nir: Add a pass for lowering integer division by constants
[mesa.git] / src / util / hash_table.c
1 /*
2 * Copyright © 2009,2012 Intel Corporation
3 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Except as contained in this notice, the names of the authors
25 * or their institutions shall not be used in advertising or
26 * otherwise to promote the sale, use or other dealings in this
27 * Software without prior written authorization from the
28 * authors.
29 *
30 * Authors:
31 * Eric Anholt <eric@anholt.net>
32 * Keith Packard <keithp@keithp.com>
33 */
34
35 /**
36 * Implements an open-addressing, linear-reprobing hash table.
37 *
38 * For more information, see:
39 *
40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41 */
42
43 #include <stdlib.h>
44 #include <string.h>
45 #include <assert.h>
46
47 #include "hash_table.h"
48 #include "ralloc.h"
49 #include "macros.h"
50 #include "main/hash.h"
51
52 static const uint32_t deleted_key_value;
53
54 /**
55 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
56 * p and p-2 are both prime. These tables are sized to have an extra 10%
57 * free to avoid exponential performance degradation as the hash table fills
58 */
59 static const struct {
60 uint32_t max_entries, size, rehash;
61 } hash_sizes[] = {
62 { 2, 5, 3 },
63 { 4, 7, 5 },
64 { 8, 13, 11 },
65 { 16, 19, 17 },
66 { 32, 43, 41 },
67 { 64, 73, 71 },
68 { 128, 151, 149 },
69 { 256, 283, 281 },
70 { 512, 571, 569 },
71 { 1024, 1153, 1151 },
72 { 2048, 2269, 2267 },
73 { 4096, 4519, 4517 },
74 { 8192, 9013, 9011 },
75 { 16384, 18043, 18041 },
76 { 32768, 36109, 36107 },
77 { 65536, 72091, 72089 },
78 { 131072, 144409, 144407 },
79 { 262144, 288361, 288359 },
80 { 524288, 576883, 576881 },
81 { 1048576, 1153459, 1153457 },
82 { 2097152, 2307163, 2307161 },
83 { 4194304, 4613893, 4613891 },
84 { 8388608, 9227641, 9227639 },
85 { 16777216, 18455029, 18455027 },
86 { 33554432, 36911011, 36911009 },
87 { 67108864, 73819861, 73819859 },
88 { 134217728, 147639589, 147639587 },
89 { 268435456, 295279081, 295279079 },
90 { 536870912, 590559793, 590559791 },
91 { 1073741824, 1181116273, 1181116271},
92 { 2147483648ul, 2362232233ul, 2362232231ul}
93 };
94
95 static int
96 entry_is_free(const struct hash_entry *entry)
97 {
98 return entry->key == NULL;
99 }
100
101 static int
102 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
103 {
104 return entry->key == ht->deleted_key;
105 }
106
107 static int
108 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
109 {
110 return entry->key != NULL && entry->key != ht->deleted_key;
111 }
112
113 struct hash_table *
114 _mesa_hash_table_create(void *mem_ctx,
115 uint32_t (*key_hash_function)(const void *key),
116 bool (*key_equals_function)(const void *a,
117 const void *b))
118 {
119 struct hash_table *ht;
120
121 ht = ralloc(mem_ctx, struct hash_table);
122 if (ht == NULL)
123 return NULL;
124
125 ht->size_index = 0;
126 ht->size = hash_sizes[ht->size_index].size;
127 ht->rehash = hash_sizes[ht->size_index].rehash;
128 ht->max_entries = hash_sizes[ht->size_index].max_entries;
129 ht->key_hash_function = key_hash_function;
130 ht->key_equals_function = key_equals_function;
131 ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
132 ht->entries = 0;
133 ht->deleted_entries = 0;
134 ht->deleted_key = &deleted_key_value;
135
136 if (ht->table == NULL) {
137 ralloc_free(ht);
138 return NULL;
139 }
140
141 return ht;
142 }
143
144 struct hash_table *
145 _mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx)
146 {
147 struct hash_table *ht;
148
149 ht = ralloc(dst_mem_ctx, struct hash_table);
150 if (ht == NULL)
151 return NULL;
152
153 memcpy(ht, src, sizeof(struct hash_table));
154
155 ht->table = ralloc_array(ht, struct hash_entry, ht->size);
156 if (ht->table == NULL) {
157 ralloc_free(ht);
158 return NULL;
159 }
160
161 memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry));
162
163 return ht;
164 }
165
166 /**
167 * Frees the given hash table.
168 *
169 * If delete_function is passed, it gets called on each entry present before
170 * freeing.
171 */
172 void
173 _mesa_hash_table_destroy(struct hash_table *ht,
174 void (*delete_function)(struct hash_entry *entry))
175 {
176 if (!ht)
177 return;
178
179 if (delete_function) {
180 hash_table_foreach(ht, entry) {
181 delete_function(entry);
182 }
183 }
184 ralloc_free(ht);
185 }
186
187 /**
188 * Deletes all entries of the given hash table without deleting the table
189 * itself or changing its structure.
190 *
191 * If delete_function is passed, it gets called on each entry present.
192 */
193 void
194 _mesa_hash_table_clear(struct hash_table *ht,
195 void (*delete_function)(struct hash_entry *entry))
196 {
197 struct hash_entry *entry;
198
199 for (entry = ht->table; entry != ht->table + ht->size; entry++) {
200 if (entry->key == NULL)
201 continue;
202
203 if (delete_function != NULL && entry->key != ht->deleted_key)
204 delete_function(entry);
205
206 entry->key = NULL;
207 }
208
209 ht->entries = 0;
210 ht->deleted_entries = 0;
211 }
212
213 /** Sets the value of the key pointer used for deleted entries in the table.
214 *
215 * The assumption is that usually keys are actual pointers, so we use a
216 * default value of a pointer to an arbitrary piece of storage in the library.
217 * But in some cases a consumer wants to store some other sort of value in the
218 * table, like a uint32_t, in which case that pointer may conflict with one of
219 * their valid keys. This lets that user select a safe value.
220 *
221 * This must be called before any keys are actually deleted from the table.
222 */
223 void
224 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
225 {
226 ht->deleted_key = deleted_key;
227 }
228
229 static struct hash_entry *
230 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
231 {
232 uint32_t start_hash_address = hash % ht->size;
233 uint32_t hash_address = start_hash_address;
234
235 do {
236 uint32_t double_hash;
237
238 struct hash_entry *entry = ht->table + hash_address;
239
240 if (entry_is_free(entry)) {
241 return NULL;
242 } else if (entry_is_present(ht, entry) && entry->hash == hash) {
243 if (ht->key_equals_function(key, entry->key)) {
244 return entry;
245 }
246 }
247
248 double_hash = 1 + hash % ht->rehash;
249
250 hash_address = (hash_address + double_hash) % ht->size;
251 } while (hash_address != start_hash_address);
252
253 return NULL;
254 }
255
256 /**
257 * Finds a hash table entry with the given key and hash of that key.
258 *
259 * Returns NULL if no entry is found. Note that the data pointer may be
260 * modified by the user.
261 */
262 struct hash_entry *
263 _mesa_hash_table_search(struct hash_table *ht, const void *key)
264 {
265 assert(ht->key_hash_function);
266 return hash_table_search(ht, ht->key_hash_function(key), key);
267 }
268
269 struct hash_entry *
270 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
271 const void *key)
272 {
273 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
274 return hash_table_search(ht, hash, key);
275 }
276
277 static struct hash_entry *
278 hash_table_insert(struct hash_table *ht, uint32_t hash,
279 const void *key, void *data);
280
281 static void
282 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
283 {
284 struct hash_table old_ht;
285 struct hash_entry *table;
286
287 if (new_size_index >= ARRAY_SIZE(hash_sizes))
288 return;
289
290 table = rzalloc_array(ht, struct hash_entry,
291 hash_sizes[new_size_index].size);
292 if (table == NULL)
293 return;
294
295 old_ht = *ht;
296
297 ht->table = table;
298 ht->size_index = new_size_index;
299 ht->size = hash_sizes[ht->size_index].size;
300 ht->rehash = hash_sizes[ht->size_index].rehash;
301 ht->max_entries = hash_sizes[ht->size_index].max_entries;
302 ht->entries = 0;
303 ht->deleted_entries = 0;
304
305 hash_table_foreach(&old_ht, entry) {
306 hash_table_insert(ht, entry->hash, entry->key, entry->data);
307 }
308
309 ralloc_free(old_ht.table);
310 }
311
312 static struct hash_entry *
313 hash_table_insert(struct hash_table *ht, uint32_t hash,
314 const void *key, void *data)
315 {
316 uint32_t start_hash_address, hash_address;
317 struct hash_entry *available_entry = NULL;
318
319 assert(key != NULL);
320
321 if (ht->entries >= ht->max_entries) {
322 _mesa_hash_table_rehash(ht, ht->size_index + 1);
323 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
324 _mesa_hash_table_rehash(ht, ht->size_index);
325 }
326
327 start_hash_address = hash % ht->size;
328 hash_address = start_hash_address;
329 do {
330 struct hash_entry *entry = ht->table + hash_address;
331 uint32_t double_hash;
332
333 if (!entry_is_present(ht, entry)) {
334 /* Stash the first available entry we find */
335 if (available_entry == NULL)
336 available_entry = entry;
337 if (entry_is_free(entry))
338 break;
339 }
340
341 /* Implement replacement when another insert happens
342 * with a matching key. This is a relatively common
343 * feature of hash tables, with the alternative
344 * generally being "insert the new value as well, and
345 * return it first when the key is searched for".
346 *
347 * Note that the hash table doesn't have a delete
348 * callback. If freeing of old data pointers is
349 * required to avoid memory leaks, perform a search
350 * before inserting.
351 */
352 if (!entry_is_deleted(ht, entry) &&
353 entry->hash == hash &&
354 ht->key_equals_function(key, entry->key)) {
355 entry->key = key;
356 entry->data = data;
357 return entry;
358 }
359
360
361 double_hash = 1 + hash % ht->rehash;
362
363 hash_address = (hash_address + double_hash) % ht->size;
364 } while (hash_address != start_hash_address);
365
366 if (available_entry) {
367 if (entry_is_deleted(ht, available_entry))
368 ht->deleted_entries--;
369 available_entry->hash = hash;
370 available_entry->key = key;
371 available_entry->data = data;
372 ht->entries++;
373 return available_entry;
374 }
375
376 /* We could hit here if a required resize failed. An unchecked-malloc
377 * application could ignore this result.
378 */
379 return NULL;
380 }
381
382 /**
383 * Inserts the key with the given hash into the table.
384 *
385 * Note that insertion may rearrange the table on a resize or rehash,
386 * so previously found hash_entries are no longer valid after this function.
387 */
388 struct hash_entry *
389 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
390 {
391 assert(ht->key_hash_function);
392 return hash_table_insert(ht, ht->key_hash_function(key), key, data);
393 }
394
395 struct hash_entry *
396 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
397 const void *key, void *data)
398 {
399 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
400 return hash_table_insert(ht, hash, key, data);
401 }
402
403 /**
404 * This function deletes the given hash table entry.
405 *
406 * Note that deletion doesn't otherwise modify the table, so an iteration over
407 * the table deleting entries is safe.
408 */
409 void
410 _mesa_hash_table_remove(struct hash_table *ht,
411 struct hash_entry *entry)
412 {
413 if (!entry)
414 return;
415
416 entry->key = ht->deleted_key;
417 ht->entries--;
418 ht->deleted_entries++;
419 }
420
421 /**
422 * Removes the entry with the corresponding key, if exists.
423 */
424 void _mesa_hash_table_remove_key(struct hash_table *ht,
425 const void *key)
426 {
427 _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key));
428 }
429
430 /**
431 * This function is an iterator over the hash table.
432 *
433 * Pass in NULL for the first entry, as in the start of a for loop. Note that
434 * an iteration over the table is O(table_size) not O(entries).
435 */
436 struct hash_entry *
437 _mesa_hash_table_next_entry(struct hash_table *ht,
438 struct hash_entry *entry)
439 {
440 if (entry == NULL)
441 entry = ht->table;
442 else
443 entry = entry + 1;
444
445 for (; entry != ht->table + ht->size; entry++) {
446 if (entry_is_present(ht, entry)) {
447 return entry;
448 }
449 }
450
451 return NULL;
452 }
453
454 /**
455 * Returns a random entry from the hash table.
456 *
457 * This may be useful in implementing random replacement (as opposed
458 * to just removing everything) in caches based on this hash table
459 * implementation. @predicate may be used to filter entries, or may
460 * be set to NULL for no filtering.
461 */
462 struct hash_entry *
463 _mesa_hash_table_random_entry(struct hash_table *ht,
464 bool (*predicate)(struct hash_entry *entry))
465 {
466 struct hash_entry *entry;
467 uint32_t i = rand() % ht->size;
468
469 if (ht->entries == 0)
470 return NULL;
471
472 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
473 if (entry_is_present(ht, entry) &&
474 (!predicate || predicate(entry))) {
475 return entry;
476 }
477 }
478
479 for (entry = ht->table; entry != ht->table + i; entry++) {
480 if (entry_is_present(ht, entry) &&
481 (!predicate || predicate(entry))) {
482 return entry;
483 }
484 }
485
486 return NULL;
487 }
488
489
490 /**
491 * Quick FNV-1a hash implementation based on:
492 * http://www.isthe.com/chongo/tech/comp/fnv/
493 *
494 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
495 * to be quite good, and it probably beats FNV. But FNV has the advantage
496 * that it involves almost no code. For an improvement on both, see Paul
497 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
498 */
499 uint32_t
500 _mesa_hash_data(const void *data, size_t size)
501 {
502 return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
503 data, size);
504 }
505
506 /** FNV-1a string hash implementation */
507 uint32_t
508 _mesa_hash_string(const void *_key)
509 {
510 uint32_t hash = _mesa_fnv32_1a_offset_bias;
511 const char *key = _key;
512
513 while (*key != 0) {
514 hash = _mesa_fnv32_1a_accumulate(hash, *key);
515 key++;
516 }
517
518 return hash;
519 }
520
521 /**
522 * String compare function for use as the comparison callback in
523 * _mesa_hash_table_create().
524 */
525 bool
526 _mesa_key_string_equal(const void *a, const void *b)
527 {
528 return strcmp(a, b) == 0;
529 }
530
531 bool
532 _mesa_key_pointer_equal(const void *a, const void *b)
533 {
534 return a == b;
535 }
536
537 /**
538 * Hash table wrapper which supports 64-bit keys.
539 *
540 * TODO: unify all hash table implementations.
541 */
542
543 struct hash_key_u64 {
544 uint64_t value;
545 };
546
547 static uint32_t
548 key_u64_hash(const void *key)
549 {
550 return _mesa_hash_data(key, sizeof(struct hash_key_u64));
551 }
552
553 static bool
554 key_u64_equals(const void *a, const void *b)
555 {
556 const struct hash_key_u64 *aa = a;
557 const struct hash_key_u64 *bb = b;
558
559 return aa->value == bb->value;
560 }
561
562 struct hash_table_u64 *
563 _mesa_hash_table_u64_create(void *mem_ctx)
564 {
565 struct hash_table_u64 *ht;
566
567 ht = CALLOC_STRUCT(hash_table_u64);
568 if (!ht)
569 return NULL;
570
571 if (sizeof(void *) == 8) {
572 ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
573 _mesa_key_pointer_equal);
574 } else {
575 ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
576 key_u64_equals);
577 }
578
579 if (ht->table)
580 _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));
581
582 return ht;
583 }
584
585 void
586 _mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
587 void (*delete_function)(struct hash_entry *entry))
588 {
589 if (!ht)
590 return;
591
592 if (ht->deleted_key_data) {
593 if (delete_function) {
594 struct hash_table *table = ht->table;
595 struct hash_entry deleted_entry;
596
597 /* Create a fake entry for the delete function. */
598 deleted_entry.hash = table->key_hash_function(table->deleted_key);
599 deleted_entry.key = table->deleted_key;
600 deleted_entry.data = ht->deleted_key_data;
601
602 delete_function(&deleted_entry);
603 }
604 ht->deleted_key_data = NULL;
605 }
606
607 _mesa_hash_table_destroy(ht->table, delete_function);
608 free(ht);
609 }
610
611 void
612 _mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
613 void *data)
614 {
615 if (key == DELETED_KEY_VALUE) {
616 ht->deleted_key_data = data;
617 return;
618 }
619
620 if (sizeof(void *) == 8) {
621 _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
622 } else {
623 struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);
624
625 if (!_key)
626 return;
627 _key->value = key;
628
629 _mesa_hash_table_insert(ht->table, _key, data);
630 }
631 }
632
633 static struct hash_entry *
634 hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
635 {
636 if (sizeof(void *) == 8) {
637 return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
638 } else {
639 struct hash_key_u64 _key = { .value = key };
640 return _mesa_hash_table_search(ht->table, &_key);
641 }
642 }
643
644 void *
645 _mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
646 {
647 struct hash_entry *entry;
648
649 if (key == DELETED_KEY_VALUE)
650 return ht->deleted_key_data;
651
652 entry = hash_table_u64_search(ht, key);
653 if (!entry)
654 return NULL;
655
656 return entry->data;
657 }
658
659 void
660 _mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
661 {
662 struct hash_entry *entry;
663
664 if (key == DELETED_KEY_VALUE) {
665 ht->deleted_key_data = NULL;
666 return;
667 }
668
669 entry = hash_table_u64_search(ht, key);
670 if (!entry)
671 return;
672
673 if (sizeof(void *) == 8) {
674 _mesa_hash_table_remove(ht->table, entry);
675 } else {
676 struct hash_key *_key = (struct hash_key *)entry->key;
677
678 _mesa_hash_table_remove(ht->table, entry);
679 free(_key);
680 }
681 }