vk: Only require wc bo mmap for !llc GPUs
[mesa.git] / src / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "mesa/main/git_sha1.h"
32 #include "util/strtod.h"
33
34 #include "gen7_pack.h"
35
36 struct anv_dispatch_table dtable;
37
38 static void
39 compiler_debug_log(void *data, const char *fmt, ...)
40 { }
41
42 static void
43 compiler_perf_log(void *data, const char *fmt, ...)
44 {
45 va_list args;
46 va_start(args, fmt);
47
48 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
49 vfprintf(stderr, fmt, args);
50
51 va_end(args);
52 }
53
54 static VkResult
55 anv_physical_device_init(struct anv_physical_device *device,
56 struct anv_instance *instance,
57 const char *path)
58 {
59 VkResult result;
60 int fd;
61
62 fd = open(path, O_RDWR | O_CLOEXEC);
63 if (fd < 0)
64 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
65 "failed to open %s: %m", path);
66
67 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
68 device->instance = instance;
69 device->path = path;
70
71 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
72 if (!device->chipset_id) {
73 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get chipset id: %m");
75 goto fail;
76 }
77
78 device->name = brw_get_device_name(device->chipset_id);
79 device->info = brw_get_device_info(device->chipset_id);
80 if (!device->info) {
81 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
82 "failed to get device info");
83 goto fail;
84 }
85
86 if (device->info->is_haswell) {
87 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
88 } else if (device->info->gen == 7 && !device->info->is_baytrail) {
89 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
90 } else if (device->info->gen == 7 && device->info->is_baytrail) {
91 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
92 } else if (device->info->gen == 9 && !device->info->is_broxton) {
93 fprintf(stderr, "WARNING: Skylake Vulkan support is incomplete\n");
94 } else if (device->info->gen == 9 && device->info->is_broxton) {
95 fprintf(stderr, "WARNING: Broxton Vulkan support is incomplete\n");
96 } else if (device->info->gen == 8) {
97 /* Broadwell/Cherryview is as fully supported as anything */
98 } else {
99 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
100 "Vulkan not yet supported on %s", device->name);
101 goto fail;
102 }
103
104 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
105 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
106 "failed to get aperture size: %m");
107 goto fail;
108 }
109
110 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
111 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
112 "kernel missing gem wait");
113 goto fail;
114 }
115
116 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
117 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
118 "kernel missing execbuf2");
119 goto fail;
120 }
121
122 if (!device->info->has_llc &&
123 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
124 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
125 "kernel missing wc mmap");
126 goto fail;
127 }
128
129 close(fd);
130
131 brw_process_intel_debug_variable();
132
133 device->compiler = brw_compiler_create(NULL, device->info);
134 if (device->compiler == NULL) {
135 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
136 goto fail;
137 }
138 device->compiler->shader_debug_log = compiler_debug_log;
139 device->compiler->shader_perf_log = compiler_perf_log;
140
141 isl_device_init(&device->isl_dev, device->info);
142
143 return VK_SUCCESS;
144
145 fail:
146 close(fd);
147 return result;
148 }
149
150 static void
151 anv_physical_device_finish(struct anv_physical_device *device)
152 {
153 ralloc_free(device->compiler);
154 }
155
156 static const VkExtensionProperties global_extensions[] = {
157 {
158 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
159 .specVersion = 24,
160 },
161 {
162 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
163 .specVersion = 5,
164 },
165 #ifdef HAVE_WAYLAND_PLATFORM
166 {
167 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
168 .specVersion = 4,
169 },
170 #endif
171 };
172
173 static const VkExtensionProperties device_extensions[] = {
174 {
175 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
176 .specVersion = 67,
177 },
178 };
179
180 static void *
181 default_alloc_func(void *pUserData, size_t size, size_t align,
182 VkSystemAllocationScope allocationScope)
183 {
184 return malloc(size);
185 }
186
187 static void *
188 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
189 size_t align, VkSystemAllocationScope allocationScope)
190 {
191 return realloc(pOriginal, size);
192 }
193
194 static void
195 default_free_func(void *pUserData, void *pMemory)
196 {
197 free(pMemory);
198 }
199
200 static const VkAllocationCallbacks default_alloc = {
201 .pUserData = NULL,
202 .pfnAllocation = default_alloc_func,
203 .pfnReallocation = default_realloc_func,
204 .pfnFree = default_free_func,
205 };
206
207 VkResult anv_CreateInstance(
208 const VkInstanceCreateInfo* pCreateInfo,
209 const VkAllocationCallbacks* pAllocator,
210 VkInstance* pInstance)
211 {
212 struct anv_instance *instance;
213
214 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
215
216 if (pCreateInfo->pApplicationInfo->apiVersion != VK_MAKE_VERSION(0, 210, 1))
217 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
218
219 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
220 bool found = false;
221 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
222 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
223 global_extensions[j].extensionName) == 0) {
224 found = true;
225 break;
226 }
227 }
228 if (!found)
229 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
230 }
231
232 instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
233 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
234 if (!instance)
235 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
236
237 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
238
239 if (pAllocator)
240 instance->alloc = *pAllocator;
241 else
242 instance->alloc = default_alloc;
243
244 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
245 instance->physicalDeviceCount = -1;
246
247 _mesa_locale_init();
248
249 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
250
251 anv_init_wsi(instance);
252
253 *pInstance = anv_instance_to_handle(instance);
254
255 return VK_SUCCESS;
256 }
257
258 void anv_DestroyInstance(
259 VkInstance _instance,
260 const VkAllocationCallbacks* pAllocator)
261 {
262 ANV_FROM_HANDLE(anv_instance, instance, _instance);
263
264 if (instance->physicalDeviceCount > 0) {
265 /* We support at most one physical device. */
266 assert(instance->physicalDeviceCount == 1);
267 anv_physical_device_finish(&instance->physicalDevice);
268 }
269
270 anv_finish_wsi(instance);
271
272 VG(VALGRIND_DESTROY_MEMPOOL(instance));
273
274 _mesa_locale_fini();
275
276 anv_free(&instance->alloc, instance);
277 }
278
279 VkResult anv_EnumeratePhysicalDevices(
280 VkInstance _instance,
281 uint32_t* pPhysicalDeviceCount,
282 VkPhysicalDevice* pPhysicalDevices)
283 {
284 ANV_FROM_HANDLE(anv_instance, instance, _instance);
285 VkResult result;
286
287 if (instance->physicalDeviceCount < 0) {
288 result = anv_physical_device_init(&instance->physicalDevice,
289 instance, "/dev/dri/renderD128");
290 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
291 instance->physicalDeviceCount = 0;
292 } else if (result == VK_SUCCESS) {
293 instance->physicalDeviceCount = 1;
294 } else {
295 return result;
296 }
297 }
298
299 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
300 * otherwise it's an inout parameter.
301 *
302 * The Vulkan spec (git aaed022) says:
303 *
304 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
305 * that is initialized with the number of devices the application is
306 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
307 * an array of at least this many VkPhysicalDevice handles [...].
308 *
309 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
310 * overwrites the contents of the variable pointed to by
311 * pPhysicalDeviceCount with the number of physical devices in in the
312 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
313 * pPhysicalDeviceCount with the number of physical handles written to
314 * pPhysicalDevices.
315 */
316 if (!pPhysicalDevices) {
317 *pPhysicalDeviceCount = instance->physicalDeviceCount;
318 } else if (*pPhysicalDeviceCount >= 1) {
319 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
320 *pPhysicalDeviceCount = 1;
321 } else {
322 *pPhysicalDeviceCount = 0;
323 }
324
325 return VK_SUCCESS;
326 }
327
328 void anv_GetPhysicalDeviceFeatures(
329 VkPhysicalDevice physicalDevice,
330 VkPhysicalDeviceFeatures* pFeatures)
331 {
332 anv_finishme("Get correct values for PhysicalDeviceFeatures");
333
334 *pFeatures = (VkPhysicalDeviceFeatures) {
335 .robustBufferAccess = false,
336 .fullDrawIndexUint32 = false,
337 .imageCubeArray = false,
338 .independentBlend = false,
339 .geometryShader = true,
340 .tessellationShader = false,
341 .sampleRateShading = false,
342 .dualSrcBlend = true,
343 .logicOp = true,
344 .multiDrawIndirect = true,
345 .depthClamp = false,
346 .depthBiasClamp = false,
347 .fillModeNonSolid = true,
348 .depthBounds = false,
349 .wideLines = true,
350 .largePoints = true,
351 .alphaToOne = true,
352 .multiViewport = true,
353 .samplerAnisotropy = false, /* FINISHME */
354 .textureCompressionETC2 = true,
355 .textureCompressionASTC_LDR = true,
356 .textureCompressionBC = true,
357 .occlusionQueryPrecise = false, /* FINISHME */
358 .pipelineStatisticsQuery = true,
359 .vertexPipelineStoresAndAtomics = false,
360 .fragmentStoresAndAtomics = true,
361 .shaderTessellationAndGeometryPointSize = true,
362 .shaderImageGatherExtended = true,
363 .shaderStorageImageExtendedFormats = false,
364 .shaderStorageImageMultisample = false,
365 .shaderUniformBufferArrayDynamicIndexing = true,
366 .shaderSampledImageArrayDynamicIndexing = false,
367 .shaderStorageBufferArrayDynamicIndexing = false,
368 .shaderStorageImageArrayDynamicIndexing = false,
369 .shaderStorageImageReadWithoutFormat = false,
370 .shaderStorageImageWriteWithoutFormat = true,
371 .shaderClipDistance = false,
372 .shaderCullDistance = false,
373 .shaderFloat64 = false,
374 .shaderInt64 = false,
375 .shaderInt16 = false,
376 .alphaToOne = true,
377 .variableMultisampleRate = false,
378 };
379 }
380
381 void anv_GetPhysicalDeviceProperties(
382 VkPhysicalDevice physicalDevice,
383 VkPhysicalDeviceProperties* pProperties)
384 {
385 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
386 const struct brw_device_info *devinfo = pdevice->info;
387
388 anv_finishme("Get correct values for VkPhysicalDeviceLimits");
389
390 VkSampleCountFlags sample_counts =
391 VK_SAMPLE_COUNT_1_BIT |
392 VK_SAMPLE_COUNT_2_BIT |
393 VK_SAMPLE_COUNT_4_BIT |
394 VK_SAMPLE_COUNT_8_BIT;
395
396 VkPhysicalDeviceLimits limits = {
397 .maxImageDimension1D = (1 << 14),
398 .maxImageDimension2D = (1 << 14),
399 .maxImageDimension3D = (1 << 10),
400 .maxImageDimensionCube = (1 << 14),
401 .maxImageArrayLayers = (1 << 10),
402 .maxTexelBufferElements = (1 << 14),
403 .maxUniformBufferRange = UINT32_MAX,
404 .maxStorageBufferRange = UINT32_MAX,
405 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
406 .maxMemoryAllocationCount = UINT32_MAX,
407 .maxSamplerAllocationCount = UINT32_MAX,
408 .bufferImageGranularity = 64, /* A cache line */
409 .sparseAddressSpaceSize = 0,
410 .maxBoundDescriptorSets = MAX_SETS,
411 .maxPerStageDescriptorSamplers = 64,
412 .maxPerStageDescriptorUniformBuffers = 64,
413 .maxPerStageDescriptorStorageBuffers = 64,
414 .maxPerStageDescriptorSampledImages = 64,
415 .maxPerStageDescriptorStorageImages = 64,
416 .maxPerStageDescriptorInputAttachments = 64,
417 .maxPerStageResources = 128,
418 .maxDescriptorSetSamplers = 256,
419 .maxDescriptorSetUniformBuffers = 256,
420 .maxDescriptorSetUniformBuffersDynamic = 256,
421 .maxDescriptorSetStorageBuffers = 256,
422 .maxDescriptorSetStorageBuffersDynamic = 256,
423 .maxDescriptorSetSampledImages = 256,
424 .maxDescriptorSetStorageImages = 256,
425 .maxDescriptorSetInputAttachments = 256,
426 .maxVertexInputAttributes = 32,
427 .maxVertexInputBindings = 32,
428 .maxVertexInputAttributeOffset = 256,
429 .maxVertexInputBindingStride = 256,
430 .maxVertexOutputComponents = 32,
431 .maxTessellationGenerationLevel = 0,
432 .maxTessellationPatchSize = 0,
433 .maxTessellationControlPerVertexInputComponents = 0,
434 .maxTessellationControlPerVertexOutputComponents = 0,
435 .maxTessellationControlPerPatchOutputComponents = 0,
436 .maxTessellationControlTotalOutputComponents = 0,
437 .maxTessellationEvaluationInputComponents = 0,
438 .maxTessellationEvaluationOutputComponents = 0,
439 .maxGeometryShaderInvocations = 6,
440 .maxGeometryInputComponents = 16,
441 .maxGeometryOutputComponents = 16,
442 .maxGeometryOutputVertices = 16,
443 .maxGeometryTotalOutputComponents = 16,
444 .maxFragmentInputComponents = 16,
445 .maxFragmentOutputAttachments = 8,
446 .maxFragmentDualSrcAttachments = 2,
447 .maxFragmentCombinedOutputResources = 8,
448 .maxComputeSharedMemorySize = 1024,
449 .maxComputeWorkGroupCount = {
450 16 * devinfo->max_cs_threads,
451 16 * devinfo->max_cs_threads,
452 16 * devinfo->max_cs_threads,
453 },
454 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
455 .maxComputeWorkGroupSize = {
456 16 * devinfo->max_cs_threads,
457 16 * devinfo->max_cs_threads,
458 16 * devinfo->max_cs_threads,
459 },
460 .subPixelPrecisionBits = 4 /* FIXME */,
461 .subTexelPrecisionBits = 4 /* FIXME */,
462 .mipmapPrecisionBits = 4 /* FIXME */,
463 .maxDrawIndexedIndexValue = UINT32_MAX,
464 .maxDrawIndirectCount = UINT32_MAX,
465 .maxSamplerLodBias = 16,
466 .maxSamplerAnisotropy = 16,
467 .maxViewports = MAX_VIEWPORTS,
468 .maxViewportDimensions = { (1 << 14), (1 << 14) },
469 .viewportBoundsRange = { -1.0, 1.0 }, /* FIXME */
470 .viewportSubPixelBits = 13, /* We take a float? */
471 .minMemoryMapAlignment = 64, /* A cache line */
472 .minTexelBufferOffsetAlignment = 1,
473 .minUniformBufferOffsetAlignment = 1,
474 .minStorageBufferOffsetAlignment = 1,
475 .minTexelOffset = 0, /* FIXME */
476 .maxTexelOffset = 0, /* FIXME */
477 .minTexelGatherOffset = 0, /* FIXME */
478 .maxTexelGatherOffset = 0, /* FIXME */
479 .minInterpolationOffset = 0, /* FIXME */
480 .maxInterpolationOffset = 0, /* FIXME */
481 .subPixelInterpolationOffsetBits = 0, /* FIXME */
482 .maxFramebufferWidth = (1 << 14),
483 .maxFramebufferHeight = (1 << 14),
484 .maxFramebufferLayers = (1 << 10),
485 .framebufferColorSampleCounts = sample_counts,
486 .framebufferDepthSampleCounts = sample_counts,
487 .framebufferStencilSampleCounts = sample_counts,
488 .framebufferNoAttachmentsSampleCounts = sample_counts,
489 .maxColorAttachments = MAX_RTS,
490 .sampledImageColorSampleCounts = sample_counts,
491 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
492 .sampledImageDepthSampleCounts = sample_counts,
493 .sampledImageStencilSampleCounts = sample_counts,
494 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
495 .maxSampleMaskWords = 1,
496 .timestampPeriod = 80.0 / (1000 * 1000 * 1000),
497 .maxClipDistances = 0 /* FIXME */,
498 .maxCullDistances = 0 /* FIXME */,
499 .maxCombinedClipAndCullDistances = 0 /* FIXME */,
500 .discreteQueuePriorities = 1,
501 .pointSizeRange = { 0.125, 255.875 },
502 .lineWidthRange = { 0.0, 7.9921875 },
503 .pointSizeGranularity = (1.0 / 8.0),
504 .lineWidthGranularity = (1.0 / 128.0),
505 .strictLines = false, /* FINISHME */
506 .standardSampleLocations = true, /* FINISHME */
507 .optimalBufferCopyOffsetAlignment = 128,
508 .optimalBufferCopyRowPitchAlignment = 128,
509 .nonCoherentAtomSize = 64,
510 };
511
512 *pProperties = (VkPhysicalDeviceProperties) {
513 .apiVersion = VK_MAKE_VERSION(0, 210, 1),
514 .driverVersion = 1,
515 .vendorID = 0x8086,
516 .deviceID = pdevice->chipset_id,
517 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
518 .limits = limits,
519 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
520 };
521
522 strcpy(pProperties->deviceName, pdevice->name);
523 snprintf((char *)pProperties->pipelineCacheUUID, VK_UUID_SIZE,
524 "anv-%s", MESA_GIT_SHA1 + 4);
525 }
526
527 void anv_GetPhysicalDeviceQueueFamilyProperties(
528 VkPhysicalDevice physicalDevice,
529 uint32_t* pCount,
530 VkQueueFamilyProperties* pQueueFamilyProperties)
531 {
532 if (pQueueFamilyProperties == NULL) {
533 *pCount = 1;
534 return;
535 }
536
537 assert(*pCount >= 1);
538
539 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
540 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
541 VK_QUEUE_COMPUTE_BIT |
542 VK_QUEUE_TRANSFER_BIT,
543 .queueCount = 1,
544 .timestampValidBits = 0, /* XXX: Real value here */
545 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
546 };
547 }
548
549 void anv_GetPhysicalDeviceMemoryProperties(
550 VkPhysicalDevice physicalDevice,
551 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
552 {
553 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
554 VkDeviceSize heap_size;
555
556 /* Reserve some wiggle room for the driver by exposing only 75% of the
557 * aperture to the heap.
558 */
559 heap_size = 3 * physical_device->aperture_size / 4;
560
561 if (physical_device->info->has_llc) {
562 /* Big core GPUs share LLC with the CPU and thus one memory type can be
563 * both cached and coherent at the same time.
564 */
565 pMemoryProperties->memoryTypeCount = 1;
566 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
567 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
568 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
569 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
570 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
571 .heapIndex = 1,
572 };
573 } else {
574 /* The spec requires that we expose a host-visible, coherent memory
575 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
576 * to give the application a choice between cached, but not coherent and
577 * coherent but uncached (WC though).
578 */
579 pMemoryProperties->memoryTypeCount = 2;
580 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
581 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
582 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
583 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
584 .heapIndex = 1,
585 };
586 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
587 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
588 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
589 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
590 .heapIndex = 1,
591 };
592 }
593
594 pMemoryProperties->memoryHeapCount = 1;
595 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
596 .size = heap_size,
597 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
598 };
599 }
600
601 PFN_vkVoidFunction anv_GetInstanceProcAddr(
602 VkInstance instance,
603 const char* pName)
604 {
605 return anv_lookup_entrypoint(pName);
606 }
607
608 PFN_vkVoidFunction anv_GetDeviceProcAddr(
609 VkDevice device,
610 const char* pName)
611 {
612 return anv_lookup_entrypoint(pName);
613 }
614
615 static VkResult
616 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
617 {
618 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
619 queue->device = device;
620 queue->pool = &device->surface_state_pool;
621
622 return VK_SUCCESS;
623 }
624
625 static void
626 anv_queue_finish(struct anv_queue *queue)
627 {
628 }
629
630 static struct anv_state
631 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
632 {
633 struct anv_state state;
634
635 state = anv_state_pool_alloc(pool, size, align);
636 memcpy(state.map, p, size);
637
638 if (!pool->block_pool->device->info.has_llc)
639 anv_state_clflush(state);
640
641 return state;
642 }
643
644 static void
645 anv_device_init_border_colors(struct anv_device *device)
646 {
647 static const VkClearColorValue border_colors[] = {
648 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
649 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
650 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
651 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
652 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
653 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
654 };
655
656 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
657 sizeof(border_colors), 32, border_colors);
658 }
659
660 VkResult anv_CreateDevice(
661 VkPhysicalDevice physicalDevice,
662 const VkDeviceCreateInfo* pCreateInfo,
663 const VkAllocationCallbacks* pAllocator,
664 VkDevice* pDevice)
665 {
666 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
667 struct anv_device *device;
668
669 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
670
671 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
672 bool found = false;
673 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
674 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
675 device_extensions[j].extensionName) == 0) {
676 found = true;
677 break;
678 }
679 }
680 if (!found)
681 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
682 }
683
684 anv_set_dispatch_devinfo(physical_device->info);
685
686 device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
687 sizeof(*device), 8,
688 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
689 if (!device)
690 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
691
692 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
693 device->instance = physical_device->instance;
694
695 if (pAllocator)
696 device->alloc = *pAllocator;
697 else
698 device->alloc = physical_device->instance->alloc;
699
700 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
701 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
702 if (device->fd == -1)
703 goto fail_device;
704
705 device->context_id = anv_gem_create_context(device);
706 if (device->context_id == -1)
707 goto fail_fd;
708
709 pthread_mutex_init(&device->mutex, NULL);
710
711 anv_bo_pool_init(&device->batch_bo_pool, device, ANV_CMD_BUFFER_BATCH_SIZE);
712
713 anv_block_pool_init(&device->dynamic_state_block_pool, device, 2048);
714
715 anv_state_pool_init(&device->dynamic_state_pool,
716 &device->dynamic_state_block_pool);
717
718 anv_block_pool_init(&device->instruction_block_pool, device, 8192);
719 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
720
721 anv_state_pool_init(&device->surface_state_pool,
722 &device->surface_state_block_pool);
723
724 anv_bo_init_new(&device->workaround_bo, device, 1024);
725
726 anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
727
728 device->info = *physical_device->info;
729 device->isl_dev = physical_device->isl_dev;
730
731 anv_queue_init(device, &device->queue);
732
733 anv_device_init_meta(device);
734
735 anv_device_init_border_colors(device);
736
737 *pDevice = anv_device_to_handle(device);
738
739 return VK_SUCCESS;
740
741 fail_fd:
742 close(device->fd);
743 fail_device:
744 anv_free(&device->alloc, device);
745
746 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
747 }
748
749 void anv_DestroyDevice(
750 VkDevice _device,
751 const VkAllocationCallbacks* pAllocator)
752 {
753 ANV_FROM_HANDLE(anv_device, device, _device);
754
755 anv_queue_finish(&device->queue);
756
757 anv_device_finish_meta(device);
758
759 #ifdef HAVE_VALGRIND
760 /* We only need to free these to prevent valgrind errors. The backing
761 * BO will go away in a couple of lines so we don't actually leak.
762 */
763 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
764 #endif
765
766 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
767 anv_gem_close(device, device->workaround_bo.gem_handle);
768
769 anv_bo_pool_finish(&device->batch_bo_pool);
770 anv_state_pool_finish(&device->dynamic_state_pool);
771 anv_block_pool_finish(&device->dynamic_state_block_pool);
772 anv_block_pool_finish(&device->instruction_block_pool);
773 anv_state_pool_finish(&device->surface_state_pool);
774 anv_block_pool_finish(&device->surface_state_block_pool);
775 anv_block_pool_finish(&device->scratch_block_pool);
776
777 close(device->fd);
778
779 anv_free(&device->alloc, device);
780 }
781
782 VkResult anv_EnumerateInstanceExtensionProperties(
783 const char* pLayerName,
784 uint32_t* pPropertyCount,
785 VkExtensionProperties* pProperties)
786 {
787 if (pProperties == NULL) {
788 *pPropertyCount = ARRAY_SIZE(global_extensions);
789 return VK_SUCCESS;
790 }
791
792 assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
793
794 *pPropertyCount = ARRAY_SIZE(global_extensions);
795 memcpy(pProperties, global_extensions, sizeof(global_extensions));
796
797 return VK_SUCCESS;
798 }
799
800 VkResult anv_EnumerateDeviceExtensionProperties(
801 VkPhysicalDevice physicalDevice,
802 const char* pLayerName,
803 uint32_t* pPropertyCount,
804 VkExtensionProperties* pProperties)
805 {
806 if (pProperties == NULL) {
807 *pPropertyCount = ARRAY_SIZE(device_extensions);
808 return VK_SUCCESS;
809 }
810
811 assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
812
813 *pPropertyCount = ARRAY_SIZE(device_extensions);
814 memcpy(pProperties, device_extensions, sizeof(device_extensions));
815
816 return VK_SUCCESS;
817 }
818
819 VkResult anv_EnumerateInstanceLayerProperties(
820 uint32_t* pPropertyCount,
821 VkLayerProperties* pProperties)
822 {
823 if (pProperties == NULL) {
824 *pPropertyCount = 0;
825 return VK_SUCCESS;
826 }
827
828 /* None supported at this time */
829 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
830 }
831
832 VkResult anv_EnumerateDeviceLayerProperties(
833 VkPhysicalDevice physicalDevice,
834 uint32_t* pPropertyCount,
835 VkLayerProperties* pProperties)
836 {
837 if (pProperties == NULL) {
838 *pPropertyCount = 0;
839 return VK_SUCCESS;
840 }
841
842 /* None supported at this time */
843 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
844 }
845
846 void anv_GetDeviceQueue(
847 VkDevice _device,
848 uint32_t queueNodeIndex,
849 uint32_t queueIndex,
850 VkQueue* pQueue)
851 {
852 ANV_FROM_HANDLE(anv_device, device, _device);
853
854 assert(queueIndex == 0);
855
856 *pQueue = anv_queue_to_handle(&device->queue);
857 }
858
859 VkResult anv_QueueSubmit(
860 VkQueue _queue,
861 uint32_t submitCount,
862 const VkSubmitInfo* pSubmits,
863 VkFence _fence)
864 {
865 ANV_FROM_HANDLE(anv_queue, queue, _queue);
866 ANV_FROM_HANDLE(anv_fence, fence, _fence);
867 struct anv_device *device = queue->device;
868 int ret;
869
870 for (uint32_t i = 0; i < submitCount; i++) {
871 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
872 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
873 pSubmits[i].pCommandBuffers[j]);
874 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
875
876 ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
877 if (ret != 0) {
878 /* We don't know the real error. */
879 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
880 "execbuf2 failed: %m");
881 }
882
883 if (fence) {
884 ret = anv_gem_execbuffer(device, &fence->execbuf);
885 if (ret != 0) {
886 /* We don't know the real error. */
887 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
888 "execbuf2 failed: %m");
889 }
890 }
891
892 for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
893 cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
894 }
895 }
896
897 return VK_SUCCESS;
898 }
899
900 VkResult anv_QueueWaitIdle(
901 VkQueue _queue)
902 {
903 ANV_FROM_HANDLE(anv_queue, queue, _queue);
904
905 return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
906 }
907
908 VkResult anv_DeviceWaitIdle(
909 VkDevice _device)
910 {
911 ANV_FROM_HANDLE(anv_device, device, _device);
912 struct anv_state state;
913 struct anv_batch batch;
914 struct drm_i915_gem_execbuffer2 execbuf;
915 struct drm_i915_gem_exec_object2 exec2_objects[1];
916 struct anv_bo *bo = NULL;
917 VkResult result;
918 int64_t timeout;
919 int ret;
920
921 state = anv_state_pool_alloc(&device->dynamic_state_pool, 32, 32);
922 bo = &device->dynamic_state_pool.block_pool->bo;
923 batch.start = batch.next = state.map;
924 batch.end = state.map + 32;
925 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
926 anv_batch_emit(&batch, GEN7_MI_NOOP);
927
928 if (!device->info.has_llc)
929 anv_state_clflush(state);
930
931 exec2_objects[0].handle = bo->gem_handle;
932 exec2_objects[0].relocation_count = 0;
933 exec2_objects[0].relocs_ptr = 0;
934 exec2_objects[0].alignment = 0;
935 exec2_objects[0].offset = bo->offset;
936 exec2_objects[0].flags = 0;
937 exec2_objects[0].rsvd1 = 0;
938 exec2_objects[0].rsvd2 = 0;
939
940 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
941 execbuf.buffer_count = 1;
942 execbuf.batch_start_offset = state.offset;
943 execbuf.batch_len = batch.next - state.map;
944 execbuf.cliprects_ptr = 0;
945 execbuf.num_cliprects = 0;
946 execbuf.DR1 = 0;
947 execbuf.DR4 = 0;
948
949 execbuf.flags =
950 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
951 execbuf.rsvd1 = device->context_id;
952 execbuf.rsvd2 = 0;
953
954 ret = anv_gem_execbuffer(device, &execbuf);
955 if (ret != 0) {
956 /* We don't know the real error. */
957 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
958 goto fail;
959 }
960
961 timeout = INT64_MAX;
962 ret = anv_gem_wait(device, bo->gem_handle, &timeout);
963 if (ret != 0) {
964 /* We don't know the real error. */
965 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
966 goto fail;
967 }
968
969 anv_state_pool_free(&device->dynamic_state_pool, state);
970
971 return VK_SUCCESS;
972
973 fail:
974 anv_state_pool_free(&device->dynamic_state_pool, state);
975
976 return result;
977 }
978
979 VkResult
980 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
981 {
982 bo->gem_handle = anv_gem_create(device, size);
983 if (!bo->gem_handle)
984 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
985
986 bo->map = NULL;
987 bo->index = 0;
988 bo->offset = 0;
989 bo->size = size;
990
991 return VK_SUCCESS;
992 }
993
994 VkResult anv_AllocateMemory(
995 VkDevice _device,
996 const VkMemoryAllocateInfo* pAllocateInfo,
997 const VkAllocationCallbacks* pAllocator,
998 VkDeviceMemory* pMem)
999 {
1000 ANV_FROM_HANDLE(anv_device, device, _device);
1001 struct anv_device_memory *mem;
1002 VkResult result;
1003
1004 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1005
1006 if (pAllocateInfo->allocationSize == 0) {
1007 /* Apparently, this is allowed */
1008 *pMem = VK_NULL_HANDLE;
1009 return VK_SUCCESS;
1010 }
1011
1012 /* We support exactly one memory heap. */
1013 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1014 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1015
1016 /* FINISHME: Fail if allocation request exceeds heap size. */
1017
1018 mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1019 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1020 if (mem == NULL)
1021 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1022
1023 result = anv_bo_init_new(&mem->bo, device, pAllocateInfo->allocationSize);
1024 if (result != VK_SUCCESS)
1025 goto fail;
1026
1027 mem->type_index = pAllocateInfo->memoryTypeIndex;
1028
1029 *pMem = anv_device_memory_to_handle(mem);
1030
1031 return VK_SUCCESS;
1032
1033 fail:
1034 anv_free2(&device->alloc, pAllocator, mem);
1035
1036 return result;
1037 }
1038
1039 void anv_FreeMemory(
1040 VkDevice _device,
1041 VkDeviceMemory _mem,
1042 const VkAllocationCallbacks* pAllocator)
1043 {
1044 ANV_FROM_HANDLE(anv_device, device, _device);
1045 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1046
1047 if (mem == NULL)
1048 return;
1049
1050 if (mem->bo.map)
1051 anv_gem_munmap(mem->bo.map, mem->bo.size);
1052
1053 if (mem->bo.gem_handle != 0)
1054 anv_gem_close(device, mem->bo.gem_handle);
1055
1056 anv_free2(&device->alloc, pAllocator, mem);
1057 }
1058
1059 VkResult anv_MapMemory(
1060 VkDevice _device,
1061 VkDeviceMemory _memory,
1062 VkDeviceSize offset,
1063 VkDeviceSize size,
1064 VkMemoryMapFlags flags,
1065 void** ppData)
1066 {
1067 ANV_FROM_HANDLE(anv_device, device, _device);
1068 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1069
1070 if (mem == NULL) {
1071 *ppData = NULL;
1072 return VK_SUCCESS;
1073 }
1074
1075 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1076 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1077 * at a time is valid. We could just mmap up front and return an offset
1078 * pointer here, but that may exhaust virtual memory on 32 bit
1079 * userspace. */
1080
1081 uint32_t gem_flags = 0;
1082 if (!device->info.has_llc && mem->type_index == 0)
1083 gem_flags |= I915_MMAP_WC;
1084
1085 mem->map = anv_gem_mmap(device, mem->bo.gem_handle, offset, size, gem_flags);
1086 mem->map_size = size;
1087
1088 *ppData = mem->map;
1089
1090 return VK_SUCCESS;
1091 }
1092
1093 void anv_UnmapMemory(
1094 VkDevice _device,
1095 VkDeviceMemory _memory)
1096 {
1097 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1098
1099 if (mem == NULL)
1100 return;
1101
1102 anv_gem_munmap(mem->map, mem->map_size);
1103 }
1104
1105 static void
1106 clflush_mapped_ranges(struct anv_device *device,
1107 uint32_t count,
1108 const VkMappedMemoryRange *ranges)
1109 {
1110 for (uint32_t i = 0; i < count; i++) {
1111 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1112 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1113 void *end = mem->map + ranges[i].offset + ranges[i].size;
1114
1115 while (p < end) {
1116 __builtin_ia32_clflush(p);
1117 p += CACHELINE_SIZE;
1118 }
1119 }
1120 }
1121
1122 VkResult anv_FlushMappedMemoryRanges(
1123 VkDevice _device,
1124 uint32_t memoryRangeCount,
1125 const VkMappedMemoryRange* pMemoryRanges)
1126 {
1127 ANV_FROM_HANDLE(anv_device, device, _device);
1128
1129 if (device->info.has_llc)
1130 return VK_SUCCESS;
1131
1132 /* Make sure the writes we're flushing have landed. */
1133 __builtin_ia32_sfence();
1134
1135 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1136
1137 return VK_SUCCESS;
1138 }
1139
1140 VkResult anv_InvalidateMappedMemoryRanges(
1141 VkDevice _device,
1142 uint32_t memoryRangeCount,
1143 const VkMappedMemoryRange* pMemoryRanges)
1144 {
1145 ANV_FROM_HANDLE(anv_device, device, _device);
1146
1147 if (device->info.has_llc)
1148 return VK_SUCCESS;
1149
1150 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1151
1152 /* Make sure no reads get moved up above the invalidate. */
1153 __builtin_ia32_lfence();
1154
1155 return VK_SUCCESS;
1156 }
1157
1158 void anv_GetBufferMemoryRequirements(
1159 VkDevice device,
1160 VkBuffer _buffer,
1161 VkMemoryRequirements* pMemoryRequirements)
1162 {
1163 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1164
1165 /* The Vulkan spec (git aaed022) says:
1166 *
1167 * memoryTypeBits is a bitfield and contains one bit set for every
1168 * supported memory type for the resource. The bit `1<<i` is set if and
1169 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1170 * structure for the physical device is supported.
1171 *
1172 * We support exactly one memory type.
1173 */
1174 pMemoryRequirements->memoryTypeBits = 1;
1175
1176 pMemoryRequirements->size = buffer->size;
1177 pMemoryRequirements->alignment = 16;
1178 }
1179
1180 void anv_GetImageMemoryRequirements(
1181 VkDevice device,
1182 VkImage _image,
1183 VkMemoryRequirements* pMemoryRequirements)
1184 {
1185 ANV_FROM_HANDLE(anv_image, image, _image);
1186
1187 /* The Vulkan spec (git aaed022) says:
1188 *
1189 * memoryTypeBits is a bitfield and contains one bit set for every
1190 * supported memory type for the resource. The bit `1<<i` is set if and
1191 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1192 * structure for the physical device is supported.
1193 *
1194 * We support exactly one memory type.
1195 */
1196 pMemoryRequirements->memoryTypeBits = 1;
1197
1198 pMemoryRequirements->size = image->size;
1199 pMemoryRequirements->alignment = image->alignment;
1200 }
1201
1202 void anv_GetImageSparseMemoryRequirements(
1203 VkDevice device,
1204 VkImage image,
1205 uint32_t* pSparseMemoryRequirementCount,
1206 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1207 {
1208 stub();
1209 }
1210
1211 void anv_GetDeviceMemoryCommitment(
1212 VkDevice device,
1213 VkDeviceMemory memory,
1214 VkDeviceSize* pCommittedMemoryInBytes)
1215 {
1216 *pCommittedMemoryInBytes = 0;
1217 }
1218
1219 VkResult anv_BindBufferMemory(
1220 VkDevice device,
1221 VkBuffer _buffer,
1222 VkDeviceMemory _memory,
1223 VkDeviceSize memoryOffset)
1224 {
1225 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1226 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1227
1228 if (mem) {
1229 buffer->bo = &mem->bo;
1230 buffer->offset = memoryOffset;
1231 } else {
1232 buffer->bo = NULL;
1233 buffer->offset = 0;
1234 }
1235
1236 return VK_SUCCESS;
1237 }
1238
1239 VkResult anv_BindImageMemory(
1240 VkDevice device,
1241 VkImage _image,
1242 VkDeviceMemory _memory,
1243 VkDeviceSize memoryOffset)
1244 {
1245 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1246 ANV_FROM_HANDLE(anv_image, image, _image);
1247
1248 if (mem) {
1249 image->bo = &mem->bo;
1250 image->offset = memoryOffset;
1251 } else {
1252 image->bo = NULL;
1253 image->offset = 0;
1254 }
1255
1256 return VK_SUCCESS;
1257 }
1258
1259 VkResult anv_QueueBindSparse(
1260 VkQueue queue,
1261 uint32_t bindInfoCount,
1262 const VkBindSparseInfo* pBindInfo,
1263 VkFence fence)
1264 {
1265 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1266 }
1267
1268 VkResult anv_CreateFence(
1269 VkDevice _device,
1270 const VkFenceCreateInfo* pCreateInfo,
1271 const VkAllocationCallbacks* pAllocator,
1272 VkFence* pFence)
1273 {
1274 ANV_FROM_HANDLE(anv_device, device, _device);
1275 struct anv_fence *fence;
1276 struct anv_batch batch;
1277 VkResult result;
1278
1279 const uint32_t fence_size = 128;
1280
1281 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1282
1283 fence = anv_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
1284 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1285 if (fence == NULL)
1286 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1287
1288 result = anv_bo_init_new(&fence->bo, device, fence_size);
1289 if (result != VK_SUCCESS)
1290 goto fail;
1291
1292 fence->bo.map =
1293 anv_gem_mmap(device, fence->bo.gem_handle, 0, fence->bo.size, 0);
1294 batch.next = batch.start = fence->bo.map;
1295 batch.end = fence->bo.map + fence->bo.size;
1296 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
1297 anv_batch_emit(&batch, GEN7_MI_NOOP);
1298
1299 if (!device->info.has_llc) {
1300 assert(((uintptr_t) fence->bo.map & CACHELINE_MASK) == 0);
1301 assert(batch.next - fence->bo.map <= CACHELINE_SIZE);
1302 __builtin_ia32_sfence();
1303 __builtin_ia32_clflush(fence->bo.map);
1304 }
1305
1306 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1307 fence->exec2_objects[0].relocation_count = 0;
1308 fence->exec2_objects[0].relocs_ptr = 0;
1309 fence->exec2_objects[0].alignment = 0;
1310 fence->exec2_objects[0].offset = fence->bo.offset;
1311 fence->exec2_objects[0].flags = 0;
1312 fence->exec2_objects[0].rsvd1 = 0;
1313 fence->exec2_objects[0].rsvd2 = 0;
1314
1315 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1316 fence->execbuf.buffer_count = 1;
1317 fence->execbuf.batch_start_offset = 0;
1318 fence->execbuf.batch_len = batch.next - fence->bo.map;
1319 fence->execbuf.cliprects_ptr = 0;
1320 fence->execbuf.num_cliprects = 0;
1321 fence->execbuf.DR1 = 0;
1322 fence->execbuf.DR4 = 0;
1323
1324 fence->execbuf.flags =
1325 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1326 fence->execbuf.rsvd1 = device->context_id;
1327 fence->execbuf.rsvd2 = 0;
1328
1329 *pFence = anv_fence_to_handle(fence);
1330
1331 return VK_SUCCESS;
1332
1333 fail:
1334 anv_free2(&device->alloc, pAllocator, fence);
1335
1336 return result;
1337 }
1338
1339 void anv_DestroyFence(
1340 VkDevice _device,
1341 VkFence _fence,
1342 const VkAllocationCallbacks* pAllocator)
1343 {
1344 ANV_FROM_HANDLE(anv_device, device, _device);
1345 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1346
1347 anv_gem_munmap(fence->bo.map, fence->bo.size);
1348 anv_gem_close(device, fence->bo.gem_handle);
1349 anv_free2(&device->alloc, pAllocator, fence);
1350 }
1351
1352 VkResult anv_ResetFences(
1353 VkDevice _device,
1354 uint32_t fenceCount,
1355 const VkFence* pFences)
1356 {
1357 for (uint32_t i = 0; i < fenceCount; i++) {
1358 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1359 fence->ready = false;
1360 }
1361
1362 return VK_SUCCESS;
1363 }
1364
1365 VkResult anv_GetFenceStatus(
1366 VkDevice _device,
1367 VkFence _fence)
1368 {
1369 ANV_FROM_HANDLE(anv_device, device, _device);
1370 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1371 int64_t t = 0;
1372 int ret;
1373
1374 if (fence->ready)
1375 return VK_SUCCESS;
1376
1377 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1378 if (ret == 0) {
1379 fence->ready = true;
1380 return VK_SUCCESS;
1381 }
1382
1383 return VK_NOT_READY;
1384 }
1385
1386 VkResult anv_WaitForFences(
1387 VkDevice _device,
1388 uint32_t fenceCount,
1389 const VkFence* pFences,
1390 VkBool32 waitAll,
1391 uint64_t timeout)
1392 {
1393 ANV_FROM_HANDLE(anv_device, device, _device);
1394
1395 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1396 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1397 * for a couple of kernel releases. Since there's no way to know
1398 * whether or not the kernel we're using is one of the broken ones, the
1399 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1400 * maximum timeout from 584 years to 292 years - likely not a big deal.
1401 */
1402 if (timeout > INT64_MAX)
1403 timeout = INT64_MAX;
1404
1405 int64_t t = timeout;
1406
1407 /* FIXME: handle !waitAll */
1408
1409 for (uint32_t i = 0; i < fenceCount; i++) {
1410 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1411 int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1412 if (ret == -1 && errno == ETIME) {
1413 return VK_TIMEOUT;
1414 } else if (ret == -1) {
1415 /* We don't know the real error. */
1416 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1417 "gem wait failed: %m");
1418 }
1419 }
1420
1421 return VK_SUCCESS;
1422 }
1423
1424 // Queue semaphore functions
1425
1426 VkResult anv_CreateSemaphore(
1427 VkDevice device,
1428 const VkSemaphoreCreateInfo* pCreateInfo,
1429 const VkAllocationCallbacks* pAllocator,
1430 VkSemaphore* pSemaphore)
1431 {
1432 *pSemaphore = (VkSemaphore)1;
1433 stub_return(VK_SUCCESS);
1434 }
1435
1436 void anv_DestroySemaphore(
1437 VkDevice device,
1438 VkSemaphore semaphore,
1439 const VkAllocationCallbacks* pAllocator)
1440 {
1441 stub();
1442 }
1443
1444 // Event functions
1445
1446 VkResult anv_CreateEvent(
1447 VkDevice _device,
1448 const VkEventCreateInfo* pCreateInfo,
1449 const VkAllocationCallbacks* pAllocator,
1450 VkEvent* pEvent)
1451 {
1452 ANV_FROM_HANDLE(anv_device, device, _device);
1453 struct anv_state state;
1454 struct anv_event *event;
1455
1456 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1457
1458 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1459 sizeof(*event), 4);
1460 event = state.map;
1461 event->state = state;
1462 event->semaphore = VK_EVENT_RESET;
1463
1464 if (!device->info.has_llc) {
1465 /* Make sure the writes we're flushing have landed. */
1466 __builtin_ia32_sfence();
1467 __builtin_ia32_clflush(event);
1468 }
1469
1470 *pEvent = anv_event_to_handle(event);
1471
1472 return VK_SUCCESS;
1473 }
1474
1475 void anv_DestroyEvent(
1476 VkDevice _device,
1477 VkEvent _event,
1478 const VkAllocationCallbacks* pAllocator)
1479 {
1480 ANV_FROM_HANDLE(anv_device, device, _device);
1481 ANV_FROM_HANDLE(anv_event, event, _event);
1482
1483 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1484 }
1485
1486 VkResult anv_GetEventStatus(
1487 VkDevice _device,
1488 VkEvent _event)
1489 {
1490 ANV_FROM_HANDLE(anv_device, device, _device);
1491 ANV_FROM_HANDLE(anv_event, event, _event);
1492
1493 if (!device->info.has_llc) {
1494 /* Make sure the writes we're flushing have landed. */
1495 __builtin_ia32_clflush(event);
1496 __builtin_ia32_lfence();
1497 }
1498
1499 return event->semaphore;
1500 }
1501
1502 VkResult anv_SetEvent(
1503 VkDevice _device,
1504 VkEvent _event)
1505 {
1506 ANV_FROM_HANDLE(anv_device, device, _device);
1507 ANV_FROM_HANDLE(anv_event, event, _event);
1508
1509 event->semaphore = VK_EVENT_SET;
1510
1511 if (!device->info.has_llc) {
1512 /* Make sure the writes we're flushing have landed. */
1513 __builtin_ia32_sfence();
1514 __builtin_ia32_clflush(event);
1515 }
1516
1517 return VK_SUCCESS;
1518 }
1519
1520 VkResult anv_ResetEvent(
1521 VkDevice _device,
1522 VkEvent _event)
1523 {
1524 ANV_FROM_HANDLE(anv_device, device, _device);
1525 ANV_FROM_HANDLE(anv_event, event, _event);
1526
1527 event->semaphore = VK_EVENT_RESET;
1528
1529 if (!device->info.has_llc) {
1530 /* Make sure the writes we're flushing have landed. */
1531 __builtin_ia32_sfence();
1532 __builtin_ia32_clflush(event);
1533 }
1534
1535 return VK_SUCCESS;
1536 }
1537
1538 // Buffer functions
1539
1540 VkResult anv_CreateBuffer(
1541 VkDevice _device,
1542 const VkBufferCreateInfo* pCreateInfo,
1543 const VkAllocationCallbacks* pAllocator,
1544 VkBuffer* pBuffer)
1545 {
1546 ANV_FROM_HANDLE(anv_device, device, _device);
1547 struct anv_buffer *buffer;
1548
1549 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1550
1551 buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1552 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1553 if (buffer == NULL)
1554 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1555
1556 buffer->size = pCreateInfo->size;
1557 buffer->usage = pCreateInfo->usage;
1558 buffer->bo = NULL;
1559 buffer->offset = 0;
1560
1561 *pBuffer = anv_buffer_to_handle(buffer);
1562
1563 return VK_SUCCESS;
1564 }
1565
1566 void anv_DestroyBuffer(
1567 VkDevice _device,
1568 VkBuffer _buffer,
1569 const VkAllocationCallbacks* pAllocator)
1570 {
1571 ANV_FROM_HANDLE(anv_device, device, _device);
1572 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1573
1574 anv_free2(&device->alloc, pAllocator, buffer);
1575 }
1576
1577 void
1578 anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1579 enum isl_format format,
1580 uint32_t offset, uint32_t range, uint32_t stride)
1581 {
1582 switch (device->info.gen) {
1583 case 7:
1584 if (device->info.is_haswell)
1585 gen75_fill_buffer_surface_state(state, format, offset, range, stride);
1586 else
1587 gen7_fill_buffer_surface_state(state, format, offset, range, stride);
1588 break;
1589 case 8:
1590 gen8_fill_buffer_surface_state(state, format, offset, range, stride);
1591 break;
1592 case 9:
1593 gen9_fill_buffer_surface_state(state, format, offset, range, stride);
1594 break;
1595 default:
1596 unreachable("unsupported gen\n");
1597 }
1598 }
1599
1600 void anv_DestroySampler(
1601 VkDevice _device,
1602 VkSampler _sampler,
1603 const VkAllocationCallbacks* pAllocator)
1604 {
1605 ANV_FROM_HANDLE(anv_device, device, _device);
1606 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1607
1608 anv_free2(&device->alloc, pAllocator, sampler);
1609 }
1610
1611 VkResult anv_CreateFramebuffer(
1612 VkDevice _device,
1613 const VkFramebufferCreateInfo* pCreateInfo,
1614 const VkAllocationCallbacks* pAllocator,
1615 VkFramebuffer* pFramebuffer)
1616 {
1617 ANV_FROM_HANDLE(anv_device, device, _device);
1618 struct anv_framebuffer *framebuffer;
1619
1620 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1621
1622 size_t size = sizeof(*framebuffer) +
1623 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1624 framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
1625 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1626 if (framebuffer == NULL)
1627 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1628
1629 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1630 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1631 VkImageView _iview = pCreateInfo->pAttachments[i];
1632 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1633 }
1634
1635 framebuffer->width = pCreateInfo->width;
1636 framebuffer->height = pCreateInfo->height;
1637 framebuffer->layers = pCreateInfo->layers;
1638
1639 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1640
1641 return VK_SUCCESS;
1642 }
1643
1644 void anv_DestroyFramebuffer(
1645 VkDevice _device,
1646 VkFramebuffer _fb,
1647 const VkAllocationCallbacks* pAllocator)
1648 {
1649 ANV_FROM_HANDLE(anv_device, device, _device);
1650 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1651
1652 anv_free2(&device->alloc, pAllocator, fb);
1653 }
1654
1655 void vkCmdDbgMarkerBegin(
1656 VkCommandBuffer commandBuffer,
1657 const char* pMarker)
1658 __attribute__ ((visibility ("default")));
1659
1660 void vkCmdDbgMarkerEnd(
1661 VkCommandBuffer commandBuffer)
1662 __attribute__ ((visibility ("default")));
1663
1664 void vkCmdDbgMarkerBegin(
1665 VkCommandBuffer commandBuffer,
1666 const char* pMarker)
1667 {
1668 }
1669
1670 void vkCmdDbgMarkerEnd(
1671 VkCommandBuffer commandBuffer)
1672 {
1673 }