anv/device: Only allocate whole pages in AllocateMemory
[mesa.git] / src / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "mesa/main/git_sha1.h"
32 #include "util/strtod.h"
33
34 #include "gen7_pack.h"
35
36 struct anv_dispatch_table dtable;
37
38 static void
39 compiler_debug_log(void *data, const char *fmt, ...)
40 { }
41
42 static void
43 compiler_perf_log(void *data, const char *fmt, ...)
44 {
45 va_list args;
46 va_start(args, fmt);
47
48 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
49 vfprintf(stderr, fmt, args);
50
51 va_end(args);
52 }
53
54 static VkResult
55 anv_physical_device_init(struct anv_physical_device *device,
56 struct anv_instance *instance,
57 const char *path)
58 {
59 VkResult result;
60 int fd;
61
62 fd = open(path, O_RDWR | O_CLOEXEC);
63 if (fd < 0)
64 return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
65 "failed to open %s: %m", path);
66
67 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
68 device->instance = instance;
69 device->path = path;
70
71 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
72 if (!device->chipset_id) {
73 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get chipset id: %m");
75 goto fail;
76 }
77
78 device->name = brw_get_device_name(device->chipset_id);
79 device->info = brw_get_device_info(device->chipset_id);
80 if (!device->info) {
81 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
82 "failed to get device info");
83 goto fail;
84 }
85
86 if (device->info->is_haswell) {
87 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
88 } else if (device->info->gen == 7 && !device->info->is_baytrail) {
89 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
90 } else if (device->info->gen == 7 && device->info->is_baytrail) {
91 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
92 } else if (device->info->gen == 9 && !device->info->is_broxton) {
93 fprintf(stderr, "WARNING: Skylake Vulkan support is incomplete\n");
94 } else if (device->info->gen == 9 && device->info->is_broxton) {
95 fprintf(stderr, "WARNING: Broxton Vulkan support is incomplete\n");
96 } else if (device->info->gen == 8) {
97 /* Broadwell/Cherryview is as fully supported as anything */
98 } else {
99 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
100 "Vulkan not yet supported on %s", device->name);
101 goto fail;
102 }
103
104 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
105 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
106 "failed to get aperture size: %m");
107 goto fail;
108 }
109
110 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
111 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
112 "kernel missing gem wait");
113 goto fail;
114 }
115
116 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
117 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
118 "kernel missing execbuf2");
119 goto fail;
120 }
121
122 if (!device->info->has_llc &&
123 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
124 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
125 "kernel missing wc mmap");
126 goto fail;
127 }
128
129 close(fd);
130
131 brw_process_intel_debug_variable();
132
133 device->compiler = brw_compiler_create(NULL, device->info);
134 if (device->compiler == NULL) {
135 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
136 goto fail;
137 }
138 device->compiler->shader_debug_log = compiler_debug_log;
139 device->compiler->shader_perf_log = compiler_perf_log;
140
141 isl_device_init(&device->isl_dev, device->info);
142
143 return VK_SUCCESS;
144
145 fail:
146 close(fd);
147 return result;
148 }
149
150 static void
151 anv_physical_device_finish(struct anv_physical_device *device)
152 {
153 ralloc_free(device->compiler);
154 }
155
156 static const VkExtensionProperties global_extensions[] = {
157 {
158 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
159 .specVersion = 24,
160 },
161 {
162 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
163 .specVersion = 5,
164 },
165 #ifdef HAVE_WAYLAND_PLATFORM
166 {
167 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
168 .specVersion = 4,
169 },
170 #endif
171 };
172
173 static const VkExtensionProperties device_extensions[] = {
174 {
175 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
176 .specVersion = 67,
177 },
178 };
179
180 static void *
181 default_alloc_func(void *pUserData, size_t size, size_t align,
182 VkSystemAllocationScope allocationScope)
183 {
184 return malloc(size);
185 }
186
187 static void *
188 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
189 size_t align, VkSystemAllocationScope allocationScope)
190 {
191 return realloc(pOriginal, size);
192 }
193
194 static void
195 default_free_func(void *pUserData, void *pMemory)
196 {
197 free(pMemory);
198 }
199
200 static const VkAllocationCallbacks default_alloc = {
201 .pUserData = NULL,
202 .pfnAllocation = default_alloc_func,
203 .pfnReallocation = default_realloc_func,
204 .pfnFree = default_free_func,
205 };
206
207 VkResult anv_CreateInstance(
208 const VkInstanceCreateInfo* pCreateInfo,
209 const VkAllocationCallbacks* pAllocator,
210 VkInstance* pInstance)
211 {
212 struct anv_instance *instance;
213
214 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
215
216 if (pCreateInfo->pApplicationInfo->apiVersion != VK_MAKE_VERSION(0, 210, 1))
217 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
218
219 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
220 bool found = false;
221 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
222 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
223 global_extensions[j].extensionName) == 0) {
224 found = true;
225 break;
226 }
227 }
228 if (!found)
229 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
230 }
231
232 instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
233 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
234 if (!instance)
235 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
236
237 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
238
239 if (pAllocator)
240 instance->alloc = *pAllocator;
241 else
242 instance->alloc = default_alloc;
243
244 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
245 instance->physicalDeviceCount = -1;
246
247 _mesa_locale_init();
248
249 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
250
251 anv_init_wsi(instance);
252
253 *pInstance = anv_instance_to_handle(instance);
254
255 return VK_SUCCESS;
256 }
257
258 void anv_DestroyInstance(
259 VkInstance _instance,
260 const VkAllocationCallbacks* pAllocator)
261 {
262 ANV_FROM_HANDLE(anv_instance, instance, _instance);
263
264 if (instance->physicalDeviceCount > 0) {
265 /* We support at most one physical device. */
266 assert(instance->physicalDeviceCount == 1);
267 anv_physical_device_finish(&instance->physicalDevice);
268 }
269
270 anv_finish_wsi(instance);
271
272 VG(VALGRIND_DESTROY_MEMPOOL(instance));
273
274 _mesa_locale_fini();
275
276 anv_free(&instance->alloc, instance);
277 }
278
279 VkResult anv_EnumeratePhysicalDevices(
280 VkInstance _instance,
281 uint32_t* pPhysicalDeviceCount,
282 VkPhysicalDevice* pPhysicalDevices)
283 {
284 ANV_FROM_HANDLE(anv_instance, instance, _instance);
285 VkResult result;
286
287 if (instance->physicalDeviceCount < 0) {
288 result = anv_physical_device_init(&instance->physicalDevice,
289 instance, "/dev/dri/renderD128");
290 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
291 instance->physicalDeviceCount = 0;
292 } else if (result == VK_SUCCESS) {
293 instance->physicalDeviceCount = 1;
294 } else {
295 return result;
296 }
297 }
298
299 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
300 * otherwise it's an inout parameter.
301 *
302 * The Vulkan spec (git aaed022) says:
303 *
304 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
305 * that is initialized with the number of devices the application is
306 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
307 * an array of at least this many VkPhysicalDevice handles [...].
308 *
309 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
310 * overwrites the contents of the variable pointed to by
311 * pPhysicalDeviceCount with the number of physical devices in in the
312 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
313 * pPhysicalDeviceCount with the number of physical handles written to
314 * pPhysicalDevices.
315 */
316 if (!pPhysicalDevices) {
317 *pPhysicalDeviceCount = instance->physicalDeviceCount;
318 } else if (*pPhysicalDeviceCount >= 1) {
319 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
320 *pPhysicalDeviceCount = 1;
321 } else {
322 *pPhysicalDeviceCount = 0;
323 }
324
325 return VK_SUCCESS;
326 }
327
328 void anv_GetPhysicalDeviceFeatures(
329 VkPhysicalDevice physicalDevice,
330 VkPhysicalDeviceFeatures* pFeatures)
331 {
332 anv_finishme("Get correct values for PhysicalDeviceFeatures");
333
334 *pFeatures = (VkPhysicalDeviceFeatures) {
335 .robustBufferAccess = false,
336 .fullDrawIndexUint32 = false,
337 .imageCubeArray = false,
338 .independentBlend = false,
339 .geometryShader = true,
340 .tessellationShader = false,
341 .sampleRateShading = false,
342 .dualSrcBlend = true,
343 .logicOp = true,
344 .multiDrawIndirect = true,
345 .depthClamp = false,
346 .depthBiasClamp = false,
347 .fillModeNonSolid = true,
348 .depthBounds = false,
349 .wideLines = true,
350 .largePoints = true,
351 .alphaToOne = true,
352 .multiViewport = true,
353 .samplerAnisotropy = false, /* FINISHME */
354 .textureCompressionETC2 = true,
355 .textureCompressionASTC_LDR = true,
356 .textureCompressionBC = true,
357 .occlusionQueryPrecise = false, /* FINISHME */
358 .pipelineStatisticsQuery = true,
359 .vertexPipelineStoresAndAtomics = false,
360 .fragmentStoresAndAtomics = true,
361 .shaderTessellationAndGeometryPointSize = true,
362 .shaderImageGatherExtended = true,
363 .shaderStorageImageExtendedFormats = false,
364 .shaderStorageImageMultisample = false,
365 .shaderUniformBufferArrayDynamicIndexing = true,
366 .shaderSampledImageArrayDynamicIndexing = false,
367 .shaderStorageBufferArrayDynamicIndexing = false,
368 .shaderStorageImageArrayDynamicIndexing = false,
369 .shaderStorageImageReadWithoutFormat = false,
370 .shaderStorageImageWriteWithoutFormat = true,
371 .shaderClipDistance = false,
372 .shaderCullDistance = false,
373 .shaderFloat64 = false,
374 .shaderInt64 = false,
375 .shaderInt16 = false,
376 .alphaToOne = true,
377 .variableMultisampleRate = false,
378 };
379 }
380
381 void anv_GetPhysicalDeviceProperties(
382 VkPhysicalDevice physicalDevice,
383 VkPhysicalDeviceProperties* pProperties)
384 {
385 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
386 const struct brw_device_info *devinfo = pdevice->info;
387
388 anv_finishme("Get correct values for VkPhysicalDeviceLimits");
389
390 VkSampleCountFlags sample_counts =
391 VK_SAMPLE_COUNT_1_BIT |
392 VK_SAMPLE_COUNT_2_BIT |
393 VK_SAMPLE_COUNT_4_BIT |
394 VK_SAMPLE_COUNT_8_BIT;
395
396 VkPhysicalDeviceLimits limits = {
397 .maxImageDimension1D = (1 << 14),
398 .maxImageDimension2D = (1 << 14),
399 .maxImageDimension3D = (1 << 10),
400 .maxImageDimensionCube = (1 << 14),
401 .maxImageArrayLayers = (1 << 10),
402 .maxTexelBufferElements = (1 << 14),
403 .maxUniformBufferRange = UINT32_MAX,
404 .maxStorageBufferRange = UINT32_MAX,
405 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
406 .maxMemoryAllocationCount = UINT32_MAX,
407 .maxSamplerAllocationCount = UINT32_MAX,
408 .bufferImageGranularity = 64, /* A cache line */
409 .sparseAddressSpaceSize = 0,
410 .maxBoundDescriptorSets = MAX_SETS,
411 .maxPerStageDescriptorSamplers = 64,
412 .maxPerStageDescriptorUniformBuffers = 64,
413 .maxPerStageDescriptorStorageBuffers = 64,
414 .maxPerStageDescriptorSampledImages = 64,
415 .maxPerStageDescriptorStorageImages = 64,
416 .maxPerStageDescriptorInputAttachments = 64,
417 .maxPerStageResources = 128,
418 .maxDescriptorSetSamplers = 256,
419 .maxDescriptorSetUniformBuffers = 256,
420 .maxDescriptorSetUniformBuffersDynamic = 256,
421 .maxDescriptorSetStorageBuffers = 256,
422 .maxDescriptorSetStorageBuffersDynamic = 256,
423 .maxDescriptorSetSampledImages = 256,
424 .maxDescriptorSetStorageImages = 256,
425 .maxDescriptorSetInputAttachments = 256,
426 .maxVertexInputAttributes = 32,
427 .maxVertexInputBindings = 32,
428 .maxVertexInputAttributeOffset = 256,
429 .maxVertexInputBindingStride = 256,
430 .maxVertexOutputComponents = 32,
431 .maxTessellationGenerationLevel = 0,
432 .maxTessellationPatchSize = 0,
433 .maxTessellationControlPerVertexInputComponents = 0,
434 .maxTessellationControlPerVertexOutputComponents = 0,
435 .maxTessellationControlPerPatchOutputComponents = 0,
436 .maxTessellationControlTotalOutputComponents = 0,
437 .maxTessellationEvaluationInputComponents = 0,
438 .maxTessellationEvaluationOutputComponents = 0,
439 .maxGeometryShaderInvocations = 6,
440 .maxGeometryInputComponents = 16,
441 .maxGeometryOutputComponents = 16,
442 .maxGeometryOutputVertices = 16,
443 .maxGeometryTotalOutputComponents = 16,
444 .maxFragmentInputComponents = 16,
445 .maxFragmentOutputAttachments = 8,
446 .maxFragmentDualSrcAttachments = 2,
447 .maxFragmentCombinedOutputResources = 8,
448 .maxComputeSharedMemorySize = 1024,
449 .maxComputeWorkGroupCount = {
450 16 * devinfo->max_cs_threads,
451 16 * devinfo->max_cs_threads,
452 16 * devinfo->max_cs_threads,
453 },
454 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
455 .maxComputeWorkGroupSize = {
456 16 * devinfo->max_cs_threads,
457 16 * devinfo->max_cs_threads,
458 16 * devinfo->max_cs_threads,
459 },
460 .subPixelPrecisionBits = 4 /* FIXME */,
461 .subTexelPrecisionBits = 4 /* FIXME */,
462 .mipmapPrecisionBits = 4 /* FIXME */,
463 .maxDrawIndexedIndexValue = UINT32_MAX,
464 .maxDrawIndirectCount = UINT32_MAX,
465 .maxSamplerLodBias = 16,
466 .maxSamplerAnisotropy = 16,
467 .maxViewports = MAX_VIEWPORTS,
468 .maxViewportDimensions = { (1 << 14), (1 << 14) },
469 .viewportBoundsRange = { -1.0, 1.0 }, /* FIXME */
470 .viewportSubPixelBits = 13, /* We take a float? */
471 .minMemoryMapAlignment = 4096, /* A page */
472 .minTexelBufferOffsetAlignment = 1,
473 .minUniformBufferOffsetAlignment = 1,
474 .minStorageBufferOffsetAlignment = 1,
475 .minTexelOffset = 0, /* FIXME */
476 .maxTexelOffset = 0, /* FIXME */
477 .minTexelGatherOffset = 0, /* FIXME */
478 .maxTexelGatherOffset = 0, /* FIXME */
479 .minInterpolationOffset = 0, /* FIXME */
480 .maxInterpolationOffset = 0, /* FIXME */
481 .subPixelInterpolationOffsetBits = 0, /* FIXME */
482 .maxFramebufferWidth = (1 << 14),
483 .maxFramebufferHeight = (1 << 14),
484 .maxFramebufferLayers = (1 << 10),
485 .framebufferColorSampleCounts = sample_counts,
486 .framebufferDepthSampleCounts = sample_counts,
487 .framebufferStencilSampleCounts = sample_counts,
488 .framebufferNoAttachmentsSampleCounts = sample_counts,
489 .maxColorAttachments = MAX_RTS,
490 .sampledImageColorSampleCounts = sample_counts,
491 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
492 .sampledImageDepthSampleCounts = sample_counts,
493 .sampledImageStencilSampleCounts = sample_counts,
494 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
495 .maxSampleMaskWords = 1,
496 .timestampPeriod = 80.0 / (1000 * 1000 * 1000),
497 .maxClipDistances = 0 /* FIXME */,
498 .maxCullDistances = 0 /* FIXME */,
499 .maxCombinedClipAndCullDistances = 0 /* FIXME */,
500 .discreteQueuePriorities = 1,
501 .pointSizeRange = { 0.125, 255.875 },
502 .lineWidthRange = { 0.0, 7.9921875 },
503 .pointSizeGranularity = (1.0 / 8.0),
504 .lineWidthGranularity = (1.0 / 128.0),
505 .strictLines = false, /* FINISHME */
506 .standardSampleLocations = true, /* FINISHME */
507 .optimalBufferCopyOffsetAlignment = 128,
508 .optimalBufferCopyRowPitchAlignment = 128,
509 .nonCoherentAtomSize = 64,
510 };
511
512 *pProperties = (VkPhysicalDeviceProperties) {
513 .apiVersion = VK_MAKE_VERSION(0, 210, 1),
514 .driverVersion = 1,
515 .vendorID = 0x8086,
516 .deviceID = pdevice->chipset_id,
517 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
518 .limits = limits,
519 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
520 };
521
522 strcpy(pProperties->deviceName, pdevice->name);
523 snprintf((char *)pProperties->pipelineCacheUUID, VK_UUID_SIZE,
524 "anv-%s", MESA_GIT_SHA1 + 4);
525 }
526
527 void anv_GetPhysicalDeviceQueueFamilyProperties(
528 VkPhysicalDevice physicalDevice,
529 uint32_t* pCount,
530 VkQueueFamilyProperties* pQueueFamilyProperties)
531 {
532 if (pQueueFamilyProperties == NULL) {
533 *pCount = 1;
534 return;
535 }
536
537 assert(*pCount >= 1);
538
539 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
540 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
541 VK_QUEUE_COMPUTE_BIT |
542 VK_QUEUE_TRANSFER_BIT,
543 .queueCount = 1,
544 .timestampValidBits = 0, /* XXX: Real value here */
545 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
546 };
547 }
548
549 void anv_GetPhysicalDeviceMemoryProperties(
550 VkPhysicalDevice physicalDevice,
551 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
552 {
553 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
554 VkDeviceSize heap_size;
555
556 /* Reserve some wiggle room for the driver by exposing only 75% of the
557 * aperture to the heap.
558 */
559 heap_size = 3 * physical_device->aperture_size / 4;
560
561 if (physical_device->info->has_llc) {
562 /* Big core GPUs share LLC with the CPU and thus one memory type can be
563 * both cached and coherent at the same time.
564 */
565 pMemoryProperties->memoryTypeCount = 1;
566 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
567 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
568 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
569 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
570 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
571 .heapIndex = 0,
572 };
573 } else {
574 /* The spec requires that we expose a host-visible, coherent memory
575 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
576 * to give the application a choice between cached, but not coherent and
577 * coherent but uncached (WC though).
578 */
579 pMemoryProperties->memoryTypeCount = 2;
580 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
581 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
582 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
583 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
584 .heapIndex = 0,
585 };
586 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
587 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
588 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
589 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
590 .heapIndex = 0,
591 };
592 }
593
594 pMemoryProperties->memoryHeapCount = 1;
595 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
596 .size = heap_size,
597 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
598 };
599 }
600
601 PFN_vkVoidFunction anv_GetInstanceProcAddr(
602 VkInstance instance,
603 const char* pName)
604 {
605 return anv_lookup_entrypoint(pName);
606 }
607
608 PFN_vkVoidFunction anv_GetDeviceProcAddr(
609 VkDevice device,
610 const char* pName)
611 {
612 return anv_lookup_entrypoint(pName);
613 }
614
615 static VkResult
616 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
617 {
618 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
619 queue->device = device;
620 queue->pool = &device->surface_state_pool;
621
622 return VK_SUCCESS;
623 }
624
625 static void
626 anv_queue_finish(struct anv_queue *queue)
627 {
628 }
629
630 static struct anv_state
631 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
632 {
633 struct anv_state state;
634
635 state = anv_state_pool_alloc(pool, size, align);
636 memcpy(state.map, p, size);
637
638 if (!pool->block_pool->device->info.has_llc)
639 anv_state_clflush(state);
640
641 return state;
642 }
643
644 static void
645 anv_device_init_border_colors(struct anv_device *device)
646 {
647 static const VkClearColorValue border_colors[] = {
648 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
649 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
650 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
651 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
652 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
653 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
654 };
655
656 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
657 sizeof(border_colors), 32, border_colors);
658 }
659
660 VkResult anv_CreateDevice(
661 VkPhysicalDevice physicalDevice,
662 const VkDeviceCreateInfo* pCreateInfo,
663 const VkAllocationCallbacks* pAllocator,
664 VkDevice* pDevice)
665 {
666 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
667 struct anv_device *device;
668
669 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
670
671 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
672 bool found = false;
673 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
674 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
675 device_extensions[j].extensionName) == 0) {
676 found = true;
677 break;
678 }
679 }
680 if (!found)
681 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
682 }
683
684 anv_set_dispatch_devinfo(physical_device->info);
685
686 device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
687 sizeof(*device), 8,
688 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
689 if (!device)
690 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
691
692 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
693 device->instance = physical_device->instance;
694
695 if (pAllocator)
696 device->alloc = *pAllocator;
697 else
698 device->alloc = physical_device->instance->alloc;
699
700 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
701 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
702 if (device->fd == -1)
703 goto fail_device;
704
705 device->context_id = anv_gem_create_context(device);
706 if (device->context_id == -1)
707 goto fail_fd;
708
709 device->info = *physical_device->info;
710 device->isl_dev = physical_device->isl_dev;
711
712 pthread_mutex_init(&device->mutex, NULL);
713
714 anv_bo_pool_init(&device->batch_bo_pool, device, ANV_CMD_BUFFER_BATCH_SIZE);
715
716 anv_block_pool_init(&device->dynamic_state_block_pool, device, 2048);
717
718 anv_state_pool_init(&device->dynamic_state_pool,
719 &device->dynamic_state_block_pool);
720
721 anv_block_pool_init(&device->instruction_block_pool, device, 8192);
722 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
723
724 anv_state_pool_init(&device->surface_state_pool,
725 &device->surface_state_block_pool);
726
727 anv_bo_init_new(&device->workaround_bo, device, 1024);
728
729 anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
730
731 anv_queue_init(device, &device->queue);
732
733 anv_device_init_meta(device);
734
735 anv_device_init_border_colors(device);
736
737 *pDevice = anv_device_to_handle(device);
738
739 return VK_SUCCESS;
740
741 fail_fd:
742 close(device->fd);
743 fail_device:
744 anv_free(&device->alloc, device);
745
746 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
747 }
748
749 void anv_DestroyDevice(
750 VkDevice _device,
751 const VkAllocationCallbacks* pAllocator)
752 {
753 ANV_FROM_HANDLE(anv_device, device, _device);
754
755 anv_queue_finish(&device->queue);
756
757 anv_device_finish_meta(device);
758
759 #ifdef HAVE_VALGRIND
760 /* We only need to free these to prevent valgrind errors. The backing
761 * BO will go away in a couple of lines so we don't actually leak.
762 */
763 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
764 #endif
765
766 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
767 anv_gem_close(device, device->workaround_bo.gem_handle);
768
769 anv_bo_pool_finish(&device->batch_bo_pool);
770 anv_state_pool_finish(&device->dynamic_state_pool);
771 anv_block_pool_finish(&device->dynamic_state_block_pool);
772 anv_block_pool_finish(&device->instruction_block_pool);
773 anv_state_pool_finish(&device->surface_state_pool);
774 anv_block_pool_finish(&device->surface_state_block_pool);
775 anv_block_pool_finish(&device->scratch_block_pool);
776
777 close(device->fd);
778
779 anv_free(&device->alloc, device);
780 }
781
782 VkResult anv_EnumerateInstanceExtensionProperties(
783 const char* pLayerName,
784 uint32_t* pPropertyCount,
785 VkExtensionProperties* pProperties)
786 {
787 if (pProperties == NULL) {
788 *pPropertyCount = ARRAY_SIZE(global_extensions);
789 return VK_SUCCESS;
790 }
791
792 assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
793
794 *pPropertyCount = ARRAY_SIZE(global_extensions);
795 memcpy(pProperties, global_extensions, sizeof(global_extensions));
796
797 return VK_SUCCESS;
798 }
799
800 VkResult anv_EnumerateDeviceExtensionProperties(
801 VkPhysicalDevice physicalDevice,
802 const char* pLayerName,
803 uint32_t* pPropertyCount,
804 VkExtensionProperties* pProperties)
805 {
806 if (pProperties == NULL) {
807 *pPropertyCount = ARRAY_SIZE(device_extensions);
808 return VK_SUCCESS;
809 }
810
811 assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
812
813 *pPropertyCount = ARRAY_SIZE(device_extensions);
814 memcpy(pProperties, device_extensions, sizeof(device_extensions));
815
816 return VK_SUCCESS;
817 }
818
819 VkResult anv_EnumerateInstanceLayerProperties(
820 uint32_t* pPropertyCount,
821 VkLayerProperties* pProperties)
822 {
823 if (pProperties == NULL) {
824 *pPropertyCount = 0;
825 return VK_SUCCESS;
826 }
827
828 /* None supported at this time */
829 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
830 }
831
832 VkResult anv_EnumerateDeviceLayerProperties(
833 VkPhysicalDevice physicalDevice,
834 uint32_t* pPropertyCount,
835 VkLayerProperties* pProperties)
836 {
837 if (pProperties == NULL) {
838 *pPropertyCount = 0;
839 return VK_SUCCESS;
840 }
841
842 /* None supported at this time */
843 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
844 }
845
846 void anv_GetDeviceQueue(
847 VkDevice _device,
848 uint32_t queueNodeIndex,
849 uint32_t queueIndex,
850 VkQueue* pQueue)
851 {
852 ANV_FROM_HANDLE(anv_device, device, _device);
853
854 assert(queueIndex == 0);
855
856 *pQueue = anv_queue_to_handle(&device->queue);
857 }
858
859 VkResult anv_QueueSubmit(
860 VkQueue _queue,
861 uint32_t submitCount,
862 const VkSubmitInfo* pSubmits,
863 VkFence _fence)
864 {
865 ANV_FROM_HANDLE(anv_queue, queue, _queue);
866 ANV_FROM_HANDLE(anv_fence, fence, _fence);
867 struct anv_device *device = queue->device;
868 int ret;
869
870 for (uint32_t i = 0; i < submitCount; i++) {
871 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
872 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
873 pSubmits[i].pCommandBuffers[j]);
874 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
875
876 ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
877 if (ret != 0) {
878 /* We don't know the real error. */
879 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
880 "execbuf2 failed: %m");
881 }
882
883 if (fence) {
884 ret = anv_gem_execbuffer(device, &fence->execbuf);
885 if (ret != 0) {
886 /* We don't know the real error. */
887 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
888 "execbuf2 failed: %m");
889 }
890 }
891
892 for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
893 cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
894 }
895 }
896
897 return VK_SUCCESS;
898 }
899
900 VkResult anv_QueueWaitIdle(
901 VkQueue _queue)
902 {
903 ANV_FROM_HANDLE(anv_queue, queue, _queue);
904
905 return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
906 }
907
908 VkResult anv_DeviceWaitIdle(
909 VkDevice _device)
910 {
911 ANV_FROM_HANDLE(anv_device, device, _device);
912 struct anv_state state;
913 struct anv_batch batch;
914 struct drm_i915_gem_execbuffer2 execbuf;
915 struct drm_i915_gem_exec_object2 exec2_objects[1];
916 struct anv_bo *bo = NULL;
917 VkResult result;
918 int64_t timeout;
919 int ret;
920
921 state = anv_state_pool_alloc(&device->dynamic_state_pool, 32, 32);
922 bo = &device->dynamic_state_pool.block_pool->bo;
923 batch.start = batch.next = state.map;
924 batch.end = state.map + 32;
925 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
926 anv_batch_emit(&batch, GEN7_MI_NOOP);
927
928 if (!device->info.has_llc)
929 anv_state_clflush(state);
930
931 exec2_objects[0].handle = bo->gem_handle;
932 exec2_objects[0].relocation_count = 0;
933 exec2_objects[0].relocs_ptr = 0;
934 exec2_objects[0].alignment = 0;
935 exec2_objects[0].offset = bo->offset;
936 exec2_objects[0].flags = 0;
937 exec2_objects[0].rsvd1 = 0;
938 exec2_objects[0].rsvd2 = 0;
939
940 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
941 execbuf.buffer_count = 1;
942 execbuf.batch_start_offset = state.offset;
943 execbuf.batch_len = batch.next - state.map;
944 execbuf.cliprects_ptr = 0;
945 execbuf.num_cliprects = 0;
946 execbuf.DR1 = 0;
947 execbuf.DR4 = 0;
948
949 execbuf.flags =
950 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
951 execbuf.rsvd1 = device->context_id;
952 execbuf.rsvd2 = 0;
953
954 ret = anv_gem_execbuffer(device, &execbuf);
955 if (ret != 0) {
956 /* We don't know the real error. */
957 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
958 goto fail;
959 }
960
961 timeout = INT64_MAX;
962 ret = anv_gem_wait(device, bo->gem_handle, &timeout);
963 if (ret != 0) {
964 /* We don't know the real error. */
965 result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
966 goto fail;
967 }
968
969 anv_state_pool_free(&device->dynamic_state_pool, state);
970
971 return VK_SUCCESS;
972
973 fail:
974 anv_state_pool_free(&device->dynamic_state_pool, state);
975
976 return result;
977 }
978
979 VkResult
980 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
981 {
982 bo->gem_handle = anv_gem_create(device, size);
983 if (!bo->gem_handle)
984 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
985
986 bo->map = NULL;
987 bo->index = 0;
988 bo->offset = 0;
989 bo->size = size;
990
991 return VK_SUCCESS;
992 }
993
994 VkResult anv_AllocateMemory(
995 VkDevice _device,
996 const VkMemoryAllocateInfo* pAllocateInfo,
997 const VkAllocationCallbacks* pAllocator,
998 VkDeviceMemory* pMem)
999 {
1000 ANV_FROM_HANDLE(anv_device, device, _device);
1001 struct anv_device_memory *mem;
1002 VkResult result;
1003
1004 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1005
1006 if (pAllocateInfo->allocationSize == 0) {
1007 /* Apparently, this is allowed */
1008 *pMem = VK_NULL_HANDLE;
1009 return VK_SUCCESS;
1010 }
1011
1012 /* We support exactly one memory heap. */
1013 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1014 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1015
1016 /* FINISHME: Fail if allocation request exceeds heap size. */
1017
1018 mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1019 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1020 if (mem == NULL)
1021 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1022
1023 /* The kernel is going to give us whole pages anyway */
1024 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1025
1026 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1027 if (result != VK_SUCCESS)
1028 goto fail;
1029
1030 mem->type_index = pAllocateInfo->memoryTypeIndex;
1031
1032 *pMem = anv_device_memory_to_handle(mem);
1033
1034 return VK_SUCCESS;
1035
1036 fail:
1037 anv_free2(&device->alloc, pAllocator, mem);
1038
1039 return result;
1040 }
1041
1042 void anv_FreeMemory(
1043 VkDevice _device,
1044 VkDeviceMemory _mem,
1045 const VkAllocationCallbacks* pAllocator)
1046 {
1047 ANV_FROM_HANDLE(anv_device, device, _device);
1048 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1049
1050 if (mem == NULL)
1051 return;
1052
1053 if (mem->bo.map)
1054 anv_gem_munmap(mem->bo.map, mem->bo.size);
1055
1056 if (mem->bo.gem_handle != 0)
1057 anv_gem_close(device, mem->bo.gem_handle);
1058
1059 anv_free2(&device->alloc, pAllocator, mem);
1060 }
1061
1062 VkResult anv_MapMemory(
1063 VkDevice _device,
1064 VkDeviceMemory _memory,
1065 VkDeviceSize offset,
1066 VkDeviceSize size,
1067 VkMemoryMapFlags flags,
1068 void** ppData)
1069 {
1070 ANV_FROM_HANDLE(anv_device, device, _device);
1071 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1072
1073 if (mem == NULL) {
1074 *ppData = NULL;
1075 return VK_SUCCESS;
1076 }
1077
1078 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1079 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1080 * at a time is valid. We could just mmap up front and return an offset
1081 * pointer here, but that may exhaust virtual memory on 32 bit
1082 * userspace. */
1083
1084 uint32_t gem_flags = 0;
1085 if (!device->info.has_llc && mem->type_index == 0)
1086 gem_flags |= I915_MMAP_WC;
1087
1088 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1089 uint64_t map_offset = offset & ~4095ull;
1090 assert(offset >= map_offset);
1091 uint64_t map_size = (offset + size) - map_offset;
1092
1093 /* Let's map whole pages */
1094 map_size = align_u64(map_size, 4096);
1095
1096 mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
1097 map_offset, map_size, gem_flags);
1098 mem->map_size = map_size;
1099
1100 *ppData = mem->map + (offset - map_offset);
1101
1102 return VK_SUCCESS;
1103 }
1104
1105 void anv_UnmapMemory(
1106 VkDevice _device,
1107 VkDeviceMemory _memory)
1108 {
1109 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1110
1111 if (mem == NULL)
1112 return;
1113
1114 anv_gem_munmap(mem->map, mem->map_size);
1115 }
1116
1117 static void
1118 clflush_mapped_ranges(struct anv_device *device,
1119 uint32_t count,
1120 const VkMappedMemoryRange *ranges)
1121 {
1122 for (uint32_t i = 0; i < count; i++) {
1123 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1124 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1125 void *end = mem->map + ranges[i].offset + ranges[i].size;
1126
1127 while (p < end) {
1128 __builtin_ia32_clflush(p);
1129 p += CACHELINE_SIZE;
1130 }
1131 }
1132 }
1133
1134 VkResult anv_FlushMappedMemoryRanges(
1135 VkDevice _device,
1136 uint32_t memoryRangeCount,
1137 const VkMappedMemoryRange* pMemoryRanges)
1138 {
1139 ANV_FROM_HANDLE(anv_device, device, _device);
1140
1141 if (device->info.has_llc)
1142 return VK_SUCCESS;
1143
1144 /* Make sure the writes we're flushing have landed. */
1145 __builtin_ia32_sfence();
1146
1147 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1148
1149 return VK_SUCCESS;
1150 }
1151
1152 VkResult anv_InvalidateMappedMemoryRanges(
1153 VkDevice _device,
1154 uint32_t memoryRangeCount,
1155 const VkMappedMemoryRange* pMemoryRanges)
1156 {
1157 ANV_FROM_HANDLE(anv_device, device, _device);
1158
1159 if (device->info.has_llc)
1160 return VK_SUCCESS;
1161
1162 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1163
1164 /* Make sure no reads get moved up above the invalidate. */
1165 __builtin_ia32_lfence();
1166
1167 return VK_SUCCESS;
1168 }
1169
1170 void anv_GetBufferMemoryRequirements(
1171 VkDevice device,
1172 VkBuffer _buffer,
1173 VkMemoryRequirements* pMemoryRequirements)
1174 {
1175 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1176
1177 /* The Vulkan spec (git aaed022) says:
1178 *
1179 * memoryTypeBits is a bitfield and contains one bit set for every
1180 * supported memory type for the resource. The bit `1<<i` is set if and
1181 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1182 * structure for the physical device is supported.
1183 *
1184 * We support exactly one memory type.
1185 */
1186 pMemoryRequirements->memoryTypeBits = 1;
1187
1188 pMemoryRequirements->size = buffer->size;
1189 pMemoryRequirements->alignment = 16;
1190 }
1191
1192 void anv_GetImageMemoryRequirements(
1193 VkDevice device,
1194 VkImage _image,
1195 VkMemoryRequirements* pMemoryRequirements)
1196 {
1197 ANV_FROM_HANDLE(anv_image, image, _image);
1198
1199 /* The Vulkan spec (git aaed022) says:
1200 *
1201 * memoryTypeBits is a bitfield and contains one bit set for every
1202 * supported memory type for the resource. The bit `1<<i` is set if and
1203 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1204 * structure for the physical device is supported.
1205 *
1206 * We support exactly one memory type.
1207 */
1208 pMemoryRequirements->memoryTypeBits = 1;
1209
1210 pMemoryRequirements->size = image->size;
1211 pMemoryRequirements->alignment = image->alignment;
1212 }
1213
1214 void anv_GetImageSparseMemoryRequirements(
1215 VkDevice device,
1216 VkImage image,
1217 uint32_t* pSparseMemoryRequirementCount,
1218 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1219 {
1220 stub();
1221 }
1222
1223 void anv_GetDeviceMemoryCommitment(
1224 VkDevice device,
1225 VkDeviceMemory memory,
1226 VkDeviceSize* pCommittedMemoryInBytes)
1227 {
1228 *pCommittedMemoryInBytes = 0;
1229 }
1230
1231 VkResult anv_BindBufferMemory(
1232 VkDevice device,
1233 VkBuffer _buffer,
1234 VkDeviceMemory _memory,
1235 VkDeviceSize memoryOffset)
1236 {
1237 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1238 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1239
1240 if (mem) {
1241 buffer->bo = &mem->bo;
1242 buffer->offset = memoryOffset;
1243 } else {
1244 buffer->bo = NULL;
1245 buffer->offset = 0;
1246 }
1247
1248 return VK_SUCCESS;
1249 }
1250
1251 VkResult anv_BindImageMemory(
1252 VkDevice device,
1253 VkImage _image,
1254 VkDeviceMemory _memory,
1255 VkDeviceSize memoryOffset)
1256 {
1257 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1258 ANV_FROM_HANDLE(anv_image, image, _image);
1259
1260 if (mem) {
1261 image->bo = &mem->bo;
1262 image->offset = memoryOffset;
1263 } else {
1264 image->bo = NULL;
1265 image->offset = 0;
1266 }
1267
1268 return VK_SUCCESS;
1269 }
1270
1271 VkResult anv_QueueBindSparse(
1272 VkQueue queue,
1273 uint32_t bindInfoCount,
1274 const VkBindSparseInfo* pBindInfo,
1275 VkFence fence)
1276 {
1277 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1278 }
1279
1280 VkResult anv_CreateFence(
1281 VkDevice _device,
1282 const VkFenceCreateInfo* pCreateInfo,
1283 const VkAllocationCallbacks* pAllocator,
1284 VkFence* pFence)
1285 {
1286 ANV_FROM_HANDLE(anv_device, device, _device);
1287 struct anv_fence *fence;
1288 struct anv_batch batch;
1289 VkResult result;
1290
1291 const uint32_t fence_size = 128;
1292
1293 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1294
1295 fence = anv_alloc2(&device->alloc, pAllocator, sizeof(*fence), 8,
1296 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1297 if (fence == NULL)
1298 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1299
1300 result = anv_bo_init_new(&fence->bo, device, fence_size);
1301 if (result != VK_SUCCESS)
1302 goto fail;
1303
1304 fence->bo.map =
1305 anv_gem_mmap(device, fence->bo.gem_handle, 0, fence->bo.size, 0);
1306 batch.next = batch.start = fence->bo.map;
1307 batch.end = fence->bo.map + fence->bo.size;
1308 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END);
1309 anv_batch_emit(&batch, GEN7_MI_NOOP);
1310
1311 if (!device->info.has_llc) {
1312 assert(((uintptr_t) fence->bo.map & CACHELINE_MASK) == 0);
1313 assert(batch.next - fence->bo.map <= CACHELINE_SIZE);
1314 __builtin_ia32_sfence();
1315 __builtin_ia32_clflush(fence->bo.map);
1316 }
1317
1318 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1319 fence->exec2_objects[0].relocation_count = 0;
1320 fence->exec2_objects[0].relocs_ptr = 0;
1321 fence->exec2_objects[0].alignment = 0;
1322 fence->exec2_objects[0].offset = fence->bo.offset;
1323 fence->exec2_objects[0].flags = 0;
1324 fence->exec2_objects[0].rsvd1 = 0;
1325 fence->exec2_objects[0].rsvd2 = 0;
1326
1327 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1328 fence->execbuf.buffer_count = 1;
1329 fence->execbuf.batch_start_offset = 0;
1330 fence->execbuf.batch_len = batch.next - fence->bo.map;
1331 fence->execbuf.cliprects_ptr = 0;
1332 fence->execbuf.num_cliprects = 0;
1333 fence->execbuf.DR1 = 0;
1334 fence->execbuf.DR4 = 0;
1335
1336 fence->execbuf.flags =
1337 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1338 fence->execbuf.rsvd1 = device->context_id;
1339 fence->execbuf.rsvd2 = 0;
1340
1341 *pFence = anv_fence_to_handle(fence);
1342
1343 return VK_SUCCESS;
1344
1345 fail:
1346 anv_free2(&device->alloc, pAllocator, fence);
1347
1348 return result;
1349 }
1350
1351 void anv_DestroyFence(
1352 VkDevice _device,
1353 VkFence _fence,
1354 const VkAllocationCallbacks* pAllocator)
1355 {
1356 ANV_FROM_HANDLE(anv_device, device, _device);
1357 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1358
1359 anv_gem_munmap(fence->bo.map, fence->bo.size);
1360 anv_gem_close(device, fence->bo.gem_handle);
1361 anv_free2(&device->alloc, pAllocator, fence);
1362 }
1363
1364 VkResult anv_ResetFences(
1365 VkDevice _device,
1366 uint32_t fenceCount,
1367 const VkFence* pFences)
1368 {
1369 for (uint32_t i = 0; i < fenceCount; i++) {
1370 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1371 fence->ready = false;
1372 }
1373
1374 return VK_SUCCESS;
1375 }
1376
1377 VkResult anv_GetFenceStatus(
1378 VkDevice _device,
1379 VkFence _fence)
1380 {
1381 ANV_FROM_HANDLE(anv_device, device, _device);
1382 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1383 int64_t t = 0;
1384 int ret;
1385
1386 if (fence->ready)
1387 return VK_SUCCESS;
1388
1389 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1390 if (ret == 0) {
1391 fence->ready = true;
1392 return VK_SUCCESS;
1393 }
1394
1395 return VK_NOT_READY;
1396 }
1397
1398 VkResult anv_WaitForFences(
1399 VkDevice _device,
1400 uint32_t fenceCount,
1401 const VkFence* pFences,
1402 VkBool32 waitAll,
1403 uint64_t timeout)
1404 {
1405 ANV_FROM_HANDLE(anv_device, device, _device);
1406
1407 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1408 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1409 * for a couple of kernel releases. Since there's no way to know
1410 * whether or not the kernel we're using is one of the broken ones, the
1411 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1412 * maximum timeout from 584 years to 292 years - likely not a big deal.
1413 */
1414 if (timeout > INT64_MAX)
1415 timeout = INT64_MAX;
1416
1417 int64_t t = timeout;
1418
1419 /* FIXME: handle !waitAll */
1420
1421 for (uint32_t i = 0; i < fenceCount; i++) {
1422 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1423 int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1424 if (ret == -1 && errno == ETIME) {
1425 return VK_TIMEOUT;
1426 } else if (ret == -1) {
1427 /* We don't know the real error. */
1428 return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
1429 "gem wait failed: %m");
1430 }
1431 }
1432
1433 return VK_SUCCESS;
1434 }
1435
1436 // Queue semaphore functions
1437
1438 VkResult anv_CreateSemaphore(
1439 VkDevice device,
1440 const VkSemaphoreCreateInfo* pCreateInfo,
1441 const VkAllocationCallbacks* pAllocator,
1442 VkSemaphore* pSemaphore)
1443 {
1444 /* The DRM execbuffer ioctl always execute in-oder, even between different
1445 * rings. As such, there's nothing to do for the user space semaphore.
1446 */
1447
1448 *pSemaphore = (VkSemaphore)1;
1449
1450 return VK_SUCCESS;
1451 }
1452
1453 void anv_DestroySemaphore(
1454 VkDevice device,
1455 VkSemaphore semaphore,
1456 const VkAllocationCallbacks* pAllocator)
1457 {
1458 }
1459
1460 // Event functions
1461
1462 VkResult anv_CreateEvent(
1463 VkDevice _device,
1464 const VkEventCreateInfo* pCreateInfo,
1465 const VkAllocationCallbacks* pAllocator,
1466 VkEvent* pEvent)
1467 {
1468 ANV_FROM_HANDLE(anv_device, device, _device);
1469 struct anv_state state;
1470 struct anv_event *event;
1471
1472 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1473
1474 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1475 sizeof(*event), 4);
1476 event = state.map;
1477 event->state = state;
1478 event->semaphore = VK_EVENT_RESET;
1479
1480 if (!device->info.has_llc) {
1481 /* Make sure the writes we're flushing have landed. */
1482 __builtin_ia32_sfence();
1483 __builtin_ia32_clflush(event);
1484 }
1485
1486 *pEvent = anv_event_to_handle(event);
1487
1488 return VK_SUCCESS;
1489 }
1490
1491 void anv_DestroyEvent(
1492 VkDevice _device,
1493 VkEvent _event,
1494 const VkAllocationCallbacks* pAllocator)
1495 {
1496 ANV_FROM_HANDLE(anv_device, device, _device);
1497 ANV_FROM_HANDLE(anv_event, event, _event);
1498
1499 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1500 }
1501
1502 VkResult anv_GetEventStatus(
1503 VkDevice _device,
1504 VkEvent _event)
1505 {
1506 ANV_FROM_HANDLE(anv_device, device, _device);
1507 ANV_FROM_HANDLE(anv_event, event, _event);
1508
1509 if (!device->info.has_llc) {
1510 /* Make sure the writes we're flushing have landed. */
1511 __builtin_ia32_clflush(event);
1512 __builtin_ia32_lfence();
1513 }
1514
1515 return event->semaphore;
1516 }
1517
1518 VkResult anv_SetEvent(
1519 VkDevice _device,
1520 VkEvent _event)
1521 {
1522 ANV_FROM_HANDLE(anv_device, device, _device);
1523 ANV_FROM_HANDLE(anv_event, event, _event);
1524
1525 event->semaphore = VK_EVENT_SET;
1526
1527 if (!device->info.has_llc) {
1528 /* Make sure the writes we're flushing have landed. */
1529 __builtin_ia32_sfence();
1530 __builtin_ia32_clflush(event);
1531 }
1532
1533 return VK_SUCCESS;
1534 }
1535
1536 VkResult anv_ResetEvent(
1537 VkDevice _device,
1538 VkEvent _event)
1539 {
1540 ANV_FROM_HANDLE(anv_device, device, _device);
1541 ANV_FROM_HANDLE(anv_event, event, _event);
1542
1543 event->semaphore = VK_EVENT_RESET;
1544
1545 if (!device->info.has_llc) {
1546 /* Make sure the writes we're flushing have landed. */
1547 __builtin_ia32_sfence();
1548 __builtin_ia32_clflush(event);
1549 }
1550
1551 return VK_SUCCESS;
1552 }
1553
1554 // Buffer functions
1555
1556 VkResult anv_CreateBuffer(
1557 VkDevice _device,
1558 const VkBufferCreateInfo* pCreateInfo,
1559 const VkAllocationCallbacks* pAllocator,
1560 VkBuffer* pBuffer)
1561 {
1562 ANV_FROM_HANDLE(anv_device, device, _device);
1563 struct anv_buffer *buffer;
1564
1565 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1566
1567 buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1568 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1569 if (buffer == NULL)
1570 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1571
1572 buffer->size = pCreateInfo->size;
1573 buffer->usage = pCreateInfo->usage;
1574 buffer->bo = NULL;
1575 buffer->offset = 0;
1576
1577 *pBuffer = anv_buffer_to_handle(buffer);
1578
1579 return VK_SUCCESS;
1580 }
1581
1582 void anv_DestroyBuffer(
1583 VkDevice _device,
1584 VkBuffer _buffer,
1585 const VkAllocationCallbacks* pAllocator)
1586 {
1587 ANV_FROM_HANDLE(anv_device, device, _device);
1588 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1589
1590 anv_free2(&device->alloc, pAllocator, buffer);
1591 }
1592
1593 void
1594 anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1595 enum isl_format format,
1596 uint32_t offset, uint32_t range, uint32_t stride)
1597 {
1598 switch (device->info.gen) {
1599 case 7:
1600 if (device->info.is_haswell)
1601 gen75_fill_buffer_surface_state(state, format, offset, range, stride);
1602 else
1603 gen7_fill_buffer_surface_state(state, format, offset, range, stride);
1604 break;
1605 case 8:
1606 gen8_fill_buffer_surface_state(state, format, offset, range, stride);
1607 break;
1608 case 9:
1609 gen9_fill_buffer_surface_state(state, format, offset, range, stride);
1610 break;
1611 default:
1612 unreachable("unsupported gen\n");
1613 }
1614 }
1615
1616 void anv_DestroySampler(
1617 VkDevice _device,
1618 VkSampler _sampler,
1619 const VkAllocationCallbacks* pAllocator)
1620 {
1621 ANV_FROM_HANDLE(anv_device, device, _device);
1622 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1623
1624 anv_free2(&device->alloc, pAllocator, sampler);
1625 }
1626
1627 VkResult anv_CreateFramebuffer(
1628 VkDevice _device,
1629 const VkFramebufferCreateInfo* pCreateInfo,
1630 const VkAllocationCallbacks* pAllocator,
1631 VkFramebuffer* pFramebuffer)
1632 {
1633 ANV_FROM_HANDLE(anv_device, device, _device);
1634 struct anv_framebuffer *framebuffer;
1635
1636 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1637
1638 size_t size = sizeof(*framebuffer) +
1639 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1640 framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
1641 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1642 if (framebuffer == NULL)
1643 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1644
1645 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1646 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1647 VkImageView _iview = pCreateInfo->pAttachments[i];
1648 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1649 }
1650
1651 framebuffer->width = pCreateInfo->width;
1652 framebuffer->height = pCreateInfo->height;
1653 framebuffer->layers = pCreateInfo->layers;
1654
1655 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1656
1657 return VK_SUCCESS;
1658 }
1659
1660 void anv_DestroyFramebuffer(
1661 VkDevice _device,
1662 VkFramebuffer _fb,
1663 const VkAllocationCallbacks* pAllocator)
1664 {
1665 ANV_FROM_HANDLE(anv_device, device, _device);
1666 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1667
1668 anv_free2(&device->alloc, pAllocator, fb);
1669 }
1670
1671 void vkCmdDbgMarkerBegin(
1672 VkCommandBuffer commandBuffer,
1673 const char* pMarker)
1674 __attribute__ ((visibility ("default")));
1675
1676 void vkCmdDbgMarkerEnd(
1677 VkCommandBuffer commandBuffer)
1678 __attribute__ ((visibility ("default")));
1679
1680 void vkCmdDbgMarkerBegin(
1681 VkCommandBuffer commandBuffer,
1682 const char* pMarker)
1683 {
1684 }
1685
1686 void vkCmdDbgMarkerEnd(
1687 VkCommandBuffer commandBuffer)
1688 {
1689 }