vk/allocator: Split block_pool_alloc into two functions
[mesa.git] / src / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "anv_private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
183 {
184 union anv_free_list current, old, new;
185 int32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static uint32_t
244 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(util_is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->block_size = block_size;
256 pool->free_list = ANV_FREE_LIST_EMPTY;
257
258 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
259 if (pool->fd == -1)
260 return;
261
262 /* Just make it 2GB up-front. The Linux kernel won't actually back it
263 * with pages until we either map and fault on one of them or we use
264 * userptr and send a chunk of it off to the GPU.
265 */
266 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1)
267 return;
268
269 anv_vector_init(&pool->mmap_cleanups,
270 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
271
272 /* Immediately grow the pool so we'll have a backing bo. */
273 pool->state.next = 0;
274 pool->state.end = anv_block_pool_grow(pool, 0);
275 }
276
277 void
278 anv_block_pool_finish(struct anv_block_pool *pool)
279 {
280 struct anv_mmap_cleanup *cleanup;
281
282 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
283 if (cleanup->map)
284 munmap(cleanup->map, cleanup->size);
285 if (cleanup->gem_handle)
286 anv_gem_close(pool->device, cleanup->gem_handle);
287 }
288
289 anv_vector_finish(&pool->mmap_cleanups);
290
291 close(pool->fd);
292 }
293
294 static uint32_t
295 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size)
296 {
297 size_t size;
298 void *map;
299 int gem_handle;
300 struct anv_mmap_cleanup *cleanup;
301
302 pthread_mutex_lock(&pool->device->mutex);
303
304 if (old_size == 0) {
305 size = 32 * pool->block_size;
306 } else {
307 size = old_size * 2;
308 }
309
310 /* We can't have a block pool bigger than 1GB because we use signed
311 * 32-bit offsets in the free list and we don't want overflow. We
312 * should never need a block pool bigger than 1GB anyway.
313 */
314 assert(size <= (1u << 31));
315
316 cleanup = anv_vector_add(&pool->mmap_cleanups);
317 if (!cleanup)
318 goto fail;
319 *cleanup = ANV_MMAP_CLEANUP_INIT;
320
321 /* First try to see if mremap can grow the map in place. */
322 map = MAP_FAILED;
323 if (old_size > 0)
324 map = mremap(pool->map, old_size, size, 0);
325 if (map == MAP_FAILED) {
326 /* Just leak the old map until we destroy the pool. We can't munmap it
327 * without races or imposing locking on the block allocate fast path. On
328 * the whole the leaked maps adds up to less than the size of the
329 * current map. MAP_POPULATE seems like the right thing to do, but we
330 * should try to get some numbers.
331 */
332 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
333 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
334 cleanup->map = map;
335 cleanup->size = size;
336 }
337 if (map == MAP_FAILED)
338 goto fail;
339
340 gem_handle = anv_gem_userptr(pool->device, map, size);
341 if (gem_handle == 0)
342 goto fail;
343 cleanup->gem_handle = gem_handle;
344
345 /* Now that we successfull allocated everything, we can write the new
346 * values back into pool. */
347 pool->map = map;
348 pool->bo.gem_handle = gem_handle;
349 pool->bo.size = size;
350 pool->bo.map = map;
351 pool->bo.index = 0;
352
353 pthread_mutex_unlock(&pool->device->mutex);
354
355 return size;
356
357 fail:
358 pthread_mutex_unlock(&pool->device->mutex);
359 return 0;
360 }
361
362 static uint32_t
363 anv_block_pool_alloc_new(struct anv_block_pool *pool,
364 struct anv_block_state *pool_state)
365 {
366 struct anv_block_state state, old, new;
367
368 while (1) {
369 state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
370 if (state.next < state.end) {
371 assert(pool->map);
372 return state.next;
373 } else if (state.next == state.end) {
374 /* We allocated the first block outside the pool, we have to grow it.
375 * pool->next_block acts a mutex: threads who try to allocate now will
376 * get block indexes above the current limit and hit futex_wait
377 * below. */
378 new.next = state.next + pool->block_size;
379 new.end = anv_block_pool_grow(pool, state.end);
380 assert(new.end > 0);
381 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
382 if (old.next != state.next)
383 futex_wake(&pool_state->end, INT_MAX);
384 return state.next;
385 } else {
386 futex_wait(&pool_state->end, state.end);
387 continue;
388 }
389 }
390 }
391
392 uint32_t
393 anv_block_pool_alloc(struct anv_block_pool *pool)
394 {
395 int32_t offset;
396
397 /* Try free list first. */
398 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
399 assert(offset >= 0);
400 assert(pool->map);
401 return offset;
402 }
403
404 return anv_block_pool_alloc_new(pool, &pool->state);
405 }
406
407 void
408 anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
409 {
410 anv_free_list_push(&pool->free_list, pool->map, offset);
411 }
412
413 static void
414 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
415 size_t state_size)
416 {
417 /* At least a cache line and must divide the block size. */
418 assert(state_size >= 64 && util_is_power_of_two(state_size));
419
420 pool->state_size = state_size;
421 pool->free_list = ANV_FREE_LIST_EMPTY;
422 pool->block.next = 0;
423 pool->block.end = 0;
424 }
425
426 static uint32_t
427 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
428 struct anv_block_pool *block_pool)
429 {
430 int32_t offset;
431 struct anv_block_state block, old, new;
432
433 /* Try free list first. */
434 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
435 assert(offset >= 0);
436 return offset;
437 }
438
439 /* If free list was empty (or somebody raced us and took the items) we
440 * allocate a new item from the end of the block */
441 restart:
442 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
443
444 if (block.next < block.end) {
445 return block.next;
446 } else if (block.next == block.end) {
447 offset = anv_block_pool_alloc(block_pool);
448 new.next = offset + pool->state_size;
449 new.end = offset + block_pool->block_size;
450 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
451 if (old.next != block.next)
452 futex_wake(&pool->block.end, INT_MAX);
453 return offset;
454 } else {
455 futex_wait(&pool->block.end, block.end);
456 goto restart;
457 }
458 }
459
460 static void
461 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
462 struct anv_block_pool *block_pool,
463 uint32_t offset)
464 {
465 anv_free_list_push(&pool->free_list, block_pool->map, offset);
466 }
467
468 void
469 anv_state_pool_init(struct anv_state_pool *pool,
470 struct anv_block_pool *block_pool)
471 {
472 pool->block_pool = block_pool;
473 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
474 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
475 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
476 }
477 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
478 }
479
480 void
481 anv_state_pool_finish(struct anv_state_pool *pool)
482 {
483 VG(VALGRIND_DESTROY_MEMPOOL(pool));
484 }
485
486 struct anv_state
487 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
488 {
489 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
490 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
491 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
492 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
493 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
494
495 struct anv_state state;
496 state.alloc_size = 1 << size_log2;
497 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
498 pool->block_pool);
499 state.map = pool->block_pool->map + state.offset;
500 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
501 return state;
502 }
503
504 void
505 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
506 {
507 assert(util_is_power_of_two(state.alloc_size));
508 unsigned size_log2 = ilog2_round_up(state.alloc_size);
509 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
510 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
511 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
512
513 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
514 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
515 pool->block_pool, state.offset);
516 }
517
518 #define NULL_BLOCK 1
519 struct stream_block {
520 uint32_t next;
521
522 /* The map for the BO at the time the block was givne to us */
523 void *current_map;
524
525 #ifdef HAVE_VALGRIND
526 void *_vg_ptr;
527 #endif
528 };
529
530 /* The state stream allocator is a one-shot, single threaded allocator for
531 * variable sized blocks. We use it for allocating dynamic state.
532 */
533 void
534 anv_state_stream_init(struct anv_state_stream *stream,
535 struct anv_block_pool *block_pool)
536 {
537 stream->block_pool = block_pool;
538 stream->next = 0;
539 stream->end = 0;
540 stream->current_block = NULL_BLOCK;
541
542 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
543 }
544
545 void
546 anv_state_stream_finish(struct anv_state_stream *stream)
547 {
548 struct stream_block *sb;
549 uint32_t block, next_block;
550
551 block = stream->current_block;
552 while (block != NULL_BLOCK) {
553 sb = stream->block_pool->map + block;
554 next_block = VG_NOACCESS_READ(&sb->next);
555 VG(VALGRIND_MEMPOOL_FREE(stream, VG_NOACCESS_READ(&sb->_vg_ptr)));
556 anv_block_pool_free(stream->block_pool, block);
557 block = next_block;
558 }
559
560 VG(VALGRIND_DESTROY_MEMPOOL(stream));
561 }
562
563 struct anv_state
564 anv_state_stream_alloc(struct anv_state_stream *stream,
565 uint32_t size, uint32_t alignment)
566 {
567 struct stream_block *sb;
568 struct anv_state state;
569 uint32_t block;
570
571 state.offset = align_u32(stream->next, alignment);
572 if (state.offset + size > stream->end) {
573 block = anv_block_pool_alloc(stream->block_pool);
574 void *current_map = stream->block_pool->map;
575 sb = current_map + block;
576 VG_NOACCESS_WRITE(&sb->current_map, current_map);
577 VG_NOACCESS_WRITE(&sb->next, stream->current_block);
578 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
579 stream->current_block = block;
580 stream->next = block + sizeof(*sb);
581 stream->end = block + stream->block_pool->block_size;
582 state.offset = align_u32(stream->next, alignment);
583 assert(state.offset + size <= stream->end);
584 }
585
586 sb = stream->block_pool->map + stream->current_block;
587 void *current_map = VG_NOACCESS_READ(&sb->current_map);
588
589 state.map = current_map + state.offset;
590 state.alloc_size = size;
591
592 #ifdef HAVE_VALGRIND
593 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
594 if (vg_ptr == NULL) {
595 vg_ptr = state.map;
596 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
597 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
598 } else {
599 ptrdiff_t vg_offset = vg_ptr - current_map;
600 assert(vg_offset >= stream->current_block &&
601 vg_offset < stream->end);
602 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr,
603 (state.offset + size) - vg_offset);
604 }
605 #endif
606
607 stream->next = state.offset + size;
608
609 return state;
610 }
611
612 struct bo_pool_bo_link {
613 struct bo_pool_bo_link *next;
614 struct anv_bo bo;
615 };
616
617 void
618 anv_bo_pool_init(struct anv_bo_pool *pool,
619 struct anv_device *device, uint32_t bo_size)
620 {
621 pool->device = device;
622 pool->bo_size = bo_size;
623 pool->free_list = NULL;
624
625 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
626 }
627
628 void
629 anv_bo_pool_finish(struct anv_bo_pool *pool)
630 {
631 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
632 while (link != NULL) {
633 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
634
635 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
636 anv_gem_close(pool->device, link_copy.bo.gem_handle);
637 link = link_copy.next;
638 }
639
640 VG(VALGRIND_DESTROY_MEMPOOL(pool));
641 }
642
643 VkResult
644 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
645 {
646 VkResult result;
647
648 void *next_free_void;
649 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
650 struct bo_pool_bo_link *next_free = next_free_void;
651 *bo = VG_NOACCESS_READ(&next_free->bo);
652 assert(bo->map == next_free);
653 assert(bo->size == pool->bo_size);
654
655 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
656
657 return VK_SUCCESS;
658 }
659
660 struct anv_bo new_bo;
661
662 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
663 if (result != VK_SUCCESS)
664 return result;
665
666 assert(new_bo.size == pool->bo_size);
667
668 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
669 if (new_bo.map == NULL) {
670 anv_gem_close(pool->device, new_bo.gem_handle);
671 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
672 }
673
674 *bo = new_bo;
675
676 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
677
678 return VK_SUCCESS;
679 }
680
681 void
682 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
683 {
684 struct bo_pool_bo_link *link = bo->map;
685 link->bo = *bo;
686
687 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
688 anv_ptr_free_list_push(&pool->free_list, link);
689 }