _mesa_sha1_update(&ctx, data, size);
1293 _mesa_sha1_final(&ctx, key);
1294 }
1295
1296 void
1297 disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1298 disk_cache_get_cb get)
1299 {
1300 cache->blob_put_cb = put;
1301 cache->blob_get_cb = get;
1302 }
1303
1304 #endif /* ENABLE_SHADER_CACHE */