util/ra: Sanity check that we're adding a valid reg to a class.
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <stdlib.h>
75
76 #include "ralloc.h"
77 #include "main/macros.h"
78 #include "util/bitset.h"
79 #include "u_math.h"
80 #include "register_allocate.h"
81
82 struct ra_reg {
83 BITSET_WORD *conflicts;
84 unsigned int *conflict_list;
85 unsigned int conflict_list_size;
86 unsigned int num_conflicts;
87 };
88
89 struct ra_regs {
90 struct ra_reg *regs;
91 unsigned int count;
92
93 struct ra_class **classes;
94 unsigned int class_count;
95
96 bool round_robin;
97 };
98
99 struct ra_class {
100 /**
101 * Bitset indicating which registers belong to this class.
102 *
103 * (If bit N is set, then register N belongs to this class.)
104 */
105 BITSET_WORD *regs;
106
107 /**
108 * p(B) in Runeson/Nyström paper.
109 *
110 * This is "how many regs are in the set."
111 */
112 unsigned int p;
113
114 /**
115 * q(B,C) (indexed by C, B is this register class) in
116 * Runeson/Nyström paper. This is "how many registers of B could
117 * the worst choice register from C conflict with".
118 */
119 unsigned int *q;
120 };
121
122 struct ra_node {
123 /** @{
124 *
125 * List of which nodes this node interferes with. This should be
126 * symmetric with the other node.
127 */
128 BITSET_WORD *adjacency;
129 unsigned int *adjacency_list;
130 unsigned int adjacency_list_size;
131 unsigned int adjacency_count;
132 /** @} */
133
134 unsigned int class;
135
136 /* Client-assigned register, if assigned, or NO_REG. */
137 unsigned int forced_reg;
138
139 /* Register, if assigned, or NO_REG. */
140 unsigned int reg;
141
142 /**
143 * The q total, as defined in the Runeson/Nyström paper, for all the
144 * interfering nodes not in the stack.
145 */
146 unsigned int q_total;
147
148 /* For an implementation that needs register spilling, this is the
149 * approximate cost of spilling this node.
150 */
151 float spill_cost;
152
153 /* Temporary data for the algorithm to scratch around in */
154 struct {
155 /**
156 * Temporary version of q_total which we decrement as things are placed
157 * into the stack.
158 */
159 unsigned int q_total;
160 } tmp;
161 };
162
163 struct ra_graph {
164 struct ra_regs *regs;
165 /**
166 * the variables that need register allocation.
167 */
168 struct ra_node *nodes;
169 unsigned int count; /**< count of nodes. */
170
171 unsigned int alloc; /**< count of nodes allocated. */
172
173 ra_select_reg_callback select_reg_callback;
174 void *select_reg_callback_data;
175
176 /* Temporary data for the algorithm to scratch around in */
177 struct {
178 unsigned int *stack;
179 unsigned int stack_count;
180
181 /** Bit-set indicating, for each register, if it's in the stack */
182 BITSET_WORD *in_stack;
183
184 /** Bit-set indicating, for each register, if it pre-assigned */
185 BITSET_WORD *reg_assigned;
186
187 /** Bit-set indicating, for each register, the value of the pq test */
188 BITSET_WORD *pq_test;
189
190 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
191 unsigned int *min_q_total;
192
193 /*
194 * * For each BITSET_WORD, the node with the minimum q_total if
195 * min_q_total[i] != ~0.
196 */
197 unsigned int *min_q_node;
198
199 /**
200 * Tracks the start of the set of optimistically-colored registers in the
201 * stack.
202 */
203 unsigned int stack_optimistic_start;
204 } tmp;
205 };
206
207 /**
208 * Creates a set of registers for the allocator.
209 *
210 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
211 * using ralloc_free().
212 */
213 struct ra_regs *
214 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
215 {
216 unsigned int i;
217 struct ra_regs *regs;
218
219 regs = rzalloc(mem_ctx, struct ra_regs);
220 regs->count = count;
221 regs->regs = rzalloc_array(regs, struct ra_reg, count);
222
223 for (i = 0; i < count; i++) {
224 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
225 BITSET_WORDS(count));
226 BITSET_SET(regs->regs[i].conflicts, i);
227
228 if (need_conflict_lists) {
229 regs->regs[i].conflict_list = ralloc_array(regs->regs,
230 unsigned int, 4);
231 regs->regs[i].conflict_list_size = 4;
232 regs->regs[i].conflict_list[0] = i;
233 } else {
234 regs->regs[i].conflict_list = NULL;
235 regs->regs[i].conflict_list_size = 0;
236 }
237 regs->regs[i].num_conflicts = 1;
238 }
239
240 return regs;
241 }
242
243 /**
244 * The register allocator by default prefers to allocate low register numbers,
245 * since it was written for hardware (gen4/5 Intel) that is limited in its
246 * multithreadedness by the number of registers used in a given shader.
247 *
248 * However, for hardware without that restriction, densely packed register
249 * allocation can put serious constraints on instruction scheduling. This
250 * function tells the allocator to rotate around the registers if possible as
251 * it allocates the nodes.
252 */
253 void
254 ra_set_allocate_round_robin(struct ra_regs *regs)
255 {
256 regs->round_robin = true;
257 }
258
259 static void
260 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
261 {
262 struct ra_reg *reg1 = &regs->regs[r1];
263
264 if (reg1->conflict_list) {
265 if (reg1->conflict_list_size == reg1->num_conflicts) {
266 reg1->conflict_list_size *= 2;
267 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
268 unsigned int, reg1->conflict_list_size);
269 }
270 reg1->conflict_list[reg1->num_conflicts++] = r2;
271 }
272 BITSET_SET(reg1->conflicts, r2);
273 }
274
275 void
276 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
277 {
278 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
279 ra_add_conflict_list(regs, r1, r2);
280 ra_add_conflict_list(regs, r2, r1);
281 }
282 }
283
284 /**
285 * Adds a conflict between base_reg and reg, and also between reg and
286 * anything that base_reg conflicts with.
287 *
288 * This can simplify code for setting up multiple register classes
289 * which are aggregates of some base hardware registers, compared to
290 * explicitly using ra_add_reg_conflict.
291 */
292 void
293 ra_add_transitive_reg_conflict(struct ra_regs *regs,
294 unsigned int base_reg, unsigned int reg)
295 {
296 unsigned int i;
297
298 ra_add_reg_conflict(regs, reg, base_reg);
299
300 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
301 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
302 }
303 }
304
305 /**
306 * Set up conflicts between base_reg and it's two half registers reg0 and
307 * reg1, but take care to not add conflicts between reg0 and reg1.
308 *
309 * This is useful for architectures where full size registers are aliased by
310 * two half size registers (eg 32 bit float and 16 bit float registers).
311 */
312 void
313 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
314 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
315 {
316 unsigned int i;
317
318 ra_add_reg_conflict(regs, reg0, base_reg);
319 ra_add_reg_conflict(regs, reg1, base_reg);
320
321 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
322 unsigned int conflict = regs->regs[base_reg].conflict_list[i];
323 if (conflict != reg1)
324 ra_add_reg_conflict(regs, reg0, regs->regs[base_reg].conflict_list[i]);
325 if (conflict != reg0)
326 ra_add_reg_conflict(regs, reg1, regs->regs[base_reg].conflict_list[i]);
327 }
328 }
329
330 /**
331 * Makes every conflict on the given register transitive. In other words,
332 * every register that conflicts with r will now conflict with every other
333 * register conflicting with r.
334 *
335 * This can simplify code for setting up multiple register classes
336 * which are aggregates of some base hardware registers, compared to
337 * explicitly using ra_add_reg_conflict.
338 */
339 void
340 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
341 {
342 struct ra_reg *reg = &regs->regs[r];
343 int c;
344
345 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
346 struct ra_reg *other = &regs->regs[c];
347 unsigned i;
348 for (i = 0; i < BITSET_WORDS(regs->count); i++)
349 other->conflicts[i] |= reg->conflicts[i];
350 }
351 }
352
353 unsigned int
354 ra_alloc_reg_class(struct ra_regs *regs)
355 {
356 struct ra_class *class;
357
358 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
359 regs->class_count + 1);
360
361 class = rzalloc(regs, struct ra_class);
362 regs->classes[regs->class_count] = class;
363
364 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
365
366 return regs->class_count++;
367 }
368
369 void
370 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
371 {
372 struct ra_class *class = regs->classes[c];
373
374 assert(r < regs->count);
375
376 BITSET_SET(class->regs, r);
377 class->p++;
378 }
379
380 /**
381 * Returns true if the register belongs to the given class.
382 */
383 static bool
384 reg_belongs_to_class(unsigned int r, struct ra_class *c)
385 {
386 return BITSET_TEST(c->regs, r);
387 }
388
389 /**
390 * Must be called after all conflicts and register classes have been
391 * set up and before the register set is used for allocation.
392 * To avoid costly q value computation, use the q_values paramater
393 * to pass precomputed q values to this function.
394 */
395 void
396 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
397 {
398 unsigned int b, c;
399
400 for (b = 0; b < regs->class_count; b++) {
401 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
402 }
403
404 if (q_values) {
405 for (b = 0; b < regs->class_count; b++) {
406 for (c = 0; c < regs->class_count; c++) {
407 regs->classes[b]->q[c] = q_values[b][c];
408 }
409 }
410 } else {
411 /* Compute, for each class B and C, how many regs of B an
412 * allocation to C could conflict with.
413 */
414 for (b = 0; b < regs->class_count; b++) {
415 for (c = 0; c < regs->class_count; c++) {
416 unsigned int rc;
417 int max_conflicts = 0;
418
419 for (rc = 0; rc < regs->count; rc++) {
420 int conflicts = 0;
421 unsigned int i;
422
423 if (!reg_belongs_to_class(rc, regs->classes[c]))
424 continue;
425
426 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
427 unsigned int rb = regs->regs[rc].conflict_list[i];
428 if (reg_belongs_to_class(rb, regs->classes[b]))
429 conflicts++;
430 }
431 max_conflicts = MAX2(max_conflicts, conflicts);
432 }
433 regs->classes[b]->q[c] = max_conflicts;
434 }
435 }
436 }
437
438 for (b = 0; b < regs->count; b++) {
439 ralloc_free(regs->regs[b].conflict_list);
440 regs->regs[b].conflict_list = NULL;
441 }
442 }
443
444 static void
445 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
446 {
447 BITSET_SET(g->nodes[n1].adjacency, n2);
448
449 assert(n1 != n2);
450
451 int n1_class = g->nodes[n1].class;
452 int n2_class = g->nodes[n2].class;
453 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
454
455 if (g->nodes[n1].adjacency_count >=
456 g->nodes[n1].adjacency_list_size) {
457 g->nodes[n1].adjacency_list_size *= 2;
458 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
459 unsigned int,
460 g->nodes[n1].adjacency_list_size);
461 }
462
463 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
464 g->nodes[n1].adjacency_count++;
465 }
466
467 static void
468 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
469 {
470 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
471
472 assert(n1 != n2);
473
474 int n1_class = g->nodes[n1].class;
475 int n2_class = g->nodes[n2].class;
476 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
477
478 unsigned int i;
479 for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
480 if (g->nodes[n1].adjacency_list[i] == n2) {
481 memmove(&g->nodes[n1].adjacency_list[i],
482 &g->nodes[n1].adjacency_list[i + 1],
483 (g->nodes[n1].adjacency_count - i - 1) *
484 sizeof(g->nodes[n1].adjacency_list[0]));
485 break;
486 }
487 }
488 assert(i < g->nodes[n1].adjacency_count);
489 g->nodes[n1].adjacency_count--;
490 }
491
492 static void
493 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
494 {
495 if (alloc <= g->alloc)
496 return;
497
498 /* If we always have a whole number of BITSET_WORDs, it makes it much
499 * easier to memset the top of the growing bitsets.
500 */
501 assert(g->alloc % BITSET_WORDBITS == 0);
502 alloc = align64(alloc, BITSET_WORDBITS);
503
504 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
505
506 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
507 unsigned bitset_count = BITSET_WORDS(alloc);
508 /* For nodes already in the graph, we just have to grow the adjacency set */
509 for (unsigned i = 0; i < g->alloc; i++) {
510 assert(g->nodes[i].adjacency != NULL);
511 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
512 g_bitset_count, bitset_count);
513 }
514
515 /* For new nodes, we have to fully initialize them */
516 for (unsigned i = g->alloc; i < alloc; i++) {
517 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
518 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
519 g->nodes[i].adjacency_list_size = 4;
520 g->nodes[i].adjacency_list =
521 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
522 g->nodes[i].adjacency_count = 0;
523 g->nodes[i].q_total = 0;
524
525 g->nodes[i].forced_reg = NO_REG;
526 g->nodes[i].reg = NO_REG;
527 }
528
529 /* These are scratch values and don't need to be zeroed. We'll clear them
530 * as part of ra_select() setup.
531 */
532 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
533 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
534
535 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
536 bitset_count);
537 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
538 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
539 bitset_count);
540 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
541 bitset_count);
542
543 g->alloc = alloc;
544 }
545
546 struct ra_graph *
547 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
548 {
549 struct ra_graph *g;
550
551 g = rzalloc(NULL, struct ra_graph);
552 g->regs = regs;
553 g->count = count;
554 ra_realloc_interference_graph(g, count);
555
556 return g;
557 }
558
559 void
560 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
561 {
562 g->count = count;
563 if (count > g->alloc)
564 ra_realloc_interference_graph(g, g->alloc * 2);
565 }
566
567 void ra_set_select_reg_callback(struct ra_graph *g,
568 ra_select_reg_callback callback,
569 void *data)
570 {
571 g->select_reg_callback = callback;
572 g->select_reg_callback_data = data;
573 }
574
575 void
576 ra_set_node_class(struct ra_graph *g,
577 unsigned int n, unsigned int class)
578 {
579 g->nodes[n].class = class;
580 }
581
582 unsigned int
583 ra_get_node_class(struct ra_graph *g,
584 unsigned int n)
585 {
586 return g->nodes[n].class;
587 }
588
589 unsigned int
590 ra_add_node(struct ra_graph *g, unsigned int class)
591 {
592 unsigned int n = g->count;
593 ra_resize_interference_graph(g, g->count + 1);
594
595 ra_set_node_class(g, n, class);
596
597 return n;
598 }
599
600 void
601 ra_add_node_interference(struct ra_graph *g,
602 unsigned int n1, unsigned int n2)
603 {
604 assert(n1 < g->count && n2 < g->count);
605 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
606 ra_add_node_adjacency(g, n1, n2);
607 ra_add_node_adjacency(g, n2, n1);
608 }
609 }
610
611 void
612 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
613 {
614 for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
615 ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
616
617 memset(g->nodes[n].adjacency, 0,
618 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
619 g->nodes[n].adjacency_count = 0;
620 }
621
622 static void
623 update_pq_info(struct ra_graph *g, unsigned int n)
624 {
625 int i = n / BITSET_WORDBITS;
626 int n_class = g->nodes[n].class;
627 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
628 BITSET_SET(g->tmp.pq_test, n);
629 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
630 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
631 * that we don't update while we have stale data and accidentally mark
632 * it as non-stale. Also, in order to remain consistent with the old
633 * naive implementation of the algorithm, we do a lexicographical sort
634 * to ensure that we always choose the node with the highest node index.
635 */
636 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
637 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
638 n > g->tmp.min_q_node[i])) {
639 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
640 g->tmp.min_q_node[i] = n;
641 }
642 }
643 }
644
645 static void
646 add_node_to_stack(struct ra_graph *g, unsigned int n)
647 {
648 unsigned int i;
649 int n_class = g->nodes[n].class;
650
651 assert(!BITSET_TEST(g->tmp.in_stack, n));
652
653 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
654 unsigned int n2 = g->nodes[n].adjacency_list[i];
655 unsigned int n2_class = g->nodes[n2].class;
656
657 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
658 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
659 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
660 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
661 update_pq_info(g, n2);
662 }
663 }
664
665 g->tmp.stack[g->tmp.stack_count] = n;
666 g->tmp.stack_count++;
667 BITSET_SET(g->tmp.in_stack, n);
668
669 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
670 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
671 }
672
673 /**
674 * Simplifies the interference graph by pushing all
675 * trivially-colorable nodes into a stack of nodes to be colored,
676 * removing them from the graph, and rinsing and repeating.
677 *
678 * If we encounter a case where we can't push any nodes on the stack, then
679 * we optimistically choose a node and push it on the stack. We heuristically
680 * push the node with the lowest total q value, since it has the fewest
681 * neighbors and therefore is most likely to be allocated.
682 */
683 static void
684 ra_simplify(struct ra_graph *g)
685 {
686 bool progress = true;
687 unsigned int stack_optimistic_start = UINT_MAX;
688
689 /* Figure out the high bit and bit mask for the first iteration of a loop
690 * over BITSET_WORDs.
691 */
692 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
693
694 /* Do a quick pre-pass to set things up */
695 g->tmp.stack_count = 0;
696 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
697 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
698 g->tmp.in_stack[i] = 0;
699 g->tmp.reg_assigned[i] = 0;
700 g->tmp.pq_test[i] = 0;
701 g->tmp.min_q_total[i] = UINT_MAX;
702 g->tmp.min_q_node[i] = UINT_MAX;
703 for (int j = high_bit; j >= 0; j--) {
704 unsigned int n = i * BITSET_WORDBITS + j;
705 g->nodes[n].reg = g->nodes[n].forced_reg;
706 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
707 if (g->nodes[n].reg != NO_REG)
708 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
709 update_pq_info(g, n);
710 }
711 }
712
713 while (progress) {
714 unsigned int min_q_total = UINT_MAX;
715 unsigned int min_q_node = UINT_MAX;
716
717 progress = false;
718
719 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
720 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
721 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
722
723 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
724 if (skip == mask)
725 continue;
726
727 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
728 if (pq) {
729 /* In this case, we have stuff we can immediately take off the
730 * stack. This also means that we're guaranteed to make progress
731 * and we don't need to bother updating lowest_q_total because we
732 * know we're going to loop again before attempting to do anything
733 * optimistic.
734 */
735 for (int j = high_bit; j >= 0; j--) {
736 if (pq & BITSET_BIT(j)) {
737 unsigned int n = i * BITSET_WORDBITS + j;
738 assert(n < g->count);
739 add_node_to_stack(g, n);
740 /* add_node_to_stack() may update pq_test for this word so
741 * we need to update our local copy.
742 */
743 pq = g->tmp.pq_test[i] & ~skip;
744 progress = true;
745 }
746 }
747 } else if (!progress) {
748 if (g->tmp.min_q_total[i] == UINT_MAX) {
749 /* The min_q_total and min_q_node are dirty because we added
750 * one of these nodes to the stack. It needs to be
751 * recalculated.
752 */
753 for (int j = high_bit; j >= 0; j--) {
754 if (skip & BITSET_BIT(j))
755 continue;
756
757 unsigned int n = i * BITSET_WORDBITS + j;
758 assert(n < g->count);
759 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
760 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
761 g->tmp.min_q_node[i] = n;
762 }
763 }
764 }
765 if (g->tmp.min_q_total[i] < min_q_total) {
766 min_q_node = g->tmp.min_q_node[i];
767 min_q_total = g->tmp.min_q_total[i];
768 }
769 }
770 }
771
772 if (!progress && min_q_total != UINT_MAX) {
773 if (stack_optimistic_start == UINT_MAX)
774 stack_optimistic_start = g->tmp.stack_count;
775
776 add_node_to_stack(g, min_q_node);
777 progress = true;
778 }
779 }
780
781 g->tmp.stack_optimistic_start = stack_optimistic_start;
782 }
783
784 static bool
785 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
786 {
787 unsigned int i;
788
789 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
790 unsigned int n2 = g->nodes[n].adjacency_list[i];
791
792 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
793 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
794 return true;
795 }
796 }
797
798 return false;
799 }
800
801 /* Computes a bitfield of what regs are available for a given register
802 * selection.
803 *
804 * This lets drivers implement a more complicated policy than our simple first
805 * or round robin policies (which don't require knowing the whole bitset)
806 */
807 static bool
808 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
809 {
810 struct ra_class *c = g->regs->classes[g->nodes[n].class];
811
812 /* Populate with the set of regs that are in the node's class. */
813 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
814
815 /* Remove any regs that conflict with nodes that we're adjacent to and have
816 * already colored.
817 */
818 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
819 unsigned int n2 = g->nodes[n].adjacency_list[i];
820 unsigned int r = g->nodes[n2].reg;
821
822 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
823 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
824 regs[j] &= ~g->regs->regs[r].conflicts[j];
825 }
826 }
827
828 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
829 if (regs[i])
830 return true;
831 }
832
833 return false;
834 }
835
836 /**
837 * Pops nodes from the stack back into the graph, coloring them with
838 * registers as they go.
839 *
840 * If all nodes were trivially colorable, then this must succeed. If
841 * not (optimistic coloring), then it may return false;
842 */
843 static bool
844 ra_select(struct ra_graph *g)
845 {
846 int start_search_reg = 0;
847 BITSET_WORD *select_regs = NULL;
848
849 if (g->select_reg_callback)
850 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
851
852 while (g->tmp.stack_count != 0) {
853 unsigned int ri;
854 unsigned int r = -1;
855 int n = g->tmp.stack[g->tmp.stack_count - 1];
856 struct ra_class *c = g->regs->classes[g->nodes[n].class];
857
858 /* set this to false even if we return here so that
859 * ra_get_best_spill_node() considers this node later.
860 */
861 BITSET_CLEAR(g->tmp.in_stack, n);
862
863 if (g->select_reg_callback) {
864 if (!ra_compute_available_regs(g, n, select_regs)) {
865 free(select_regs);
866 return false;
867 }
868
869 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
870 assert(r < g->regs->count);
871 } else {
872 /* Find the lowest-numbered reg which is not used by a member
873 * of the graph adjacent to us.
874 */
875 for (ri = 0; ri < g->regs->count; ri++) {
876 r = (start_search_reg + ri) % g->regs->count;
877 if (!reg_belongs_to_class(r, c))
878 continue;
879
880 if (!ra_any_neighbors_conflict(g, n, r))
881 break;
882 }
883
884 if (ri >= g->regs->count)
885 return false;
886 }
887
888 g->nodes[n].reg = r;
889 g->tmp.stack_count--;
890
891 /* Rotate the starting point except for any nodes above the lowest
892 * optimistically colorable node. The likelihood that we will succeed
893 * at allocating optimistically colorable nodes is highly dependent on
894 * the way that the previous nodes popped off the stack are laid out.
895 * The round-robin strategy increases the fragmentation of the register
896 * file and decreases the number of nearby nodes assigned to the same
897 * color, what increases the likelihood of spilling with respect to the
898 * dense packing strategy.
899 */
900 if (g->regs->round_robin &&
901 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
902 start_search_reg = r + 1;
903 }
904
905 free(select_regs);
906
907 return true;
908 }
909
910 bool
911 ra_allocate(struct ra_graph *g)
912 {
913 ra_simplify(g);
914 return ra_select(g);
915 }
916
917 unsigned int
918 ra_get_node_reg(struct ra_graph *g, unsigned int n)
919 {
920 if (g->nodes[n].forced_reg != NO_REG)
921 return g->nodes[n].forced_reg;
922 else
923 return g->nodes[n].reg;
924 }
925
926 /**
927 * Forces a node to a specific register. This can be used to avoid
928 * creating a register class containing one node when handling data
929 * that must live in a fixed location and is known to not conflict
930 * with other forced register assignment (as is common with shader
931 * input data). These nodes do not end up in the stack during
932 * ra_simplify(), and thus at ra_select() time it is as if they were
933 * the first popped off the stack and assigned their fixed locations.
934 * Nodes that use this function do not need to be assigned a register
935 * class.
936 *
937 * Must be called before ra_simplify().
938 */
939 void
940 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
941 {
942 g->nodes[n].forced_reg = reg;
943 }
944
945 static float
946 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
947 {
948 unsigned int j;
949 float benefit = 0;
950 int n_class = g->nodes[n].class;
951
952 /* Define the benefit of eliminating an interference between n, n2
953 * through spilling as q(C, B) / p(C). This is similar to the
954 * "count number of edges" approach of traditional graph coloring,
955 * but takes classes into account.
956 */
957 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
958 unsigned int n2 = g->nodes[n].adjacency_list[j];
959 unsigned int n2_class = g->nodes[n2].class;
960 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
961 g->regs->classes[n_class]->p);
962 }
963
964 return benefit;
965 }
966
967 /**
968 * Returns a node number to be spilled according to the cost/benefit using
969 * the pq test, or -1 if there are no spillable nodes.
970 */
971 int
972 ra_get_best_spill_node(struct ra_graph *g)
973 {
974 unsigned int best_node = -1;
975 float best_benefit = 0.0;
976 unsigned int n;
977
978 /* Consider any nodes that we colored successfully or the node we failed to
979 * color for spilling. When we failed to color a node in ra_select(), we
980 * only considered these nodes, so spilling any other ones would not result
981 * in us making progress.
982 */
983 for (n = 0; n < g->count; n++) {
984 float cost = g->nodes[n].spill_cost;
985 float benefit;
986
987 if (cost <= 0.0f)
988 continue;
989
990 if (BITSET_TEST(g->tmp.in_stack, n))
991 continue;
992
993 benefit = ra_get_spill_benefit(g, n);
994
995 if (benefit / cost > best_benefit) {
996 best_benefit = benefit / cost;
997 best_node = n;
998 }
999 }
1000
1001 return best_node;
1002 }
1003
1004 /**
1005 * Only nodes with a spill cost set (cost != 0.0) will be considered
1006 * for register spilling.
1007 */
1008 void
1009 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1010 {
1011 g->nodes[n].spill_cost = cost;
1012 }