vk/image: Remove unneeded data from anv_buffer_view
[mesa.git] / src / vulkan / allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset)
155 {
156 union anv_free_list current, next, old;
157
158 current = *list;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 uint32_t *next_ptr = *map + current.offset;
168 next.offset = VG_NOACCESS_READ(next_ptr);
169 next.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, next.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset)
183 {
184 union anv_free_list current, old, new;
185 uint32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static int
244 anv_block_pool_grow(struct anv_block_pool *pool);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->size = 0;
256 pool->block_size = block_size;
257 pool->next_block = 0;
258 pool->free_list = ANV_FREE_LIST_EMPTY;
259 anv_vector_init(&pool->mmap_cleanups,
260 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
261
262 /* Immediately grow the pool so we'll have a backing bo. */
263 anv_block_pool_grow(pool);
264 }
265
266 void
267 anv_block_pool_finish(struct anv_block_pool *pool)
268 {
269 struct anv_mmap_cleanup *cleanup;
270
271 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
272 if (cleanup->map)
273 munmap(cleanup->map, cleanup->size);
274 if (cleanup->gem_handle)
275 anv_gem_close(pool->device, cleanup->gem_handle);
276 }
277
278 anv_vector_finish(&pool->mmap_cleanups);
279
280 close(pool->fd);
281 }
282
283 static int
284 anv_block_pool_grow(struct anv_block_pool *pool)
285 {
286 size_t size;
287 void *map;
288 int gem_handle;
289 struct anv_mmap_cleanup *cleanup;
290
291 if (pool->size == 0) {
292 size = 32 * pool->block_size;
293 } else {
294 size = pool->size * 2;
295 }
296
297 cleanup = anv_vector_add(&pool->mmap_cleanups);
298 if (!cleanup)
299 return -1;
300 *cleanup = ANV_MMAP_CLEANUP_INIT;
301
302 if (pool->size == 0)
303 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
304
305 if (pool->fd == -1)
306 return -1;
307
308 if (ftruncate(pool->fd, size) == -1)
309 return -1;
310
311 /* First try to see if mremap can grow the map in place. */
312 map = MAP_FAILED;
313 if (pool->size > 0)
314 map = mremap(pool->map, pool->size, size, 0);
315 if (map == MAP_FAILED) {
316 /* Just leak the old map until we destroy the pool. We can't munmap it
317 * without races or imposing locking on the block allocate fast path. On
318 * the whole the leaked maps adds up to less than the size of the
319 * current map. MAP_POPULATE seems like the right thing to do, but we
320 * should try to get some numbers.
321 */
322 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
323 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
324 cleanup->map = map;
325 cleanup->size = size;
326 }
327 if (map == MAP_FAILED)
328 return -1;
329
330 gem_handle = anv_gem_userptr(pool->device, map, size);
331 if (gem_handle == 0)
332 return -1;
333 cleanup->gem_handle = gem_handle;
334
335 /* Now that we successfull allocated everything, we can write the new
336 * values back into pool. */
337 pool->map = map;
338 pool->bo.gem_handle = gem_handle;
339 pool->bo.size = size;
340 pool->bo.map = map;
341 pool->bo.index = 0;
342
343 /* Write size last and after the memory barrier here. We need the memory
344 * barrier to make sure map and gem_handle are written before other threads
345 * see the new size. A thread could allocate a block and then go try using
346 * the old pool->map and access out of bounds. */
347
348 __sync_synchronize();
349 pool->size = size;
350
351 return 0;
352 }
353
354 uint32_t
355 anv_block_pool_alloc(struct anv_block_pool *pool)
356 {
357 uint32_t offset, block, size;
358
359 /* Try free list first. */
360 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
361 assert(pool->map);
362 return offset;
363 }
364
365 restart:
366 size = pool->size;
367 block = __sync_fetch_and_add(&pool->next_block, pool->block_size);
368 if (block < size) {
369 assert(pool->map);
370 return block;
371 } else if (block == size) {
372 /* We allocated the first block outside the pool, we have to grow it.
373 * pool->next_block acts a mutex: threads who try to allocate now will
374 * get block indexes above the current limit and hit futex_wait
375 * below. */
376 int err = anv_block_pool_grow(pool);
377 assert(err == 0);
378 (void) err;
379 futex_wake(&pool->size, INT_MAX);
380 } else {
381 futex_wait(&pool->size, size);
382 __sync_fetch_and_add(&pool->next_block, -pool->block_size);
383 goto restart;
384 }
385
386 return block;
387 }
388
389 void
390 anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
391 {
392 anv_free_list_push(&pool->free_list, pool->map, offset);
393 }
394
395 static void
396 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
397 size_t state_size)
398 {
399 /* At least a cache line and must divide the block size. */
400 assert(state_size >= 64 && is_power_of_two(state_size));
401
402 pool->state_size = state_size;
403 pool->free_list = ANV_FREE_LIST_EMPTY;
404 pool->block.next = 0;
405 pool->block.end = 0;
406 }
407
408 static uint32_t
409 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
410 struct anv_block_pool *block_pool)
411 {
412 uint32_t offset;
413 struct anv_block_state block, old, new;
414
415 /* Try free list first. */
416 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset))
417 return offset;
418
419 /* If free list was empty (or somebody raced us and took the items) we
420 * allocate a new item from the end of the block */
421 restart:
422 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
423
424 if (block.next < block.end) {
425 return block.next;
426 } else if (block.next == block.end) {
427 new.next = anv_block_pool_alloc(block_pool);
428 new.end = new.next + block_pool->block_size;
429 old.u64 = __sync_fetch_and_add(&pool->block.u64, new.u64 - block.u64);
430 if (old.next != block.next)
431 futex_wake(&pool->block.end, INT_MAX);
432 return new.next;
433 } else {
434 futex_wait(&pool->block.end, block.end);
435 __sync_fetch_and_add(&pool->block.u64, -pool->state_size);
436 goto restart;
437 }
438 }
439
440 static void
441 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
442 struct anv_block_pool *block_pool,
443 uint32_t offset)
444 {
445 anv_free_list_push(&pool->free_list, block_pool->map, offset);
446 }
447
448 void
449 anv_state_pool_init(struct anv_state_pool *pool,
450 struct anv_block_pool *block_pool)
451 {
452 pool->block_pool = block_pool;
453 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
454 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
455 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
456 }
457 }
458
459 struct anv_state
460 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
461 {
462 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
463 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
464 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
465 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
466 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
467
468 struct anv_state state;
469 state.alloc_size = 1 << size_log2;
470 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
471 pool->block_pool);
472 state.map = pool->block_pool->map + state.offset;
473 VG(VALGRIND_MALLOCLIKE_BLOCK(state.map, size, 0, false));
474 return state;
475 }
476
477 void
478 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
479 {
480 assert(is_power_of_two(state.alloc_size));
481 unsigned size_log2 = ilog2_round_up(state.alloc_size);
482 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
483 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
484 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
485
486 VG(VALGRIND_FREELIKE_BLOCK(state.map, 0));
487 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
488 pool->block_pool, state.offset);
489 }
490
491 #define NULL_BLOCK 1
492 struct stream_block {
493 uint32_t next;
494
495 /* The map for the BO at the time the block was givne to us */
496 void *current_map;
497
498 #ifdef HAVE_VALGRIND
499 void *_vg_ptr;
500 #endif
501 };
502
503 /* The state stream allocator is a one-shot, single threaded allocator for
504 * variable sized blocks. We use it for allocating dynamic state.
505 */
506 void
507 anv_state_stream_init(struct anv_state_stream *stream,
508 struct anv_block_pool *block_pool)
509 {
510 stream->block_pool = block_pool;
511 stream->next = 0;
512 stream->end = 0;
513 stream->current_block = NULL_BLOCK;
514 }
515
516 void
517 anv_state_stream_finish(struct anv_state_stream *stream)
518 {
519 struct stream_block *sb;
520 uint32_t block, next_block;
521
522 block = stream->current_block;
523 while (block != NULL_BLOCK) {
524 sb = stream->block_pool->map + block;
525 next_block = VG_NOACCESS_READ(&sb->next);
526 VG(VALGRIND_FREELIKE_BLOCK(VG_NOACCESS_READ(&sb->_vg_ptr), 0));
527 anv_block_pool_free(stream->block_pool, block);
528 block = next_block;
529 }
530 }
531
532 struct anv_state
533 anv_state_stream_alloc(struct anv_state_stream *stream,
534 uint32_t size, uint32_t alignment)
535 {
536 struct stream_block *sb;
537 struct anv_state state;
538 uint32_t block;
539
540 state.offset = align_u32(stream->next, alignment);
541 if (state.offset + size > stream->end) {
542 block = anv_block_pool_alloc(stream->block_pool);
543 void *current_map = stream->block_pool->map;
544 sb = current_map + block;
545 VG_NOACCESS_WRITE(&sb->current_map, current_map);
546 VG_NOACCESS_WRITE(&sb->next, stream->current_block);
547 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
548 stream->current_block = block;
549 stream->next = block + sizeof(*sb);
550 stream->end = block + stream->block_pool->block_size;
551 state.offset = align_u32(stream->next, alignment);
552 assert(state.offset + size <= stream->end);
553 }
554
555 sb = stream->block_pool->map + stream->current_block;
556 void *current_map = VG_NOACCESS_READ(&sb->current_map);
557
558 state.map = current_map + state.offset;
559 state.alloc_size = size;
560
561 #ifdef HAVE_VALGRIND
562 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
563 if (vg_ptr == NULL) {
564 vg_ptr = state.map;
565 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
566 VALGRIND_MALLOCLIKE_BLOCK(vg_ptr, size, 0, false);
567 } else {
568 ptrdiff_t vg_offset = vg_ptr - current_map;
569 assert(vg_offset >= stream->current_block &&
570 vg_offset < stream->end);
571 VALGRIND_RESIZEINPLACE_BLOCK(vg_ptr,
572 stream->next - vg_offset,
573 (state.offset + size) - vg_offset,
574 0);
575 }
576 #endif
577
578 stream->next = state.offset + size;
579
580 return state;
581 }
582
583 struct bo_pool_bo_link {
584 struct bo_pool_bo_link *next;
585 struct anv_bo bo;
586 };
587
588 void
589 anv_bo_pool_init(struct anv_bo_pool *pool,
590 struct anv_device *device, uint32_t bo_size)
591 {
592 pool->device = device;
593 pool->bo_size = bo_size;
594 pool->free_list = NULL;
595 }
596
597 void
598 anv_bo_pool_finish(struct anv_bo_pool *pool)
599 {
600 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
601 while (link != NULL) {
602 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
603
604 /* The anv_gem_m[un]map() functions are also valgrind-safe so they
605 * act as an alloc/free. In order to avoid a double-free warning, we
606 * need to mark thiss as malloc'd before we unmap it.
607 */
608 VG(VALGRIND_MALLOCLIKE_BLOCK(link_copy.bo.map, pool->bo_size, 0, false));
609
610 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
611 anv_gem_close(pool->device, link_copy.bo.gem_handle);
612 link = link_copy.next;
613 }
614 }
615
616 VkResult
617 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
618 {
619 VkResult result;
620
621 void *next_free_void;
622 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
623 struct bo_pool_bo_link *next_free = next_free_void;
624 *bo = VG_NOACCESS_READ(&next_free->bo);
625 assert(bo->map == next_free);
626 assert(bo->size == pool->bo_size);
627
628 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, pool->bo_size, 0, false));
629
630 return VK_SUCCESS;
631 }
632
633 struct anv_bo new_bo;
634
635 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
636 if (result != VK_SUCCESS)
637 return result;
638
639 assert(new_bo.size == pool->bo_size);
640
641 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
642 if (new_bo.map == NULL) {
643 anv_gem_close(pool->device, new_bo.gem_handle);
644 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
645 }
646
647 /* We don't need to call VALGRIND_MALLOCLIKE_BLOCK here because gem_mmap
648 * calls it for us. If we really want to be pedantic we could do a
649 * VALGRIND_FREELIKE_BLOCK right after the mmap, but there's no good
650 * reason.
651 */
652
653 *bo = new_bo;
654 return VK_SUCCESS;
655 }
656
657 void
658 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
659 {
660 struct bo_pool_bo_link *link = bo->map;
661 link->bo = *bo;
662
663 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
664 anv_ptr_free_list_push(&pool->free_list, link);
665 }