vk: Stop asserting we have a fragment shader
[mesa.git] / src / vulkan / allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset)
155 {
156 union anv_free_list current, next, old;
157
158 current = *list;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 uint32_t *next_ptr = *map + current.offset;
168 next.offset = VG_NOACCESS_READ(next_ptr);
169 next.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, next.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset)
183 {
184 union anv_free_list current, old, new;
185 uint32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static int
244 anv_block_pool_grow(struct anv_block_pool *pool);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->size = 0;
256 pool->block_size = block_size;
257 pool->next_block = 0;
258 pool->free_list = ANV_FREE_LIST_EMPTY;
259 anv_vector_init(&pool->mmap_cleanups,
260 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
261
262 /* Immediately grow the pool so we'll have a backing bo. */
263 anv_block_pool_grow(pool);
264 }
265
266 /* The memfd path lets us create a map for an fd and lets us grow and remap
267 * without copying. It breaks valgrind however, so we have a MAP_ANONYMOUS
268 * path we can take for valgrind debugging. */
269
270 #define USE_MEMFD 1
271
272 void
273 anv_block_pool_finish(struct anv_block_pool *pool)
274 {
275 struct anv_mmap_cleanup *cleanup;
276
277 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
278 if (cleanup->map)
279 munmap(cleanup->map, cleanup->size);
280 if (cleanup->gem_handle)
281 anv_gem_close(pool->device, cleanup->gem_handle);
282 }
283
284 anv_vector_finish(&pool->mmap_cleanups);
285
286 #if USE_MEMFD
287 close(pool->fd);
288 #endif
289 }
290
291 static int
292 anv_block_pool_grow(struct anv_block_pool *pool)
293 {
294 size_t size;
295 void *map;
296 int gem_handle;
297 struct anv_mmap_cleanup *cleanup;
298
299 if (pool->size == 0) {
300 size = 32 * pool->block_size;
301 } else {
302 size = pool->size * 2;
303 }
304
305 cleanup = anv_vector_add(&pool->mmap_cleanups);
306 if (!cleanup)
307 return -1;
308 *cleanup = ANV_MMAP_CLEANUP_INIT;
309
310 #if USE_MEMFD
311 if (pool->size == 0)
312 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
313
314 if (pool->fd == -1)
315 return -1;
316
317 if (ftruncate(pool->fd, size) == -1)
318 return -1;
319
320 /* First try to see if mremap can grow the map in place. */
321 map = MAP_FAILED;
322 if (pool->size > 0)
323 map = mremap(pool->map, pool->size, size, 0);
324 if (map == MAP_FAILED) {
325 /* Just leak the old map until we destroy the pool. We can't munmap it
326 * without races or imposing locking on the block allocate fast path. On
327 * the whole the leaked maps adds up to less than the size of the
328 * current map. MAP_POPULATE seems like the right thing to do, but we
329 * should try to get some numbers.
330 */
331 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
332 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
333 cleanup->map = map;
334 cleanup->size = size;
335 }
336 if (map == MAP_FAILED)
337 return -1;
338 #else
339 /* The MAP_ANONYMOUS fallback can't grow without races, so just bail here
340 * if we're trying to grow the pool. */
341 assert(pool->size == 0);
342 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
343 MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, -1, 0);
344 if (map == MAP_FAILED)
345 return -1;
346 cleanup->map = map;
347 cleanup->size = size;
348 #endif
349
350 gem_handle = anv_gem_userptr(pool->device, map, size);
351 if (gem_handle == 0)
352 return -1;
353 cleanup->gem_handle = gem_handle;
354
355 /* Now that we successfull allocated everything, we can write the new
356 * values back into pool. */
357 pool->map = map;
358 pool->bo.gem_handle = gem_handle;
359 pool->bo.size = size;
360 pool->bo.map = map;
361 pool->bo.index = 0;
362
363 /* Write size last and after the memory barrier here. We need the memory
364 * barrier to make sure map and gem_handle are written before other threads
365 * see the new size. A thread could allocate a block and then go try using
366 * the old pool->map and access out of bounds. */
367
368 __sync_synchronize();
369 pool->size = size;
370
371 return 0;
372 }
373
374 uint32_t
375 anv_block_pool_alloc(struct anv_block_pool *pool)
376 {
377 uint32_t offset, block, size;
378
379 /* Try free list first. */
380 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
381 assert(pool->map);
382 return offset;
383 }
384
385 restart:
386 size = pool->size;
387 block = __sync_fetch_and_add(&pool->next_block, pool->block_size);
388 if (block < size) {
389 assert(pool->map);
390 return block;
391 } else if (block == size) {
392 /* We allocated the first block outside the pool, we have to grow it.
393 * pool->next_block acts a mutex: threads who try to allocate now will
394 * get block indexes above the current limit and hit futex_wait
395 * below. */
396 int err = anv_block_pool_grow(pool);
397 assert(err == 0);
398 (void) err;
399 futex_wake(&pool->size, INT_MAX);
400 } else {
401 futex_wait(&pool->size, size);
402 __sync_fetch_and_add(&pool->next_block, -pool->block_size);
403 goto restart;
404 }
405
406 return block;
407 }
408
409 void
410 anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
411 {
412 anv_free_list_push(&pool->free_list, pool->map, offset);
413 }
414
415 static void
416 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
417 size_t state_size)
418 {
419 /* At least a cache line and must divide the block size. */
420 assert(state_size >= 64 && is_power_of_two(state_size));
421
422 pool->state_size = state_size;
423 pool->free_list = ANV_FREE_LIST_EMPTY;
424 pool->block.next = 0;
425 pool->block.end = 0;
426 }
427
428 static uint32_t
429 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
430 struct anv_block_pool *block_pool)
431 {
432 uint32_t offset;
433 struct anv_block_state block, old, new;
434
435 /* Try free list first. */
436 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset))
437 return offset;
438
439 /* If free list was empty (or somebody raced us and took the items) we
440 * allocate a new item from the end of the block */
441 restart:
442 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
443
444 if (block.next < block.end) {
445 return block.next;
446 } else if (block.next == block.end) {
447 new.next = anv_block_pool_alloc(block_pool);
448 new.end = new.next + block_pool->block_size;
449 old.u64 = __sync_fetch_and_add(&pool->block.u64, new.u64 - block.u64);
450 if (old.next != block.next)
451 futex_wake(&pool->block.end, INT_MAX);
452 return new.next;
453 } else {
454 futex_wait(&pool->block.end, block.end);
455 __sync_fetch_and_add(&pool->block.u64, -pool->state_size);
456 goto restart;
457 }
458 }
459
460 static void
461 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
462 struct anv_block_pool *block_pool,
463 uint32_t offset)
464 {
465 anv_free_list_push(&pool->free_list, block_pool->map, offset);
466 }
467
468 void
469 anv_state_pool_init(struct anv_state_pool *pool,
470 struct anv_block_pool *block_pool)
471 {
472 pool->block_pool = block_pool;
473 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
474 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
475 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
476 }
477 }
478
479 struct anv_state
480 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
481 {
482 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
483 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
484 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
485 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
486 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
487
488 struct anv_state state;
489 state.alloc_size = 1 << size_log2;
490 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
491 pool->block_pool);
492 state.map = pool->block_pool->map + state.offset;
493 VG(VALGRIND_MALLOCLIKE_BLOCK(state.map, size, 0, false));
494 return state;
495 }
496
497 void
498 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
499 {
500 assert(is_power_of_two(state.alloc_size));
501 unsigned size_log2 = ilog2_round_up(state.alloc_size);
502 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
503 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
504 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
505
506 VG(VALGRIND_FREELIKE_BLOCK(state.map, 0));
507 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
508 pool->block_pool, state.offset);
509 }
510
511 #define NULL_BLOCK 1
512 struct stream_block {
513 uint32_t next;
514
515 /* The map for the BO at the time the block was givne to us */
516 void *current_map;
517
518 #ifdef HAVE_VALGRIND
519 void *_vg_ptr;
520 #endif
521 };
522
523 /* The state stream allocator is a one-shot, single threaded allocator for
524 * variable sized blocks. We use it for allocating dynamic state.
525 */
526 void
527 anv_state_stream_init(struct anv_state_stream *stream,
528 struct anv_block_pool *block_pool)
529 {
530 stream->block_pool = block_pool;
531 stream->next = 0;
532 stream->end = 0;
533 stream->current_block = NULL_BLOCK;
534 }
535
536 void
537 anv_state_stream_finish(struct anv_state_stream *stream)
538 {
539 struct stream_block *sb;
540 uint32_t block, next_block;
541
542 block = stream->current_block;
543 while (block != NULL_BLOCK) {
544 sb = stream->block_pool->map + block;
545 next_block = VG_NOACCESS_READ(&sb->next);
546 VG(VALGRIND_FREELIKE_BLOCK(VG_NOACCESS_READ(&sb->_vg_ptr), 0));
547 anv_block_pool_free(stream->block_pool, block);
548 block = next_block;
549 }
550 }
551
552 struct anv_state
553 anv_state_stream_alloc(struct anv_state_stream *stream,
554 uint32_t size, uint32_t alignment)
555 {
556 struct stream_block *sb;
557 struct anv_state state;
558 uint32_t block;
559
560 state.offset = ALIGN_U32(stream->next, alignment);
561 if (state.offset + size > stream->end) {
562 block = anv_block_pool_alloc(stream->block_pool);
563 void *current_map = stream->block_pool->map;
564 sb = current_map + block;
565 VG_NOACCESS_WRITE(&sb->current_map, current_map);
566 VG_NOACCESS_WRITE(&sb->next, stream->current_block);
567 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
568 stream->current_block = block;
569 stream->next = block + sizeof(*sb);
570 stream->end = block + stream->block_pool->block_size;
571 state.offset = ALIGN_U32(stream->next, alignment);
572 assert(state.offset + size <= stream->end);
573 }
574
575 sb = stream->block_pool->map + stream->current_block;
576 void *current_map = VG_NOACCESS_READ(&sb->current_map);
577
578 state.map = current_map + state.offset;
579 state.alloc_size = size;
580
581 #ifdef HAVE_VALGRIND
582 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
583 if (vg_ptr == NULL) {
584 vg_ptr = state.map;
585 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
586 VALGRIND_MALLOCLIKE_BLOCK(vg_ptr, size, 0, false);
587 } else {
588 ptrdiff_t vg_offset = vg_ptr - current_map;
589 assert(vg_offset >= stream->current_block &&
590 vg_offset < stream->end);
591 VALGRIND_RESIZEINPLACE_BLOCK(vg_ptr,
592 stream->next - vg_offset,
593 (state.offset + size) - vg_offset,
594 0);
595 }
596 #endif
597
598 stream->next = state.offset + size;
599
600 return state;
601 }
602
603 struct bo_pool_bo_link {
604 struct bo_pool_bo_link *next;
605 struct anv_bo bo;
606 };
607
608 void
609 anv_bo_pool_init(struct anv_bo_pool *pool,
610 struct anv_device *device, uint32_t bo_size)
611 {
612 pool->device = device;
613 pool->bo_size = bo_size;
614 pool->free_list = NULL;
615 }
616
617 void
618 anv_bo_pool_finish(struct anv_bo_pool *pool)
619 {
620 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
621 while (link != NULL) {
622 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
623
624 /* The anv_gem_m[un]map() functions are also valgrind-safe so they
625 * act as an alloc/free. In order to avoid a double-free warning, we
626 * need to mark thiss as malloc'd before we unmap it.
627 */
628 VG(VALGRIND_MALLOCLIKE_BLOCK(link_copy.bo.map, pool->bo_size, 0, false));
629
630 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
631 anv_gem_close(pool->device, link_copy.bo.gem_handle);
632 link = link_copy.next;
633 }
634 }
635
636 VkResult
637 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
638 {
639 VkResult result;
640
641 void *next_free_void;
642 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
643 struct bo_pool_bo_link *next_free = next_free_void;
644 *bo = VG_NOACCESS_READ(&next_free->bo);
645 assert(bo->map == next_free);
646 assert(bo->size == pool->bo_size);
647
648 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, pool->bo_size, 0, false));
649
650 return VK_SUCCESS;
651 }
652
653 struct anv_bo new_bo;
654
655 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
656 if (result != VK_SUCCESS)
657 return result;
658
659 assert(new_bo.size == pool->bo_size);
660
661 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
662 if (new_bo.map == NULL) {
663 anv_gem_close(pool->device, new_bo.gem_handle);
664 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
665 }
666
667 /* We don't need to call VALGRIND_MALLOCLIKE_BLOCK here because gem_mmap
668 * calls it for us. If we really want to be pedantic we could do a
669 * VALGRIND_FREELIKE_BLOCK right after the mmap, but there's no good
670 * reason.
671 */
672
673 *bo = new_bo;
674 return VK_SUCCESS;
675 }
676
677 void
678 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
679 {
680 struct bo_pool_bo_link *link = bo->map;
681 link->bo = *bo;
682
683 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
684 anv_ptr_free_list_push(&pool->free_list, link);
685 }