vk: Implement a basic pipeline cache
[mesa.git] / src / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "mesa/main/git_sha1.h"
32 #include "util/strtod.h"
33
34 #include "gen7_pack.h"
35
36 struct anv_dispatch_table dtable;
37
38 static void
39 compiler_debug_log(void *data, const char *fmt, ...)
40 { }
41
42 static void
43 compiler_perf_log(void *data, const char *fmt, ...)
44 {
45 va_list args;
46 va_start(args, fmt);
47
48 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
49 vfprintf(stderr, fmt, args);
50
51 va_end(args);
52 }
53
54 static VkResult
55 anv_physical_device_init(struct anv_physical_device *device,
56 struct anv_instance *instance,
57 const char *path)
58 {
59 VkResult result;
60 int fd;
61
62 fd = open(path, O_RDWR | O_CLOEXEC);
63 if (fd < 0)
64 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
65 "failed to open %s: %m", path);
66
67 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
68 device->instance = instance;
69 device->path = path;
70
71 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
72 if (!device->chipset_id) {
73 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get chipset id: %m");
75 goto fail;
76 }
77
78 device->name = brw_get_device_name(device->chipset_id);
79 device->info = brw_get_device_info(device->chipset_id);
80 if (!device->info) {
81 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
82 "failed to get device info");
83 goto fail;
84 }
85
86 if (device->info->is_haswell) {
87 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
88 } else if (device->info->gen == 7 && !device->info->is_baytrail) {
89 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
90 } else if (device->info->gen == 7 && device->info->is_baytrail) {
91 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
92 } else if (device->info->gen == 9 && !device->info->is_broxton) {
93 fprintf(stderr, "WARNING: Skylake Vulkan support is incomplete\n");
94 } else if (device->info->gen == 9 && device->info->is_broxton) {
95 fprintf(stderr, "WARNING: Broxton Vulkan support is incomplete\n");
96 } else if (device->info->gen == 8) {
97 /* Broadwell/Cherryview is as fully supported as anything */
98 } else {
99 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
100 "Vulkan not yet supported on %s", device->name);
101 goto fail;
102 }
103
104 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
105 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
106 "failed to get aperture size: %m");
107 goto fail;
108 }
109
110 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
111 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
112 "kernel missing gem wait");
113 goto fail;
114 }
115
116 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
117 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
118 "kernel missing execbuf2");
119 goto fail;
120 }
121
122 if (!device->info->has_llc &&
123 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
124 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
125 "kernel missing wc mmap");
126 goto fail;
127 }
128
129 close(fd);
130
131 brw_process_intel_debug_variable();
132
133 device->compiler = brw_compiler_create(NULL, device->info);
134 if (device->compiler == NULL) {
135 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
136 goto fail;
137 }
138 device->compiler->shader_debug_log = compiler_debug_log;
139 device->compiler->shader_perf_log = compiler_perf_log;
140
141 isl_device_init(&device->isl_dev, device->info);
142
143 return VK_SUCCESS;
144
145 fail:
146 close(fd);
147 return result;
148 }
149
150 static void
151 anv_physical_device_finish(struct anv_physical_device *device)
152 {
153 ralloc_free(device->compiler);
154 }
155
156 static const VkExtensionProperties global_extensions[] = {
157 {
158 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
159 .specVersion = 24,
160 },
161 {
162 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
163 .specVersion = 5,
164 },
165 #ifdef HAVE_WAYLAND_PLATFORM
166 {
167 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
168 .specVersion = 4,
169 },
170 #endif
171 };
172
173 static const VkExtensionProperties device_extensions[] = {
174 {
175 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
176 .specVersion = 67,
177 },
178 };
179
180 static void *
181 default_alloc_func(void *pUserData, size_t size, size_t align,
182 VkSystemAllocationScope allocationScope)
183 {
184 return malloc(size);
185 }
186
187 static void *
188 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
189 size_t align, VkSystemAllocationScope allocationScope)
190 {
191 return realloc(pOriginal, size);
192 }
193
194 static void
195 default_free_func(void *pUserData, void *pMemory)
196 {
197 free(pMemory);
198 }
199
200 static const VkAllocationCallbacks default_alloc = {
201 .pUserData = NULL,
202 .pfnAllocation = default_alloc_func,
203 .pfnReallocation = default_realloc_func,
204 .pfnFree = default_free_func,
205 };
206
207 VkResult anv_CreateInstance(
208 const VkInstanceCreateInfo* pCreateInfo,
209 const VkAllocationCallbacks* pAllocator,
210 VkInstance* pInstance)
211 {
212 struct anv_instance *instance;
213
214 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
215
216 if (pCreateInfo->pApplicationInfo->apiVersion != VK_MAKE_VERSION(0, 210, 1))
217 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
218
219 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
220 bool found = false;
221 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
222 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
223 global_extensions[j].extensionName) == 0) {
224 found = true;
225 break;
226 }
227 }
228 if (!found)
229 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
230 }
231
232 instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
233 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
234 if (!instance)
235 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
236
237 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
238
239 if (pAllocator)
240 instance->alloc = *pAllocator;
241 else
242 instance->alloc = default_alloc;
243
244 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
245 instance->physicalDeviceCount = -1;
246
247 _mesa_locale_init();
248
249 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
250
251 anv_init_wsi(instance);
252
253 *pInstance = anv_instance_to_handle(instance);
254
255 return VK_SUCCESS;
256 }
257
258 void anv_DestroyInstance(
259 VkInstance _instance,
260 const VkAllocationCallbacks* pAllocator)
261 {
262 ANV_FROM_HANDLE(anv_instance, instance, _instance);
263
264 if (instance->physicalDeviceCount > 0) {
265 /* We support at most one physical device. */
266 assert(instance->physicalDeviceCount == 1);
267 anv_physical_device_finish(&instance->physicalDevice);
268 }
269
270 anv_finish_wsi(instance);
271
272 VG(VALGRIND_DESTROY_MEMPOOL(instance));
273
274 _mesa_locale_fini();
275
276 anv_free(&instance->alloc, instance);
277 }
278
279 VkResult anv_EnumeratePhysicalDevices(
280 VkInstance _instance,
281 uint32_t* pPhysicalDeviceCount,
282 VkPhysicalDevice* pPhysicalDevices)
283 {
284 ANV_FROM_HANDLE(anv_instance, instance, _instance);
285 VkResult result;
286
287 if (instance->physicalDeviceCount < 0) {
288 result = anv_physical_device_init(&instance->physicalDevice,
289 instance, "/dev/dri/renderD128");
290 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
291 instance->physicalDeviceCount = 0;
292 } else if (result == VK_SUCCESS) {
293 instance->physicalDeviceCount = 1;
294 } else {
295 return result;
296 }
297 }
298
299 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
300 * otherwise it's an inout parameter.
301 *
302 * The Vulkan spec (git aaed022) says:
303 *
304 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
305 * that is initialized with the number of devices the application is
306 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
307 * an array of at least this many VkPhysicalDevice handles [...].
308 *
309 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
310 * overwrites the contents of the variable pointed to by
311 * pPhysicalDeviceCount with the number of physical devices in in the
312 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
313 * pPhysicalDeviceCount with the number of physical handles written to
314 * pPhysicalDevices.
315 */
316 if (!pPhysicalDevices) {
317 *pPhysicalDeviceCount = instance->physicalDeviceCount;
318 } else if (*pPhysicalDeviceCount >= 1) {
319 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
320 *pPhysicalDeviceCount = 1;
321 } else {
322 *pPhysicalDeviceCount = 0;
323 }
324
325 return VK_SUCCESS;
326 }
327
328 void anv_GetPhysicalDeviceFeatures(
329 VkPhysicalDevice physicalDevice,
330 VkPhysicalDeviceFeatures* pFeatures)
331 {
332 anv_finishme("Get correct values for PhysicalDeviceFeatures");
333
334 *pFeatures = (VkPhysicalDeviceFeatures) {
335 .robustBufferAccess = false,
336 .fullDrawIndexUint32 = false,
337 .imageCubeArray = false,
338 .independentBlend = false,
339 .geometryShader = true,
340 .tessellationShader = false,
341 .sampleRateShading = false,
342 .dualSrcBlend = true,
343 .logicOp = true,
344 .multiDrawIndirect = true,
345 .depthClamp = false,
346 .depthBiasClamp = false,
347 .fillModeNonSolid = true,
348 .depthBounds = false,
349 .wideLines = true,
350 .largePoints = true,
351 .alphaToOne = true,
352 .multiViewport = true,
353 .samplerAnisotropy = false, /* FINISHME */
354 .textureCompressionETC2 = true,
355 .textureCompressionASTC_LDR = true,
356 .textureCompressionBC = true,
357 .occlusionQueryPrecise = false, /* FINISHME */
358 .pipelineStatisticsQuery = true,
359 .vertexPipelineStoresAndAtomics = false,
360 .fragmentStoresAndAtomics = true,
361 .shaderTessellationAndGeometryPointSize = true,
362 .shaderImageGatherExtended = true,
363 .shaderStorageImageExtendedFormats = false,
364 .shaderStorageImageMultisample = false,
365 .shaderUniformBufferArrayDynamicIndexing = true,
366 .shaderSampledImageArrayDynamicIndexing = false,
367 .shaderStorageBufferArrayDynamicIndexing = false,
368 .shaderStorageImageArrayDynamicIndexing = false,
369 .shaderStorageImageReadWithoutFormat = false,
370 .shaderStorageImageWriteWithoutFormat = true,
371 .shaderClipDistance = false,
372 .shaderCullDistance = false,
373 .shaderFloat64 = false,
374 .shaderInt64 = false,
375 .shaderInt16 = false,
376 .alphaToOne = true,
377 .variableMultisampleRate = false,
378 };
379 }
380
381 void anv_GetPhysicalDeviceProperties(
382 VkPhysicalDevice physicalDevice,
383 VkPhysicalDeviceProperties* pProperties)
384 {
385 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
386 const struct brw_device_info *devinfo = pdevice->info;
387
388 anv_finishme("Get correct values for VkPhysicalDeviceLimits");
389
390 VkSampleCountFlags sample_counts =
391 VK_SAMPLE_COUNT_1_BIT |
392 VK_SAMPLE_COUNT_2_BIT |
393 VK_SAMPLE_COUNT_4_BIT |
394 VK_SAMPLE_COUNT_8_BIT;
395
396 VkPhysicalDeviceLimits limits = {
397 .maxImageDimension1D = (1 << 14),
398 .maxImageDimension2D = (1 << 14),
399 .maxImageDimension3D = (1 << 10),
400 .maxImageDimensionCube = (1 << 14),
401 .maxImageArrayLayers = (1 << 10),
402 .maxTexelBufferElements = (1 << 14),
403 .maxUniformBufferRange = UINT32_MAX,
404 .maxStorageBufferRange = UINT32_MAX,
405 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
406 .maxMemoryAllocationCount = UINT32_MAX,
407 .maxSamplerAllocationCount = UINT32_MAX,
408 .bufferImageGranularity = 64, /* A cache line */
409 .sparseAddressSpaceSize = 0,
410 .maxBoundDescriptorSets = MAX_SETS,
411 .maxPerStageDescriptorSamplers = 64,
412 .maxPerStageDescriptorUniformBuffers = 64,
413 .maxPerStageDescriptorStorageBuffers = 64,
414 .maxPerStageDescriptorSampledImages = 64,
415 .maxPerStageDescriptorStorageImages = 64,
416 .maxPerStageDescriptorInputAttachments = 64,
417 .maxPerStageResources = 128,
418 .maxDescriptorSetSamplers = 256,
419 .maxDescriptorSetUniformBuffers = 256,
420 .maxDescriptorSetUniformBuffersDynamic = 256,
421 .maxDescriptorSetStorageBuffers = 256,
422 .maxDescriptorSetStorageBuffersDynamic = 256,
423 .maxDescriptorSetSampledImages = 256,
424 .maxDescriptorSetStorageImages = 256,
425 .maxDescriptorSetInputAttachments = 256,
426 .maxVertexInputAttributes = 32,
427 .maxVertexInputBindings = 32,
428 .maxVertexInputAttributeOffset = 256,
429 .maxVertexInputBindingStride = 256,
430 .maxVertexOutputComponents = 32,
431 .maxTessellationGenerationLevel = 0,
432 .maxTessellationPatchSize = 0,
433 .maxTessellationControlPerVertexInputComponents = 0,
434 .maxTessellationControlPerVertexOutputComponents = 0,
435 .maxTessellationControlPerPatchOutputComponents = 0,
436 .maxTessellationControlTotalOutputComponents = 0,
437 .maxTessellationEvaluationInputComponents = 0,
438 .maxTessellationEvaluationOutputComponents = 0,
439 .maxGeometryShaderInvocations = 6,
440 .maxGeometryInputComponents = 16,
441 .maxGeometryOutputComponents = 16,
442 .maxGeometryOutputVertices = 16,
443 .maxGeometryTotalOutputComponents = 16,
444 .maxFragmentInputComponents = 16,
445 .maxFragmentOutputAttachments = 8,
446 .maxFragmentDualSrcAttachments = 2,
447 .maxFragmentCombinedOutputResources = 8,
448 .maxComputeSharedMemorySize = 1024,
449 .maxComputeWorkGroupCount = {
450 16 * devinfo->max_cs_threads,
451 16 * devinfo->max_cs_threads,
452 16 * devinfo->max_cs_threads,
453 },
454 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
455 .maxComputeWorkGroupSize = {
456 16 * devinfo->max_cs_threads,
457 16 * devinfo->max_cs_threads,
458 16 * devinfo->max_cs_threads,
459 },
460 .subPixelPrecisionBits = 4 /* FIXME */,
461 .subTexelPrecisionBits = 4 /* FIXME */,
462 .mipmapPrecisionBits = 4 /* FIXME */,
463 .maxDrawIndexedIndexValue = UINT32_MAX,
464 .maxDrawIndirectCount = UINT32_MAX,
465 .maxSamplerLodBias = 16,
466 .maxSamplerAnisotropy = 16,
467 .maxViewports = MAX_VIEWPORTS,
468 .maxViewportDimensions = { (1 << 14), (1 << 14) },
469 .viewportBoundsRange = { -1.0, 1.0 }, /* FIXME */
470 .viewportSubPixelBits = 13, /* We take a float? */
471 .minMemoryMapAlignment = 4096, /* A page */
472 .minTexelBufferOffsetAlignment = 1,
473 .minUniformBufferOffsetAlignment = 1,
474 .minStorageBufferOffsetAlignment = 1,
475 .minTexelOffset = 0, /* FIXME */
476 .maxTexelOffset = 0, /* FIXME */
477 .minTexelGatherOffset = 0, /* FIXME */
478 .maxTexelGatherOffset = 0, /* FIXME */
479 .minInterpolationOffset = 0, /* FIXME */
480 .maxInterpolationOffset = 0, /* FIXME */
481 .subPixelInterpolationOffsetBits = 0, /* FIXME */
482 .maxFramebufferWidth = (1 << 14),
483 .maxFramebufferHeight = (1 << 14),
484 .maxFramebufferLayers = (1 << 10),
485 .framebufferColorSampleCounts = sample_counts,
486 .framebufferDepthSampleCounts = sample_counts,
487 .framebufferStencilSampleCounts = sample_counts,
488 .framebufferNoAttachmentsSampleCounts = sample_counts,
489 .maxColorAttachments = MAX_RTS,
490 .sampledImageColorSampleCounts = sample_counts,
491 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
492 .sampledImageDepthSampleCounts = sample_counts,
493 .sampledImageStencilSampleCounts = sample_counts,
494 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
495 .maxSampleMaskWords = 1,
496 .timestampPeriod = 80.0 / (1000 * 1000 * 1000),
497 .maxClipDistances = 0 /* FIXME */,
498 .maxCullDistances = 0 /* FIXME */,
499 .maxCombinedClipAndCullDistances = 0 /* FIXME */,
500 .discreteQueuePriorities = 1,
501 .pointSizeRange = { 0.125, 255.875 },
502 .lineWidthRange = { 0.0, 7.9921875 },
503 .pointSizeGranularity = (1.0 / 8.0),
504 .lineWidthGranularity = (1.0 / 128.0),
505 .strictLines = false, /* FINISHME */
506 .standardSampleLocations = true, /* FINISHME */
507 .optimalBufferCopyOffsetAlignment = 128,
508 .optimalBufferCopyRowPitchAlignment = 128,
509 .nonCoherentAtomSize = 64,
510 };
511
512 *pProperties = (VkPhysicalDeviceProperties) {
513 .apiVersion = VK_MAKE_VERSION(0, 210, 1),
514 .driverVersion = 1,
515 .vendorID = 0x8086,
516 .deviceID = pdevice->chipset_id,
517 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
518 .limits = limits,
519 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
520 };
521
522 strcpy(pProperties->deviceName, pdevice->name);
523 snprintf((char *)pProperties->pipelineCacheUUID, VK_UUID_SIZE,
524 "anv-%s", MESA_GIT_SHA1 + 4);
525 }
526
527 void anv_GetPhysicalDeviceQueueFamilyProperties(
528 VkPhysicalDevice physicalDevice,
529 uint32_t* pCount,
530 VkQueueFamilyProperties* pQueueFamilyProperties)
531 {
532 if (pQueueFamilyProperties == NULL) {
533 *pCount = 1;
534 return;
535 }
536
537 assert(*pCount >= 1);
538
539 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
540 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
541 VK_QUEUE_COMPUTE_BIT |
542 VK_QUEUE_TRANSFER_BIT,
543 .queueCount = 1,
544 .timestampValidBits = 0, /* XXX: Real value here */
545 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
546 };
547 }
548
549 void anv_GetPhysicalDeviceMemoryProperties(
550 VkPhysicalDevice physicalDevice,
551 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
552 {
553 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
554 VkDeviceSize heap_size;
555
556 /* Reserve some wiggle room for the driver by exposing only 75% of the
557 * aperture to the heap.
558 */
559 heap_size = 3 * physical_device->aperture_size / 4;
560
561 if (physical_device->info->has_llc) {
562 /* Big core GPUs share LLC with the CPU and thus one memory type can be
563 * both cached and coherent at the same time.
564 */
565 pMemoryProperties->memoryTypeCount = 1;
566 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
567 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
568 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
569 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
570 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
571 .heapIndex = 0,
572 };
573 } else {
574 /* The spec requires that we expose a host-visible, coherent memory
575 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
576 * to give the application a choice between cached, but not coherent and
577 * coherent but uncached (WC though).
578 */
579 pMemoryProperties->memoryTypeCount = 2;
580 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
581 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
582 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
583 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
584 .heapIndex = 0,
585 };
586 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
587 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
588 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
589 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
590 .heapIndex = 0,
591 };
592 }
593
594 pMemoryProperties->memoryHeapCount = 1;
595 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
596 .size = heap_size,
597 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
598 };
599 }
600
601 PFN_vkVoidFunction anv_GetInstanceProcAddr(
602 VkInstance instance,
603 const char* pName)
604 {
605 return anv_lookup_entrypoint(pName);
606 }
607
608 PFN_vkVoidFunction anv_GetDeviceProcAddr(
609 VkDevice device,
610 const char* pName)
611 {
612 return anv_lookup_entrypoint(pName);
613 }
614
615 static VkResult
616 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
617 {
618 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
619 queue->device = device;
620 queue->pool = &device->surface_state_pool;
621
622 return VK_SUCCESS;
623 }
624
625 static void
626 anv_queue_finish(struct anv_queue *queue)
627 {
628 }
629
630 static struct anv_state
631 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
632 {
633 struct anv_state state;
634
635 state = anv_state_pool_alloc(pool, size, align);
636 memcpy(state.map, p, size);
637
638 if (!pool->block_pool->device->info.has_llc)
639 anv_state_clflush(state);
640
641 return state;
642 }
643
644 static void
645 anv_device_init_border_colors(struct anv_device *device)
646 {
647 static const VkClearColorValue border_colors[] = {
648 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
649 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
650 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
651 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
652 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
653 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
654 };
655
656 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
657 sizeof(border_colors), 32, border_colors);
658 }
659
660 VkResult anv_CreateDevice(
661 VkPhysicalDevice physicalDevice,
662 const VkDeviceCreateInfo* pCreateInfo,
663 const VkAllocationCallbacks* pAllocator,
664 VkDevice* pDevice)
665 {
666 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
667 VkResult result;
668 struct anv_device *device;
669
670 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
671
672 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
673 bool found = false;
674 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
675 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
676 device_extensions[j].extensionName) == 0) {
677 found = true;
678 break;
679 }
680 }
681 if (!found)
682 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
683 }
684
685 anv_set_dispatch_devinfo(physical_device->info);
686
687 device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
688 sizeof(*device), 8,
689 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
690 if (!device)
691 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
692
693 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
694 device->instance = physical_device->instance;
695
696 if (pAllocator)
697 device->alloc = *pAllocator;
698 else
699 device->alloc = physical_device->instance->alloc;
700
701 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
702 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
703 if (device->fd == -1) {
704 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
705 goto fail_device;
706 }
707
708 device->context_id = anv_gem_create_context(device);
709 if (device->context_id == -1) {
710 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
711 goto fail_fd;
712 }
713
714 device->info = *physical_device->info;
715 device->isl_dev = physical_device->isl_dev;
716
717 pthread_mutex_init(&device->mutex, NULL);
718
719 anv_bo_pool_init(&device->batch_bo_pool, device, ANV_CMD_BUFFER_BATCH_SIZE);
720
721 anv_block_pool_init(&device->dynamic_state_block_pool, device, 2048);
722
723 anv_state_pool_init(&device->dynamic_state_pool,
724 &device->dynamic_state_block_pool);
725
726 anv_block_pool_init(&device->instruction_block_pool, device, 64 * 1024);
727 anv_pipeline_cache_init(&device->default_pipeline_cache, device);
728
729 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
730
731 anv_state_pool_init(&device->surface_state_pool,
732 &device->surface_state_block_pool);
733
734 anv_bo_init_new(&device->workaround_bo, device, 1024);
735
736 anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
737
738 anv_queue_init(device, &device->queue);
739
740 result = anv_device_init_meta(device);
741 if (result != VK_SUCCESS)
742 goto fail_fd;
743
744 anv_device_init_border_colors(device);
745
746 *pDevice = anv_device_to_handle(device);
747
748 return VK_SUCCESS;
749
750 fail_fd:
751 close(device->fd);
752 fail_device:
753 anv_free(&device->alloc, device);
754
755 return result;
756 }
757
758 void anv_DestroyDevice(
759 VkDevice _device,
760 const VkAllocationCallbacks* pAllocator)
761 {
762 ANV_FROM_HANDLE(anv_device, device, _device);
763
764 anv_queue_finish(&device->queue);
765
766 anv_device_finish_meta(device);
767
768 #ifdef HAVE_VALGRIND
769 /* We only need to free these to prevent valgrind errors. The backing
770 * BO will go away in a couple of lines so we don't actually leak.
771 */
772 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
773 #endif
774
775 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
776 anv_gem_close(device, device->workaround_bo.gem_handle);
777
778 anv_bo_pool_finish(&device->batch_bo_pool);
779 anv_state_pool_finish(&device->dynamic_state_pool);
780 anv_block_pool_finish(&device->dynamic_state_block_pool);
781 anv_block_pool_finish(&device->instruction_block_pool);
782 anv_state_pool_finish(&device->surface_state_pool);
783 anv_block_pool_finish(&device->surface_state_block_pool);
784 anv_block_pool_finish(&device->scratch_block_pool);
785
786 close(device->fd);
787
788 pthread_mutex_destroy(&device->mutex);
789
790 anv_free(&device->alloc, device);
791 }
792
793 VkResult anv_EnumerateInstanceExtensionProperties(
794 const char* pLayerName,
795 uint32_t* pPropertyCount,
796 VkExtensionProperties* pProperties)
797 {
798 if (pProperties == NULL) {
799 *pPropertyCount = ARRAY_SIZE(global_extensions);
800 return VK_SUCCESS;
801 }
802
803 assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
804
805 *pPropertyCount = ARRAY_SIZE(global_extensions);
806 memcpy(pProperties, global_extensions, sizeof(global_extensions));
807
808 return VK_SUCCESS;
809 }
810
811 VkResult anv_EnumerateDeviceExtensionProperties(
812 VkPhysicalDevice physicalDevice,
813 const char* pLayerName,
814 uint32_t* pPropertyCount,
815 VkExtensionProperties* pProperties)
816 {
817 if (pProperties == NULL) {
818 *pPropertyCount = ARRAY_SIZE(device_extensions);
819 return VK_SUCCESS;
820 }
821
822 assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
823
824 *pPropertyCount = ARRAY_SIZE(device_extensions);
825 memcpy(pProperties, device_extensions, sizeof(device_extensions));
826
827 return VK_SUCCESS;
828 }
829
830 VkResult anv_EnumerateInstanceLayerProperties(
831 uint32_t* pPropertyCount,
832 VkLayerProperties* pProperties)
833 {
834 if (pProperties == NULL) {
835 *pPropertyCount = 0;
836 return VK_SUCCESS;
837 }
838
839 /* None supported at this time */
840 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
841 }
842
843 VkResult anv_EnumerateDeviceLayerProperties(
844 VkPhysicalDevice physicalDevice,
845 uint32_t* pPropertyCount,
846 VkLayerProperties* pProperties)
847 {
848 if (pProperties == NULL) {
849 *pPropertyCount = 0;
850 return VK_SUCCESS;
851 }
852
853 /* None supported at this time */
854 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
855 }
856
857 void anv_GetDeviceQueue(
858 VkDevice _device,
859 uint32_t queueNodeIndex,
860 uint32_t queueIndex,
861 VkQueue* pQueue)
862 {
863 ANV_FROM_HANDLE(anv_device, device, _device);
864
865 assert(queueIndex == 0);
866
867 *pQueue = anv_queue_to_handle(&device->queue);
868 }
869
870 VkResult anv_QueueSubmit(
871 VkQueue _queue,
872 uint32_t submitCount,
873 const VkSubmitInfo* pSubmits,
874 VkFence _fence)
875 {
876 ANV_FROM_HANDLE(anv_queue, queue, _queue);
877 ANV_FROM_HANDLE(anv_fence, fence, _fence);
878 struct anv_device *device = queue->device;
879 int ret;
880
881 for (uint32_t i = 0; i < submitCount; i++) {
882 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
883 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
884 pSubmits[i].pCommandBuffers[j]);
885 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
886
887 ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
888 if (ret != 0) {
889 /* We don't know the real error. */
890 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
891 "execbuf2 failed: %m");
892 }
893
894 if (fence) {
895 ret = anv_gem_execbuffer(device, &fence->execbuf);
896 if (ret != 0) {
897 /* We don't know the real error. */
898 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
899 "execbuf2 failed: %m");
900 }
901 }
902
903 for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
904 cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
905 }
906 }
907
908 return VK_SUCCESS;
909 }
910
911 VkResult anv_QueueWaitIdle(
912 VkQueue _queue)
913 {
914 ANV_FROM_HANDLE(anv_queue, queue, _queue);
915
916 return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
917 }
918
919 VkResult anv_DeviceWaitIdle(
920 VkDevice _device)
921 {
922 ANV_FROM_HANDLE(anv_device, device, _device);
923 struct anv_state state;
924 struct anv_batch batch;
925 struct drm_i915_gem_execbuffer2 execbuf;
926 struct drm_i915_gem_exec_object2 exec2_objects[1];
927 struct anv_bo *bo = NULL;
928 VkResult result;
929 int64_t timeout;
930 int ret;
931
932 state = anv_state_pool_alloc(&device->dynamic_state_pool, 32, 32);
933 bo = &device->dynamic_state_pool.block_pool->bo;
934 batch.start = batch.next = state.map;
935 batch.end = state.map + 32;
936 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
937 anv_batch_emit(&batch, GEN7_MI_NOOP);
938
939 if (!device->info.has_llc)
940 anv_state_clflush(state);
941
942 exec2_objects[0].handle = bo->gem_handle;
943 exec2_objects[0].relocation_count = 0;
944 exec2_objects[0].relocs_ptr = 0;
945 exec2_objects[0].alignment = 0;
946 exec2_objects[0].offset = bo->offset;
947 exec2_objects[0].flags = 0;
948 exec2_objects[0].rsvd1 = 0;
949 exec2_objects[0].rsvd2 = 0;
950
951 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
952 execbuf.buffer_count = 1;
953 execbuf.batch_start_offset = state.offset;
954 execbuf.batch_len = batch.next - state.map;
955 execbuf.cliprects_ptr = 0;
956 execbuf.num_cliprects = 0;
957 execbuf.DR1 = 0;
958 execbuf.DR4 = 0;
959
960 execbuf.flags =
961 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
962 execbuf.rsvd1 = device->context_id;
963 execbuf.rsvd2 = 0;
964
965 ret = anv_gem_execbuffer(device, &execbuf);
966 if (ret != 0) {
967 /* We don't know the real error. */
968 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
969 goto fail;
970 }
971
972 timeout = INT64_MAX;
973 ret = anv_gem_wait(device, bo->gem_handle, &timeout);
974 if (ret != 0) {
975 /* We don't know the real error. */
976 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
977 goto fail;
978 }
979
980 anv_state_pool_free(&device->dynamic_state_pool, state);
981
982 return VK_SUCCESS;
983
984 fail:
985 anv_state_pool_free(&device->dynamic_state_pool, state);
986
987 return result;
988 }
989
990 VkResult
991 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
992 {
993 bo->gem_handle = anv_gem_create(device, size);
994 if (!bo->gem_handle)
995 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
996
997 bo->map = NULL;
998 bo->index = 0;
999 bo->offset = 0;
1000 bo->size = size;
1001
1002 return VK_SUCCESS;
1003 }
1004
1005 VkResult anv_AllocateMemory(
1006 VkDevice _device,
1007 const VkMemoryAllocateInfo* pAllocateInfo,
1008 const VkAllocationCallbacks* pAllocator,
1009 VkDeviceMemory* pMem)
1010 {
1011 ANV_FROM_HANDLE(anv_device, device, _device);
1012 struct anv_device_memory *mem;
1013 VkResult result;
1014
1015 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1016
1017 if (pAllocateInfo->allocationSize == 0) {
1018 /* Apparently, this is allowed */
1019 *pMem = VK_NULL_HANDLE;
1020 return VK_SUCCESS;
1021 }
1022
1023 /* We support exactly one memory heap. */
1024 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1025 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1026
1027 /* FINISHME: Fail if allocation request exceeds heap size. */
1028
1029 mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1030 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1031 if (mem == NULL)
1032 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1033
1034 /* The kernel is going to give us whole pages anyway */
1035 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1036
1037 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1038 if (result != VK_SUCCESS)
1039 goto fail;
1040
1041 mem->type_index = pAllocateInfo->memoryTypeIndex;
1042
1043 *pMem = anv_device_memory_to_handle(mem);
1044
1045 return VK_SUCCESS;
1046
1047 fail:
1048 anv_free2(&device->alloc, pAllocator, mem);
1049
1050 return result;
1051 }
1052
1053 void anv_FreeMemory(
1054 VkDevice _device,
1055 VkDeviceMemory _mem,
1056 const VkAllocationCallbacks* pAllocator)
1057 {
1058 ANV_FROM_HANDLE(anv_device, device, _device);
1059 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1060
1061 if (mem == NULL)
1062 return;
1063
1064 if (mem->bo.map)
1065 anv_gem_munmap(mem->bo.map, mem->bo.size);
1066
1067 if (mem->bo.gem_handle != 0)
1068 anv_gem_close(device, mem->bo.gem_handle);
1069
1070 anv_free2(&device->alloc, pAllocator, mem);
1071 }
1072
1073 VkResult anv_MapMemory(
1074 VkDevice _device,
1075 VkDeviceMemory _memory,
1076 VkDeviceSize offset,
1077 VkDeviceSize size,
1078 VkMemoryMapFlags flags,
1079 void** ppData)
1080 {
1081 ANV_FROM_HANDLE(anv_device, device, _device);
1082 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1083
1084 if (mem == NULL) {
1085 *ppData = NULL;
1086 return VK_SUCCESS;
1087 }
1088
1089 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1090 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1091 * at a time is valid. We could just mmap up front and return an offset
1092 * pointer here, but that may exhaust virtual memory on 32 bit
1093 * userspace. */
1094
1095 uint32_t gem_flags = 0;
1096 if (!device->info.has_llc && mem->type_index == 0)
1097 gem_flags |= I915_MMAP_WC;
1098
1099 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1100 uint64_t map_offset = offset & ~4095ull;
1101 assert(offset >= map_offset);
1102 uint64_t map_size = (offset + size) - map_offset;
1103
1104 /* Let's map whole pages */
1105 map_size = align_u64(map_size, 4096);
1106
1107 mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
1108 map_offset, map_size, gem_flags);
1109 mem->map_size = map_size;
1110
1111 *ppData = mem->map + (offset - map_offset);
1112
1113 return VK_SUCCESS;
1114 }
1115
1116 void anv_UnmapMemory(
1117 VkDevice _device,
1118 VkDeviceMemory _memory)
1119 {
1120 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1121
1122 if (mem == NULL)
1123 return;
1124
1125 anv_gem_munmap(mem->map, mem->map_size);
1126 }
1127
1128 static void
1129 clflush_mapped_ranges(struct anv_device *device,
1130 uint32_t count,
1131 const VkMappedMemoryRange *ranges)
1132 {
1133 for (uint32_t i = 0; i < count; i++) {
1134 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1135 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1136 void *end = mem->map + ranges[i].offset + ranges[i].size;
1137
1138 while (p < end) {
1139 __builtin_ia32_clflush(p);
1140 p += CACHELINE_SIZE;
1141 }
1142 }
1143 }
1144
1145 VkResult anv_FlushMappedMemoryRanges(
1146 VkDevice _device,
1147 uint32_t memoryRangeCount,
1148 const VkMappedMemoryRange* pMemoryRanges)
1149 {
1150 ANV_FROM_HANDLE(anv_device, device, _device);
1151
1152 if (device->info.has_llc)
1153 return VK_SUCCESS;
1154
1155 /* Make sure the writes we're flushing have landed. */
1156 __builtin_ia32_sfence();
1157
1158 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1159
1160 return VK_SUCCESS;
1161 }
1162
1163 VkResult anv_InvalidateMappedMemoryRanges(
1164 VkDevice _device,
1165 uint32_t memoryRangeCount,
1166 const VkMappedMemoryRange* pMemoryRanges)
1167 {
1168 ANV_FROM_HANDLE(anv_device, device, _device);
1169
1170 if (device->info.has_llc)
1171 return VK_SUCCESS;
1172
1173 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1174
1175 /* Make sure no reads get moved up above the invalidate. */
1176 __builtin_ia32_lfence();
1177
1178 return VK_SUCCESS;
1179 }
1180
1181 void anv_GetBufferMemoryRequirements(
1182 VkDevice device,
1183 VkBuffer _buffer,
1184 VkMemoryRequirements* pMemoryRequirements)
1185 {
1186 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1187
1188 /* The Vulkan spec (git aaed022) says:
1189 *
1190 * memoryTypeBits is a bitfield and contains one bit set for every
1191 * supported memory type for the resource. The bit `1<<i` is set if and
1192 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1193 * structure for the physical device is supported.
1194 *
1195 * We support exactly one memory type.
1196 */
1197 pMemoryRequirements->memoryTypeBits = 1;
1198
1199 pMemoryRequirements->size = buffer->size;
1200 pMemoryRequirements->alignment = 16;
1201 }
1202
1203 void anv_GetImageMemoryRequirements(
1204 VkDevice device,
1205 VkImage _image,
1206 VkMemoryRequirements* pMemoryRequirements)
1207 {
1208 ANV_FROM_HANDLE(anv_image, image, _image);
1209
1210 /* The Vulkan spec (git aaed022) says:
1211 *
1212 * memoryTypeBits is a bitfield and contains one bit set for every
1213 * supported memory type for the resource. The bit `1<<i` is set if and
1214 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1215 * structure for the physical device is supported.
1216 *
1217 * We support exactly one memory type.
1218 */
1219 pMemoryRequirements->memoryTypeBits = 1;
1220
1221 pMemoryRequirements->size = image->size;
1222 pMemoryRequirements->alignment = image->alignment;
1223 }
1224
1225 void anv_GetImageSparseMemoryRequirements(
1226 VkDevice device,
1227 VkImage image,
1228 uint32_t* pSparseMemoryRequirementCount,
1229 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1230 {
1231 stub();
1232 }
1233
1234 void anv_GetDeviceMemoryCommitment(
1235 VkDevice device,
1236 VkDeviceMemory memory,
1237 VkDeviceSize* pCommittedMemoryInBytes)
1238 {
1239 *pCommittedMemoryInBytes = 0;
1240 }
1241
1242 VkResult anv_BindBufferMemory(
1243 VkDevice device,
1244 VkBuffer _buffer,
1245 VkDeviceMemory _memory,
1246 VkDeviceSize memoryOffset)
1247 {
1248 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1249 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1250
1251 if (mem) {
1252 buffer->bo = &mem->bo;
1253 buffer->offset = memoryOffset;
1254 } else {
1255 buffer->bo = NULL;
1256 buffer->offset = 0;
1257 }
1258
1259 return VK_SUCCESS;
1260 }
1261
1262 VkResult anv_BindImageMemory(
1263 VkDevice device,
1264 VkImage _image,
1265 VkDeviceMemory _memory,
1266 VkDeviceSize memoryOffset)
1267 {
1268 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1269 ANV_FROM_HANDLE(anv_image, image, _image);
1270
1271 if (mem) {
1272 image->bo = &mem->bo;
1273 image->offset = memoryOffset;
1274 } else {
1275 image->bo = NULL;
1276 image->offset = 0;
1277 }
1278
1279 return VK_SUCCESS;
1280 }
1281
1282 VkResult anv_QueueBindSparse(
1283 VkQueue queue,
1284 uint32_t bindInfoCount,
1285 const VkBindSparseInfo* pBindInfo,
1286 VkFence fence)
1287 {
1288 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1289 }
1290
1291 VkResult anv_CreateFence(
1292 VkDevice _device,
1293 const VkFenceCreateInfo* pCreateInfo,
1294 const VkAllocationCallbacks* pAllocator,
1295 VkFence* pFence)
1296 {
1297 ANV_FROM_HANDLE(anv_device, device, _device);
1298 struct anv_fence *fence;
1299 struct anv_batch batch;
1300 VkResult result;
1301
1302 const uint32_t fence_size = 128;
1303
1304 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1305
1306 fence = anv_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
1307 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1308 if (fence == NULL)
1309 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1310
1311 result = anv_bo_init_new(&fence->bo, device, fence_size);
1312 if (result != VK_SUCCESS)
1313 goto fail;
1314
1315 fence->bo.map =
1316 anv_gem_mmap(device, fence->bo.gem_handle, 0, fence->bo.size, 0);
1317 batch.next = batch.start = fence->bo.map;
1318 batch.end = fence->bo.map + fence->bo.size;
1319 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
1320 anv_batch_emit(&batch, GEN7_MI_NOOP);
1321
1322 if (!device->info.has_llc) {
1323 assert(((uintptr_t) fence->bo.map & CACHELINE_MASK) == 0);
1324 assert(batch.next - fence->bo.map <= CACHELINE_SIZE);
1325 __builtin_ia32_sfence();
1326 __builtin_ia32_clflush(fence->bo.map);
1327 }
1328
1329 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1330 fence->exec2_objects[0].relocation_count = 0;
1331 fence->exec2_objects[0].relocs_ptr = 0;
1332 fence->exec2_objects[0].alignment = 0;
1333 fence->exec2_objects[0].offset = fence->bo.offset;
1334 fence->exec2_objects[0].flags = 0;
1335 fence->exec2_objects[0].rsvd1 = 0;
1336 fence->exec2_objects[0].rsvd2 = 0;
1337
1338 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1339 fence->execbuf.buffer_count = 1;
1340 fence->execbuf.batch_start_offset = 0;
1341 fence->execbuf.batch_len = batch.next - fence->bo.map;
1342 fence->execbuf.cliprects_ptr = 0;
1343 fence->execbuf.num_cliprects = 0;
1344 fence->execbuf.DR1 = 0;
1345 fence->execbuf.DR4 = 0;
1346
1347 fence->execbuf.flags =
1348 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1349 fence->execbuf.rsvd1 = device->context_id;
1350 fence->execbuf.rsvd2 = 0;
1351
1352 *pFence = anv_fence_to_handle(fence);
1353
1354 return VK_SUCCESS;
1355
1356 fail:
1357 anv_free2(&device->alloc, pAllocator, fence);
1358
1359 return result;
1360 }
1361
1362 void anv_DestroyFence(
1363 VkDevice _device,
1364 VkFence _fence,
1365 const VkAllocationCallbacks* pAllocator)
1366 {
1367 ANV_FROM_HANDLE(anv_device, device, _device);
1368 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1369
1370 anv_gem_munmap(fence->bo.map, fence->bo.size);
1371 anv_gem_close(device, fence->bo.gem_handle);
1372 anv_free2(&device->alloc, pAllocator, fence);
1373 }
1374
1375 VkResult anv_ResetFences(
1376 VkDevice _device,
1377 uint32_t fenceCount,
1378 const VkFence* pFences)
1379 {
1380 for (uint32_t i = 0; i < fenceCount; i++) {
1381 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1382 fence->ready = false;
1383 }
1384
1385 return VK_SUCCESS;
1386 }
1387
1388 VkResult anv_GetFenceStatus(
1389 VkDevice _device,
1390 VkFence _fence)
1391 {
1392 ANV_FROM_HANDLE(anv_device, device, _device);
1393 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1394 int64_t t = 0;
1395 int ret;
1396
1397 if (fence->ready)
1398 return VK_SUCCESS;
1399
1400 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1401 if (ret == 0) {
1402 fence->ready = true;
1403 return VK_SUCCESS;
1404 }
1405
1406 return VK_NOT_READY;
1407 }
1408
1409 VkResult anv_WaitForFences(
1410 VkDevice _device,
1411 uint32_t fenceCount,
1412 const VkFence* pFences,
1413 VkBool32 waitAll,
1414 uint64_t timeout)
1415 {
1416 ANV_FROM_HANDLE(anv_device, device, _device);
1417
1418 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1419 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1420 * for a couple of kernel releases. Since there's no way to know
1421 * whether or not the kernel we're using is one of the broken ones, the
1422 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1423 * maximum timeout from 584 years to 292 years - likely not a big deal.
1424 */
1425 if (timeout > INT64_MAX)
1426 timeout = INT64_MAX;
1427
1428 int64_t t = timeout;
1429
1430 /* FIXME: handle !waitAll */
1431
1432 for (uint32_t i = 0; i < fenceCount; i++) {
1433 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1434 int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1435 if (ret == -1 && errno == ETIME) {
1436 return VK_TIMEOUT;
1437 } else if (ret == -1) {
1438 /* We don't know the real error. */
1439 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1440 "gem wait failed: %m");
1441 }
1442 }
1443
1444 return VK_SUCCESS;
1445 }
1446
1447 // Queue semaphore functions
1448
1449 VkResult anv_CreateSemaphore(
1450 VkDevice device,
1451 const VkSemaphoreCreateInfo* pCreateInfo,
1452 const VkAllocationCallbacks* pAllocator,
1453 VkSemaphore* pSemaphore)
1454 {
1455 /* The DRM execbuffer ioctl always execute in-oder, even between different
1456 * rings. As such, there's nothing to do for the user space semaphore.
1457 */
1458
1459 *pSemaphore = (VkSemaphore)1;
1460
1461 return VK_SUCCESS;
1462 }
1463
1464 void anv_DestroySemaphore(
1465 VkDevice device,
1466 VkSemaphore semaphore,
1467 const VkAllocationCallbacks* pAllocator)
1468 {
1469 }
1470
1471 // Event functions
1472
1473 VkResult anv_CreateEvent(
1474 VkDevice _device,
1475 const VkEventCreateInfo* pCreateInfo,
1476 const VkAllocationCallbacks* pAllocator,
1477 VkEvent* pEvent)
1478 {
1479 ANV_FROM_HANDLE(anv_device, device, _device);
1480 struct anv_state state;
1481 struct anv_event *event;
1482
1483 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1484
1485 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1486 sizeof(*event), 4);
1487 event = state.map;
1488 event->state = state;
1489 event->semaphore = VK_EVENT_RESET;
1490
1491 if (!device->info.has_llc) {
1492 /* Make sure the writes we're flushing have landed. */
1493 __builtin_ia32_sfence();
1494 __builtin_ia32_clflush(event);
1495 }
1496
1497 *pEvent = anv_event_to_handle(event);
1498
1499 return VK_SUCCESS;
1500 }
1501
1502 void anv_DestroyEvent(
1503 VkDevice _device,
1504 VkEvent _event,
1505 const VkAllocationCallbacks* pAllocator)
1506 {
1507 ANV_FROM_HANDLE(anv_device, device, _device);
1508 ANV_FROM_HANDLE(anv_event, event, _event);
1509
1510 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1511 }
1512
1513 VkResult anv_GetEventStatus(
1514 VkDevice _device,
1515 VkEvent _event)
1516 {
1517 ANV_FROM_HANDLE(anv_device, device, _device);
1518 ANV_FROM_HANDLE(anv_event, event, _event);
1519
1520 if (!device->info.has_llc) {
1521 /* Make sure the writes we're flushing have landed. */
1522 __builtin_ia32_clflush(event);
1523 __builtin_ia32_lfence();
1524 }
1525
1526 return event->semaphore;
1527 }
1528
1529 VkResult anv_SetEvent(
1530 VkDevice _device,
1531 VkEvent _event)
1532 {
1533 ANV_FROM_HANDLE(anv_device, device, _device);
1534 ANV_FROM_HANDLE(anv_event, event, _event);
1535
1536 event->semaphore = VK_EVENT_SET;
1537
1538 if (!device->info.has_llc) {
1539 /* Make sure the writes we're flushing have landed. */
1540 __builtin_ia32_sfence();
1541 __builtin_ia32_clflush(event);
1542 }
1543
1544 return VK_SUCCESS;
1545 }
1546
1547 VkResult anv_ResetEvent(
1548 VkDevice _device,
1549 VkEvent _event)
1550 {
1551 ANV_FROM_HANDLE(anv_device, device, _device);
1552 ANV_FROM_HANDLE(anv_event, event, _event);
1553
1554 event->semaphore = VK_EVENT_RESET;
1555
1556 if (!device->info.has_llc) {
1557 /* Make sure the writes we're flushing have landed. */
1558 __builtin_ia32_sfence();
1559 __builtin_ia32_clflush(event);
1560 }
1561
1562 return VK_SUCCESS;
1563 }
1564
1565 // Buffer functions
1566
1567 VkResult anv_CreateBuffer(
1568 VkDevice _device,
1569 const VkBufferCreateInfo* pCreateInfo,
1570 const VkAllocationCallbacks* pAllocator,
1571 VkBuffer* pBuffer)
1572 {
1573 ANV_FROM_HANDLE(anv_device, device, _device);
1574 struct anv_buffer *buffer;
1575
1576 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1577
1578 buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1579 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1580 if (buffer == NULL)
1581 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1582
1583 buffer->size = pCreateInfo->size;
1584 buffer->usage = pCreateInfo->usage;
1585 buffer->bo = NULL;
1586 buffer->offset = 0;
1587
1588 *pBuffer = anv_buffer_to_handle(buffer);
1589
1590 return VK_SUCCESS;
1591 }
1592
1593 void anv_DestroyBuffer(
1594 VkDevice _device,
1595 VkBuffer _buffer,
1596 const VkAllocationCallbacks* pAllocator)
1597 {
1598 ANV_FROM_HANDLE(anv_device, device, _device);
1599 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1600
1601 anv_free2(&device->alloc, pAllocator, buffer);
1602 }
1603
1604 void
1605 anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1606 enum isl_format format,
1607 uint32_t offset, uint32_t range, uint32_t stride)
1608 {
1609 switch (device->info.gen) {
1610 case 7:
1611 if (device->info.is_haswell)
1612 gen75_fill_buffer_surface_state(state, format, offset, range, stride);
1613 else
1614 gen7_fill_buffer_surface_state(state, format, offset, range, stride);
1615 break;
1616 case 8:
1617 gen8_fill_buffer_surface_state(state, format, offset, range, stride);
1618 break;
1619 case 9:
1620 gen9_fill_buffer_surface_state(state, format, offset, range, stride);
1621 break;
1622 default:
1623 unreachable("unsupported gen\n");
1624 }
1625 }
1626
1627 void anv_DestroySampler(
1628 VkDevice _device,
1629 VkSampler _sampler,
1630 const VkAllocationCallbacks* pAllocator)
1631 {
1632 ANV_FROM_HANDLE(anv_device, device, _device);
1633 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1634
1635 anv_free2(&device->alloc, pAllocator, sampler);
1636 }
1637
1638 VkResult anv_CreateFramebuffer(
1639 VkDevice _device,
1640 const VkFramebufferCreateInfo* pCreateInfo,
1641 const VkAllocationCallbacks* pAllocator,
1642 VkFramebuffer* pFramebuffer)
1643 {
1644 ANV_FROM_HANDLE(anv_device, device, _device);
1645 struct anv_framebuffer *framebuffer;
1646
1647 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1648
1649 size_t size = sizeof(*framebuffer) +
1650 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1651 framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
1652 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1653 if (framebuffer == NULL)
1654 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1655
1656 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1657 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1658 VkImageView _iview = pCreateInfo->pAttachments[i];
1659 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1660 }
1661
1662 framebuffer->width = pCreateInfo->width;
1663 framebuffer->height = pCreateInfo->height;
1664 framebuffer->layers = pCreateInfo->layers;
1665
1666 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1667
1668 return VK_SUCCESS;
1669 }
1670
1671 void anv_DestroyFramebuffer(
1672 VkDevice _device,
1673 VkFramebuffer _fb,
1674 const VkAllocationCallbacks* pAllocator)
1675 {
1676 ANV_FROM_HANDLE(anv_device, device, _device);
1677 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1678
1679 anv_free2(&device->alloc, pAllocator, fb);
1680 }
1681
1682 void vkCmdDbgMarkerBegin(
1683 VkCommandBuffer commandBuffer,
1684 const char* pMarker)
1685 __attribute__ ((visibility ("default")));
1686
1687 void vkCmdDbgMarkerEnd(
1688 VkCommandBuffer commandBuffer)
1689 __attribute__ ((visibility ("default")));
1690
1691 void vkCmdDbgMarkerBegin(
1692 VkCommandBuffer commandBuffer,
1693 const char* pMarker)
1694 {
1695 }
1696
1697 void vkCmdDbgMarkerEnd(
1698 VkCommandBuffer commandBuffer)
1699 {
1700 }