anv/allocator: Use a signed 32-bit offset for the free list
[mesa.git] / src / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "anv_private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 int32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
183 {
184 union anv_free_list current, old, new;
185 int32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static uint32_t
244 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(util_is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->block_size = block_size;
256 pool->free_list = ANV_FREE_LIST_EMPTY;
257
258 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
259 if (pool->fd == -1)
260 return;
261
262 /* Just make it 2GB up-front. The Linux kernel won't actually back it
263 * with pages until we either map and fault on one of them or we use
264 * userptr and send a chunk of it off to the GPU.
265 */
266 if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1)
267 return;
268
269 anv_vector_init(&pool->mmap_cleanups,
270 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
271
272 /* Immediately grow the pool so we'll have a backing bo. */
273 pool->state.next = 0;
274 pool->state.end = anv_block_pool_grow(pool, 0);
275 }
276
277 void
278 anv_block_pool_finish(struct anv_block_pool *pool)
279 {
280 struct anv_mmap_cleanup *cleanup;
281
282 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
283 if (cleanup->map)
284 munmap(cleanup->map, cleanup->size);
285 if (cleanup->gem_handle)
286 anv_gem_close(pool->device, cleanup->gem_handle);
287 }
288
289 anv_vector_finish(&pool->mmap_cleanups);
290
291 close(pool->fd);
292 }
293
294 static uint32_t
295 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size)
296 {
297 size_t size;
298 void *map;
299 int gem_handle;
300 struct anv_mmap_cleanup *cleanup;
301
302 pthread_mutex_lock(&pool->device->mutex);
303
304 if (old_size == 0) {
305 size = 32 * pool->block_size;
306 } else {
307 size = old_size * 2;
308 }
309
310 /* We can't have a block pool bigger than 1GB because we use signed
311 * 32-bit offsets in the free list and we don't want overflow. We
312 * should never need a block pool bigger than 1GB anyway.
313 */
314 assert(size <= (1u << 31));
315
316 cleanup = anv_vector_add(&pool->mmap_cleanups);
317 if (!cleanup)
318 goto fail;
319 *cleanup = ANV_MMAP_CLEANUP_INIT;
320
321 /* First try to see if mremap can grow the map in place. */
322 map = MAP_FAILED;
323 if (old_size > 0)
324 map = mremap(pool->map, old_size, size, 0);
325 if (map == MAP_FAILED) {
326 /* Just leak the old map until we destroy the pool. We can't munmap it
327 * without races or imposing locking on the block allocate fast path. On
328 * the whole the leaked maps adds up to less than the size of the
329 * current map. MAP_POPULATE seems like the right thing to do, but we
330 * should try to get some numbers.
331 */
332 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
333 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
334 cleanup->map = map;
335 cleanup->size = size;
336 }
337 if (map == MAP_FAILED)
338 goto fail;
339
340 gem_handle = anv_gem_userptr(pool->device, map, size);
341 if (gem_handle == 0)
342 goto fail;
343 cleanup->gem_handle = gem_handle;
344
345 /* Now that we successfull allocated everything, we can write the new
346 * values back into pool. */
347 pool->map = map;
348 pool->bo.gem_handle = gem_handle;
349 pool->bo.size = size;
350 pool->bo.map = map;
351 pool->bo.index = 0;
352
353 pthread_mutex_unlock(&pool->device->mutex);
354
355 return size;
356
357 fail:
358 pthread_mutex_unlock(&pool->device->mutex);
359 return 0;
360 }
361
362 uint32_t
363 anv_block_pool_alloc(struct anv_block_pool *pool)
364 {
365 int32_t offset;
366 struct anv_block_state state, old, new;
367
368 /* Try free list first. */
369 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
370 assert(offset >= 0);
371 assert(pool->map);
372 return offset;
373 }
374
375 restart:
376 state.u64 = __sync_fetch_and_add(&pool->state.u64, pool->block_size);
377 if (state.next < state.end) {
378 assert(pool->map);
379 return state.next;
380 } else if (state.next == state.end) {
381 /* We allocated the first block outside the pool, we have to grow it.
382 * pool->next_block acts a mutex: threads who try to allocate now will
383 * get block indexes above the current limit and hit futex_wait
384 * below. */
385 new.next = state.next + pool->block_size;
386 new.end = anv_block_pool_grow(pool, state.end);
387 assert(new.end > 0);
388 old.u64 = __sync_lock_test_and_set(&pool->state.u64, new.u64);
389 if (old.next != state.next)
390 futex_wake(&pool->state.end, INT_MAX);
391 return state.next;
392 } else {
393 futex_wait(&pool->state.end, state.end);
394 goto restart;
395 }
396 }
397
398 void
399 anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
400 {
401 anv_free_list_push(&pool->free_list, pool->map, offset);
402 }
403
404 static void
405 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
406 size_t state_size)
407 {
408 /* At least a cache line and must divide the block size. */
409 assert(state_size >= 64 && util_is_power_of_two(state_size));
410
411 pool->state_size = state_size;
412 pool->free_list = ANV_FREE_LIST_EMPTY;
413 pool->block.next = 0;
414 pool->block.end = 0;
415 }
416
417 static uint32_t
418 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
419 struct anv_block_pool *block_pool)
420 {
421 int32_t offset;
422 struct anv_block_state block, old, new;
423
424 /* Try free list first. */
425 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
426 assert(offset >= 0);
427 return offset;
428 }
429
430 /* If free list was empty (or somebody raced us and took the items) we
431 * allocate a new item from the end of the block */
432 restart:
433 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
434
435 if (block.next < block.end) {
436 return block.next;
437 } else if (block.next == block.end) {
438 offset = anv_block_pool_alloc(block_pool);
439 new.next = offset + pool->state_size;
440 new.end = offset + block_pool->block_size;
441 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
442 if (old.next != block.next)
443 futex_wake(&pool->block.end, INT_MAX);
444 return offset;
445 } else {
446 futex_wait(&pool->block.end, block.end);
447 goto restart;
448 }
449 }
450
451 static void
452 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
453 struct anv_block_pool *block_pool,
454 uint32_t offset)
455 {
456 anv_free_list_push(&pool->free_list, block_pool->map, offset);
457 }
458
459 void
460 anv_state_pool_init(struct anv_state_pool *pool,
461 struct anv_block_pool *block_pool)
462 {
463 pool->block_pool = block_pool;
464 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
465 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
466 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
467 }
468 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
469 }
470
471 void
472 anv_state_pool_finish(struct anv_state_pool *pool)
473 {
474 VG(VALGRIND_DESTROY_MEMPOOL(pool));
475 }
476
477 struct anv_state
478 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
479 {
480 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
481 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
482 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
483 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
484 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
485
486 struct anv_state state;
487 state.alloc_size = 1 << size_log2;
488 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
489 pool->block_pool);
490 state.map = pool->block_pool->map + state.offset;
491 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
492 return state;
493 }
494
495 void
496 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
497 {
498 assert(util_is_power_of_two(state.alloc_size));
499 unsigned size_log2 = ilog2_round_up(state.alloc_size);
500 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
501 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
502 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
503
504 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
505 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
506 pool->block_pool, state.offset);
507 }
508
509 #define NULL_BLOCK 1
510 struct stream_block {
511 uint32_t next;
512
513 /* The map for the BO at the time the block was givne to us */
514 void *current_map;
515
516 #ifdef HAVE_VALGRIND
517 void *_vg_ptr;
518 #endif
519 };
520
521 /* The state stream allocator is a one-shot, single threaded allocator for
522 * variable sized blocks. We use it for allocating dynamic state.
523 */
524 void
525 anv_state_stream_init(struct anv_state_stream *stream,
526 struct anv_block_pool *block_pool)
527 {
528 stream->block_pool = block_pool;
529 stream->next = 0;
530 stream->end = 0;
531 stream->current_block = NULL_BLOCK;
532
533 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
534 }
535
536 void
537 anv_state_stream_finish(struct anv_state_stream *stream)
538 {
539 struct stream_block *sb;
540 uint32_t block, next_block;
541
542 block = stream->current_block;
543 while (block != NULL_BLOCK) {
544 sb = stream->block_pool->map + block;
545 next_block = VG_NOACCESS_READ(&sb->next);
546 VG(VALGRIND_MEMPOOL_FREE(stream, VG_NOACCESS_READ(&sb->_vg_ptr)));
547 anv_block_pool_free(stream->block_pool, block);
548 block = next_block;
549 }
550
551 VG(VALGRIND_DESTROY_MEMPOOL(stream));
552 }
553
554 struct anv_state
555 anv_state_stream_alloc(struct anv_state_stream *stream,
556 uint32_t size, uint32_t alignment)
557 {
558 struct stream_block *sb;
559 struct anv_state state;
560 uint32_t block;
561
562 state.offset = align_u32(stream->next, alignment);
563 if (state.offset + size > stream->end) {
564 block = anv_block_pool_alloc(stream->block_pool);
565 void *current_map = stream->block_pool->map;
566 sb = current_map + block;
567 VG_NOACCESS_WRITE(&sb->current_map, current_map);
568 VG_NOACCESS_WRITE(&sb->next, stream->current_block);
569 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
570 stream->current_block = block;
571 stream->next = block + sizeof(*sb);
572 stream->end = block + stream->block_pool->block_size;
573 state.offset = align_u32(stream->next, alignment);
574 assert(state.offset + size <= stream->end);
575 }
576
577 sb = stream->block_pool->map + stream->current_block;
578 void *current_map = VG_NOACCESS_READ(&sb->current_map);
579
580 state.map = current_map + state.offset;
581 state.alloc_size = size;
582
583 #ifdef HAVE_VALGRIND
584 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
585 if (vg_ptr == NULL) {
586 vg_ptr = state.map;
587 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
588 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
589 } else {
590 ptrdiff_t vg_offset = vg_ptr - current_map;
591 assert(vg_offset >= stream->current_block &&
592 vg_offset < stream->end);
593 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr,
594 (state.offset + size) - vg_offset);
595 }
596 #endif
597
598 stream->next = state.offset + size;
599
600 return state;
601 }
602
603 struct bo_pool_bo_link {
604 struct bo_pool_bo_link *next;
605 struct anv_bo bo;
606 };
607
608 void
609 anv_bo_pool_init(struct anv_bo_pool *pool,
610 struct anv_device *device, uint32_t bo_size)
611 {
612 pool->device = device;
613 pool->bo_size = bo_size;
614 pool->free_list = NULL;
615
616 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
617 }
618
619 void
620 anv_bo_pool_finish(struct anv_bo_pool *pool)
621 {
622 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
623 while (link != NULL) {
624 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
625
626 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
627 anv_gem_close(pool->device, link_copy.bo.gem_handle);
628 link = link_copy.next;
629 }
630
631 VG(VALGRIND_DESTROY_MEMPOOL(pool));
632 }
633
634 VkResult
635 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
636 {
637 VkResult result;
638
639 void *next_free_void;
640 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
641 struct bo_pool_bo_link *next_free = next_free_void;
642 *bo = VG_NOACCESS_READ(&next_free->bo);
643 assert(bo->map == next_free);
644 assert(bo->size == pool->bo_size);
645
646 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
647
648 return VK_SUCCESS;
649 }
650
651 struct anv_bo new_bo;
652
653 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
654 if (result != VK_SUCCESS)
655 return result;
656
657 assert(new_bo.size == pool->bo_size);
658
659 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
660 if (new_bo.map == NULL) {
661 anv_gem_close(pool->device, new_bo.gem_handle);
662 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
663 }
664
665 *bo = new_bo;
666
667 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
668
669 return VK_SUCCESS;
670 }
671
672 void
673 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
674 {
675 struct bo_pool_bo_link *link = bo->map;
676 link->bo = *bo;
677
678 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
679 anv_ptr_free_list_push(&pool->free_list, link);
680 }