util/ra: Use util_dynarray for handling the conflict lists.
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <stdlib.h>
75
76 #include "ralloc.h"
77 #include "main/macros.h"
78 #include "util/bitset.h"
79 #include "util/u_dynarray.h"
80 #include "u_math.h"
81 #include "register_allocate.h"
82
83 struct ra_reg {
84 BITSET_WORD *conflicts;
85 struct util_dynarray conflict_list;
86 };
87
88 struct ra_regs {
89 struct ra_reg *regs;
90 unsigned int count;
91
92 struct ra_class **classes;
93 unsigned int class_count;
94
95 bool round_robin;
96 };
97
98 struct ra_class {
99 /**
100 * Bitset indicating which registers belong to this class.
101 *
102 * (If bit N is set, then register N belongs to this class.)
103 */
104 BITSET_WORD *regs;
105
106 /**
107 * p(B) in Runeson/Nyström paper.
108 *
109 * This is "how many regs are in the set."
110 */
111 unsigned int p;
112
113 /**
114 * q(B,C) (indexed by C, B is this register class) in
115 * Runeson/Nyström paper. This is "how many registers of B could
116 * the worst choice register from C conflict with".
117 */
118 unsigned int *q;
119 };
120
121 struct ra_node {
122 /** @{
123 *
124 * List of which nodes this node interferes with. This should be
125 * symmetric with the other node.
126 */
127 BITSET_WORD *adjacency;
128
129 struct util_dynarray adjacency_list;
130 /** @} */
131
132 unsigned int class;
133
134 /* Client-assigned register, if assigned, or NO_REG. */
135 unsigned int forced_reg;
136
137 /* Register, if assigned, or NO_REG. */
138 unsigned int reg;
139
140 /**
141 * The q total, as defined in the Runeson/Nyström paper, for all the
142 * interfering nodes not in the stack.
143 */
144 unsigned int q_total;
145
146 /* For an implementation that needs register spilling, this is the
147 * approximate cost of spilling this node.
148 */
149 float spill_cost;
150
151 /* Temporary data for the algorithm to scratch around in */
152 struct {
153 /**
154 * Temporary version of q_total which we decrement as things are placed
155 * into the stack.
156 */
157 unsigned int q_total;
158 } tmp;
159 };
160
161 struct ra_graph {
162 struct ra_regs *regs;
163 /**
164 * the variables that need register allocation.
165 */
166 struct ra_node *nodes;
167 unsigned int count; /**< count of nodes. */
168
169 unsigned int alloc; /**< count of nodes allocated. */
170
171 ra_select_reg_callback select_reg_callback;
172 void *select_reg_callback_data;
173
174 /* Temporary data for the algorithm to scratch around in */
175 struct {
176 unsigned int *stack;
177 unsigned int stack_count;
178
179 /** Bit-set indicating, for each register, if it's in the stack */
180 BITSET_WORD *in_stack;
181
182 /** Bit-set indicating, for each register, if it pre-assigned */
183 BITSET_WORD *reg_assigned;
184
185 /** Bit-set indicating, for each register, the value of the pq test */
186 BITSET_WORD *pq_test;
187
188 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
189 unsigned int *min_q_total;
190
191 /*
192 * * For each BITSET_WORD, the node with the minimum q_total if
193 * min_q_total[i] != ~0.
194 */
195 unsigned int *min_q_node;
196
197 /**
198 * Tracks the start of the set of optimistically-colored registers in the
199 * stack.
200 */
201 unsigned int stack_optimistic_start;
202 } tmp;
203 };
204
205 /**
206 * Creates a set of registers for the allocator.
207 *
208 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
209 * using ralloc_free().
210 */
211 struct ra_regs *
212 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
213 {
214 unsigned int i;
215 struct ra_regs *regs;
216
217 regs = rzalloc(mem_ctx, struct ra_regs);
218 regs->count = count;
219 regs->regs = rzalloc_array(regs, struct ra_reg, count);
220
221 for (i = 0; i < count; i++) {
222 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
223 BITSET_WORDS(count));
224 BITSET_SET(regs->regs[i].conflicts, i);
225
226 util_dynarray_init(&regs->regs[i].conflict_list,
227 need_conflict_lists ? regs->regs : NULL);
228 if (need_conflict_lists)
229 util_dynarray_append(&regs->regs[i].conflict_list, unsigned int, i);
230 }
231
232 return regs;
233 }
234
235 /**
236 * The register allocator by default prefers to allocate low register numbers,
237 * since it was written for hardware (gen4/5 Intel) that is limited in its
238 * multithreadedness by the number of registers used in a given shader.
239 *
240 * However, for hardware without that restriction, densely packed register
241 * allocation can put serious constraints on instruction scheduling. This
242 * function tells the allocator to rotate around the registers if possible as
243 * it allocates the nodes.
244 */
245 void
246 ra_set_allocate_round_robin(struct ra_regs *regs)
247 {
248 regs->round_robin = true;
249 }
250
251 static void
252 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
253 {
254 struct ra_reg *reg1 = &regs->regs[r1];
255
256 if (reg1->conflict_list.mem_ctx) {
257 util_dynarray_append(&reg1->conflict_list, unsigned int, r2);
258 }
259 BITSET_SET(reg1->conflicts, r2);
260 }
261
262 void
263 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
264 {
265 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
266 ra_add_conflict_list(regs, r1, r2);
267 ra_add_conflict_list(regs, r2, r1);
268 }
269 }
270
271 /**
272 * Adds a conflict between base_reg and reg, and also between reg and
273 * anything that base_reg conflicts with.
274 *
275 * This can simplify code for setting up multiple register classes
276 * which are aggregates of some base hardware registers, compared to
277 * explicitly using ra_add_reg_conflict.
278 */
279 void
280 ra_add_transitive_reg_conflict(struct ra_regs *regs,
281 unsigned int base_reg, unsigned int reg)
282 {
283 ra_add_reg_conflict(regs, reg, base_reg);
284
285 util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int,
286 r2p) {
287 ra_add_reg_conflict(regs, reg, *r2p);
288 }
289 }
290
291 /**
292 * Set up conflicts between base_reg and it's two half registers reg0 and
293 * reg1, but take care to not add conflicts between reg0 and reg1.
294 *
295 * This is useful for architectures where full size registers are aliased by
296 * two half size registers (eg 32 bit float and 16 bit float registers).
297 */
298 void
299 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
300 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
301 {
302 ra_add_reg_conflict(regs, reg0, base_reg);
303 ra_add_reg_conflict(regs, reg1, base_reg);
304
305 util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int, i) {
306 unsigned int conflict = *i;
307 if (conflict != reg1)
308 ra_add_reg_conflict(regs, reg0, conflict);
309 if (conflict != reg0)
310 ra_add_reg_conflict(regs, reg1, conflict);
311 }
312 }
313
314 /**
315 * Makes every conflict on the given register transitive. In other words,
316 * every register that conflicts with r will now conflict with every other
317 * register conflicting with r.
318 *
319 * This can simplify code for setting up multiple register classes
320 * which are aggregates of some base hardware registers, compared to
321 * explicitly using ra_add_reg_conflict.
322 */
323 void
324 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
325 {
326 struct ra_reg *reg = &regs->regs[r];
327 int c;
328
329 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
330 struct ra_reg *other = &regs->regs[c];
331 unsigned i;
332 for (i = 0; i < BITSET_WORDS(regs->count); i++)
333 other->conflicts[i] |= reg->conflicts[i];
334 }
335 }
336
337 unsigned int
338 ra_alloc_reg_class(struct ra_regs *regs)
339 {
340 struct ra_class *class;
341
342 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
343 regs->class_count + 1);
344
345 class = rzalloc(regs, struct ra_class);
346 regs->classes[regs->class_count] = class;
347
348 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
349
350 return regs->class_count++;
351 }
352
353 void
354 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
355 {
356 struct ra_class *class = regs->classes[c];
357
358 assert(r < regs->count);
359
360 BITSET_SET(class->regs, r);
361 class->p++;
362 }
363
364 /**
365 * Returns true if the register belongs to the given class.
366 */
367 static bool
368 reg_belongs_to_class(unsigned int r, struct ra_class *c)
369 {
370 return BITSET_TEST(c->regs, r);
371 }
372
373 /**
374 * Must be called after all conflicts and register classes have been
375 * set up and before the register set is used for allocation.
376 * To avoid costly q value computation, use the q_values paramater
377 * to pass precomputed q values to this function.
378 */
379 void
380 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
381 {
382 unsigned int b, c;
383
384 for (b = 0; b < regs->class_count; b++) {
385 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
386 }
387
388 if (q_values) {
389 for (b = 0; b < regs->class_count; b++) {
390 for (c = 0; c < regs->class_count; c++) {
391 regs->classes[b]->q[c] = q_values[b][c];
392 }
393 }
394 } else {
395 /* Compute, for each class B and C, how many regs of B an
396 * allocation to C could conflict with.
397 */
398 for (b = 0; b < regs->class_count; b++) {
399 for (c = 0; c < regs->class_count; c++) {
400 unsigned int rc;
401 int max_conflicts = 0;
402
403 for (rc = 0; rc < regs->count; rc++) {
404 int conflicts = 0;
405
406 if (!reg_belongs_to_class(rc, regs->classes[c]))
407 continue;
408
409 util_dynarray_foreach(&regs->regs[rc].conflict_list,
410 unsigned int, rbp) {
411 unsigned int rb = *rbp;
412 if (reg_belongs_to_class(rb, regs->classes[b]))
413 conflicts++;
414 }
415 max_conflicts = MAX2(max_conflicts, conflicts);
416 }
417 regs->classes[b]->q[c] = max_conflicts;
418 }
419 }
420 }
421
422 for (b = 0; b < regs->count; b++) {
423 util_dynarray_fini(&regs->regs[b].conflict_list);
424 }
425 }
426
427 static void
428 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
429 {
430 BITSET_SET(g->nodes[n1].adjacency, n2);
431
432 assert(n1 != n2);
433
434 int n1_class = g->nodes[n1].class;
435 int n2_class = g->nodes[n2].class;
436 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
437
438 util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2);
439 }
440
441 static void
442 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
443 {
444 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
445
446 assert(n1 != n2);
447
448 int n1_class = g->nodes[n1].class;
449 int n2_class = g->nodes[n2].class;
450 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
451
452 util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int,
453 n2);
454 }
455
456 static void
457 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
458 {
459 if (alloc <= g->alloc)
460 return;
461
462 /* If we always have a whole number of BITSET_WORDs, it makes it much
463 * easier to memset the top of the growing bitsets.
464 */
465 assert(g->alloc % BITSET_WORDBITS == 0);
466 alloc = align64(alloc, BITSET_WORDBITS);
467
468 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
469
470 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
471 unsigned bitset_count = BITSET_WORDS(alloc);
472 /* For nodes already in the graph, we just have to grow the adjacency set */
473 for (unsigned i = 0; i < g->alloc; i++) {
474 assert(g->nodes[i].adjacency != NULL);
475 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
476 g_bitset_count, bitset_count);
477 }
478
479 /* For new nodes, we have to fully initialize them */
480 for (unsigned i = g->alloc; i < alloc; i++) {
481 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
482 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
483 util_dynarray_init(&g->nodes[i].adjacency_list, g);
484 g->nodes[i].q_total = 0;
485
486 g->nodes[i].forced_reg = NO_REG;
487 g->nodes[i].reg = NO_REG;
488 }
489
490 /* These are scratch values and don't need to be zeroed. We'll clear them
491 * as part of ra_select() setup.
492 */
493 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
494 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
495
496 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
497 bitset_count);
498 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
499 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
500 bitset_count);
501 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
502 bitset_count);
503
504 g->alloc = alloc;
505 }
506
507 struct ra_graph *
508 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
509 {
510 struct ra_graph *g;
511
512 g = rzalloc(NULL, struct ra_graph);
513 g->regs = regs;
514 g->count = count;
515 ra_realloc_interference_graph(g, count);
516
517 return g;
518 }
519
520 void
521 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
522 {
523 g->count = count;
524 if (count > g->alloc)
525 ra_realloc_interference_graph(g, g->alloc * 2);
526 }
527
528 void ra_set_select_reg_callback(struct ra_graph *g,
529 ra_select_reg_callback callback,
530 void *data)
531 {
532 g->select_reg_callback = callback;
533 g->select_reg_callback_data = data;
534 }
535
536 void
537 ra_set_node_class(struct ra_graph *g,
538 unsigned int n, unsigned int class)
539 {
540 g->nodes[n].class = class;
541 }
542
543 unsigned int
544 ra_get_node_class(struct ra_graph *g,
545 unsigned int n)
546 {
547 return g->nodes[n].class;
548 }
549
550 unsigned int
551 ra_add_node(struct ra_graph *g, unsigned int class)
552 {
553 unsigned int n = g->count;
554 ra_resize_interference_graph(g, g->count + 1);
555
556 ra_set_node_class(g, n, class);
557
558 return n;
559 }
560
561 void
562 ra_add_node_interference(struct ra_graph *g,
563 unsigned int n1, unsigned int n2)
564 {
565 assert(n1 < g->count && n2 < g->count);
566 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
567 ra_add_node_adjacency(g, n1, n2);
568 ra_add_node_adjacency(g, n2, n1);
569 }
570 }
571
572 void
573 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
574 {
575 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
576 ra_node_remove_adjacency(g, *n2p, n);
577 }
578
579 memset(g->nodes[n].adjacency, 0,
580 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
581 util_dynarray_clear(&g->nodes[n].adjacency_list);
582 }
583
584 static void
585 update_pq_info(struct ra_graph *g, unsigned int n)
586 {
587 int i = n / BITSET_WORDBITS;
588 int n_class = g->nodes[n].class;
589 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
590 BITSET_SET(g->tmp.pq_test, n);
591 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
592 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
593 * that we don't update while we have stale data and accidentally mark
594 * it as non-stale. Also, in order to remain consistent with the old
595 * naive implementation of the algorithm, we do a lexicographical sort
596 * to ensure that we always choose the node with the highest node index.
597 */
598 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
599 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
600 n > g->tmp.min_q_node[i])) {
601 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
602 g->tmp.min_q_node[i] = n;
603 }
604 }
605 }
606
607 static void
608 add_node_to_stack(struct ra_graph *g, unsigned int n)
609 {
610 int n_class = g->nodes[n].class;
611
612 assert(!BITSET_TEST(g->tmp.in_stack, n));
613
614 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
615 unsigned int n2 = *n2p;
616 unsigned int n2_class = g->nodes[n2].class;
617
618 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
619 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
620 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
621 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
622 update_pq_info(g, n2);
623 }
624 }
625
626 g->tmp.stack[g->tmp.stack_count] = n;
627 g->tmp.stack_count++;
628 BITSET_SET(g->tmp.in_stack, n);
629
630 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
631 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
632 }
633
634 /**
635 * Simplifies the interference graph by pushing all
636 * trivially-colorable nodes into a stack of nodes to be colored,
637 * removing them from the graph, and rinsing and repeating.
638 *
639 * If we encounter a case where we can't push any nodes on the stack, then
640 * we optimistically choose a node and push it on the stack. We heuristically
641 * push the node with the lowest total q value, since it has the fewest
642 * neighbors and therefore is most likely to be allocated.
643 */
644 static void
645 ra_simplify(struct ra_graph *g)
646 {
647 bool progress = true;
648 unsigned int stack_optimistic_start = UINT_MAX;
649
650 /* Figure out the high bit and bit mask for the first iteration of a loop
651 * over BITSET_WORDs.
652 */
653 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
654
655 /* Do a quick pre-pass to set things up */
656 g->tmp.stack_count = 0;
657 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
658 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
659 g->tmp.in_stack[i] = 0;
660 g->tmp.reg_assigned[i] = 0;
661 g->tmp.pq_test[i] = 0;
662 g->tmp.min_q_total[i] = UINT_MAX;
663 g->tmp.min_q_node[i] = UINT_MAX;
664 for (int j = high_bit; j >= 0; j--) {
665 unsigned int n = i * BITSET_WORDBITS + j;
666 g->nodes[n].reg = g->nodes[n].forced_reg;
667 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
668 if (g->nodes[n].reg != NO_REG)
669 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
670 update_pq_info(g, n);
671 }
672 }
673
674 while (progress) {
675 unsigned int min_q_total = UINT_MAX;
676 unsigned int min_q_node = UINT_MAX;
677
678 progress = false;
679
680 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
681 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
682 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
683
684 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
685 if (skip == mask)
686 continue;
687
688 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
689 if (pq) {
690 /* In this case, we have stuff we can immediately take off the
691 * stack. This also means that we're guaranteed to make progress
692 * and we don't need to bother updating lowest_q_total because we
693 * know we're going to loop again before attempting to do anything
694 * optimistic.
695 */
696 for (int j = high_bit; j >= 0; j--) {
697 if (pq & BITSET_BIT(j)) {
698 unsigned int n = i * BITSET_WORDBITS + j;
699 assert(n < g->count);
700 add_node_to_stack(g, n);
701 /* add_node_to_stack() may update pq_test for this word so
702 * we need to update our local copy.
703 */
704 pq = g->tmp.pq_test[i] & ~skip;
705 progress = true;
706 }
707 }
708 } else if (!progress) {
709 if (g->tmp.min_q_total[i] == UINT_MAX) {
710 /* The min_q_total and min_q_node are dirty because we added
711 * one of these nodes to the stack. It needs to be
712 * recalculated.
713 */
714 for (int j = high_bit; j >= 0; j--) {
715 if (skip & BITSET_BIT(j))
716 continue;
717
718 unsigned int n = i * BITSET_WORDBITS + j;
719 assert(n < g->count);
720 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
721 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
722 g->tmp.min_q_node[i] = n;
723 }
724 }
725 }
726 if (g->tmp.min_q_total[i] < min_q_total) {
727 min_q_node = g->tmp.min_q_node[i];
728 min_q_total = g->tmp.min_q_total[i];
729 }
730 }
731 }
732
733 if (!progress && min_q_total != UINT_MAX) {
734 if (stack_optimistic_start == UINT_MAX)
735 stack_optimistic_start = g->tmp.stack_count;
736
737 add_node_to_stack(g, min_q_node);
738 progress = true;
739 }
740 }
741
742 g->tmp.stack_optimistic_start = stack_optimistic_start;
743 }
744
745 static bool
746 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
747 {
748 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
749 unsigned int n2 = *n2p;
750
751 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
752 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
753 return true;
754 }
755 }
756
757 return false;
758 }
759
760 /* Computes a bitfield of what regs are available for a given register
761 * selection.
762 *
763 * This lets drivers implement a more complicated policy than our simple first
764 * or round robin policies (which don't require knowing the whole bitset)
765 */
766 static bool
767 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
768 {
769 struct ra_class *c = g->regs->classes[g->nodes[n].class];
770
771 /* Populate with the set of regs that are in the node's class. */
772 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
773
774 /* Remove any regs that conflict with nodes that we're adjacent to and have
775 * already colored.
776 */
777 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
778 unsigned int n2 = *n2p;
779 unsigned int r = g->nodes[n2].reg;
780
781 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
782 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
783 regs[j] &= ~g->regs->regs[r].conflicts[j];
784 }
785 }
786
787 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
788 if (regs[i])
789 return true;
790 }
791
792 return false;
793 }
794
795 /**
796 * Pops nodes from the stack back into the graph, coloring them with
797 * registers as they go.
798 *
799 * If all nodes were trivially colorable, then this must succeed. If
800 * not (optimistic coloring), then it may return false;
801 */
802 static bool
803 ra_select(struct ra_graph *g)
804 {
805 int start_search_reg = 0;
806 BITSET_WORD *select_regs = NULL;
807
808 if (g->select_reg_callback)
809 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
810
811 while (g->tmp.stack_count != 0) {
812 unsigned int ri;
813 unsigned int r = -1;
814 int n = g->tmp.stack[g->tmp.stack_count - 1];
815 struct ra_class *c = g->regs->classes[g->nodes[n].class];
816
817 /* set this to false even if we return here so that
818 * ra_get_best_spill_node() considers this node later.
819 */
820 BITSET_CLEAR(g->tmp.in_stack, n);
821
822 if (g->select_reg_callback) {
823 if (!ra_compute_available_regs(g, n, select_regs)) {
824 free(select_regs);
825 return false;
826 }
827
828 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
829 assert(r < g->regs->count);
830 } else {
831 /* Find the lowest-numbered reg which is not used by a member
832 * of the graph adjacent to us.
833 */
834 for (ri = 0; ri < g->regs->count; ri++) {
835 r = (start_search_reg + ri) % g->regs->count;
836 if (!reg_belongs_to_class(r, c))
837 continue;
838
839 if (!ra_any_neighbors_conflict(g, n, r))
840 break;
841 }
842
843 if (ri >= g->regs->count)
844 return false;
845 }
846
847 g->nodes[n].reg = r;
848 g->tmp.stack_count--;
849
850 /* Rotate the starting point except for any nodes above the lowest
851 * optimistically colorable node. The likelihood that we will succeed
852 * at allocating optimistically colorable nodes is highly dependent on
853 * the way that the previous nodes popped off the stack are laid out.
854 * The round-robin strategy increases the fragmentation of the register
855 * file and decreases the number of nearby nodes assigned to the same
856 * color, what increases the likelihood of spilling with respect to the
857 * dense packing strategy.
858 */
859 if (g->regs->round_robin &&
860 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
861 start_search_reg = r + 1;
862 }
863
864 free(select_regs);
865
866 return true;
867 }
868
869 bool
870 ra_allocate(struct ra_graph *g)
871 {
872 ra_simplify(g);
873 return ra_select(g);
874 }
875
876 unsigned int
877 ra_get_node_reg(struct ra_graph *g, unsigned int n)
878 {
879 if (g->nodes[n].forced_reg != NO_REG)
880 return g->nodes[n].forced_reg;
881 else
882 return g->nodes[n].reg;
883 }
884
885 /**
886 * Forces a node to a specific register. This can be used to avoid
887 * creating a register class containing one node when handling data
888 * that must live in a fixed location and is known to not conflict
889 * with other forced register assignment (as is common with shader
890 * input data). These nodes do not end up in the stack during
891 * ra_simplify(), and thus at ra_select() time it is as if they were
892 * the first popped off the stack and assigned their fixed locations.
893 * Nodes that use this function do not need to be assigned a register
894 * class.
895 *
896 * Must be called before ra_simplify().
897 */
898 void
899 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
900 {
901 g->nodes[n].forced_reg = reg;
902 }
903
904 static float
905 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
906 {
907 float benefit = 0;
908 int n_class = g->nodes[n].class;
909
910 /* Define the benefit of eliminating an interference between n, n2
911 * through spilling as q(C, B) / p(C). This is similar to the
912 * "count number of edges" approach of traditional graph coloring,
913 * but takes classes into account.
914 */
915 util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
916 unsigned int n2 = *n2p;
917 unsigned int n2_class = g->nodes[n2].class;
918 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
919 g->regs->classes[n_class]->p);
920 }
921
922 return benefit;
923 }
924
925 /**
926 * Returns a node number to be spilled according to the cost/benefit using
927 * the pq test, or -1 if there are no spillable nodes.
928 */
929 int
930 ra_get_best_spill_node(struct ra_graph *g)
931 {
932 unsigned int best_node = -1;
933 float best_benefit = 0.0;
934 unsigned int n;
935
936 /* Consider any nodes that we colored successfully or the node we failed to
937 * color for spilling. When we failed to color a node in ra_select(), we
938 * only considered these nodes, so spilling any other ones would not result
939 * in us making progress.
940 */
941 for (n = 0; n < g->count; n++) {
942 float cost = g->nodes[n].spill_cost;
943 float benefit;
944
945 if (cost <= 0.0f)
946 continue;
947
948 if (BITSET_TEST(g->tmp.in_stack, n))
949 continue;
950
951 benefit = ra_get_spill_benefit(g, n);
952
953 if (benefit / cost > best_benefit) {
954 best_benefit = benefit / cost;
955 best_node = n;
956 }
957 }
958
959 return best_node;
960 }
961
962 /**
963 * Only nodes with a spill cost set (cost != 0.0) will be considered
964 * for register spilling.
965 */
966 void
967 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
968 {
969 g->nodes[n].spill_cost = cost;
970 }