anv: Add offset parameter to anv_image_view_init()
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_meta.h"
31 #include "anv_meta_clear.h"
32 #include "anv_private.h"
33 #include "glsl/nir/nir_builder.h"
34
35 struct anv_render_pass anv_meta_dummy_renderpass = {0};
36
37 static nir_shader *
38 build_nir_vertex_shader(bool attr_flat)
39 {
40 nir_builder b;
41
42 const struct glsl_type *vertex_type = glsl_vec4_type();
43
44 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
45 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
46
47 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
48 vertex_type, "a_pos");
49 pos_in->data.location = VERT_ATTRIB_GENERIC0;
50 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
51 vertex_type, "gl_Position");
52 pos_out->data.location = VARYING_SLOT_POS;
53 nir_copy_var(&b, pos_out, pos_in);
54
55 /* Add one more pass-through attribute. For clear shaders, this is used
56 * to store the color and for blit shaders it's the texture coordinate.
57 */
58 const struct glsl_type *attr_type = glsl_vec4_type();
59 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
60 attr_type, "a_attr");
61 attr_in->data.location = VERT_ATTRIB_GENERIC1;
62 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
63 attr_type, "v_attr");
64 attr_out->data.location = VARYING_SLOT_VAR0;
65 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
66 INTERP_QUALIFIER_SMOOTH;
67 nir_copy_var(&b, attr_out, attr_in);
68
69 return b.shader;
70 }
71
72 static nir_shader *
73 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
74 {
75 nir_builder b;
76
77 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
78 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs");
79
80 const struct glsl_type *color_type = glsl_vec4_type();
81
82 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
83 glsl_vec4_type(), "v_attr");
84 tex_pos_in->data.location = VARYING_SLOT_VAR0;
85
86 /* Swizzle the array index which comes in as Z coordinate into the right
87 * position.
88 */
89 unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 };
90 nir_ssa_def *const tex_pos =
91 nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz,
92 (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false);
93
94 const struct glsl_type *sampler_type =
95 glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D,
96 glsl_get_base_type(color_type));
97 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
98 sampler_type, "s_tex");
99 sampler->data.descriptor_set = 0;
100 sampler->data.binding = 0;
101
102 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
103 tex->sampler_dim = tex_dim;
104 tex->op = nir_texop_tex;
105 tex->src[0].src_type = nir_tex_src_coord;
106 tex->src[0].src = nir_src_for_ssa(tex_pos);
107 tex->dest_type = nir_type_float; /* TODO */
108 tex->is_array = glsl_sampler_type_is_array(sampler_type);
109 tex->coord_components = tex_pos->num_components;
110 tex->sampler = nir_deref_var_create(tex, sampler);
111
112 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
113 nir_builder_instr_insert(&b, &tex->instr);
114
115 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
116 color_type, "f_color");
117 color_out->data.location = FRAG_RESULT_DATA0;
118 nir_store_var(&b, color_out, &tex->dest.ssa, 4);
119
120 return b.shader;
121 }
122
123 void
124 anv_meta_save(struct anv_meta_saved_state *state,
125 const struct anv_cmd_buffer *cmd_buffer,
126 uint32_t dynamic_mask)
127 {
128 state->old_pipeline = cmd_buffer->state.pipeline;
129 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
130 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
131 sizeof(state->old_vertex_bindings));
132
133 state->dynamic_mask = dynamic_mask;
134 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
135 dynamic_mask);
136 }
137
138 void
139 anv_meta_restore(const struct anv_meta_saved_state *state,
140 struct anv_cmd_buffer *cmd_buffer)
141 {
142 cmd_buffer->state.pipeline = state->old_pipeline;
143 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
144 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
145 sizeof(state->old_vertex_bindings));
146
147 cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
148 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
149 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
150
151 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
152 state->dynamic_mask);
153 cmd_buffer->state.dirty |= state->dynamic_mask;
154
155 /* Since we've used the pipeline with the VS disabled, set
156 * need_query_wa. See CmdBeginQuery.
157 */
158 cmd_buffer->state.need_query_wa = true;
159 }
160
161 VkImageViewType
162 anv_meta_get_view_type(const struct anv_image *image)
163 {
164 switch (image->type) {
165 case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
166 case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
167 case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
168 default:
169 unreachable("bad VkImageViewType");
170 }
171 }
172
173 static uint32_t
174 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
175 const VkImageSubresourceLayers *dest_subresource,
176 const VkOffset3D *dest_offset)
177 {
178 switch (dest_image->type) {
179 case VK_IMAGE_TYPE_1D:
180 case VK_IMAGE_TYPE_2D:
181 return dest_subresource->baseArrayLayer;
182 case VK_IMAGE_TYPE_3D:
183 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
184 * but meta does it anyway. When doing so, we translate the
185 * destination's z offset into an array offset.
186 */
187 return dest_offset->z;
188 default:
189 assert(!"bad VkImageType");
190 return 0;
191 }
192 }
193
194 static VkResult
195 anv_device_init_meta_blit_state(struct anv_device *device)
196 {
197 VkResult result;
198
199 result = anv_CreateRenderPass(anv_device_to_handle(device),
200 &(VkRenderPassCreateInfo) {
201 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
202 .attachmentCount = 1,
203 .pAttachments = &(VkAttachmentDescription) {
204 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
205 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
206 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
207 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
208 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
209 },
210 .subpassCount = 1,
211 .pSubpasses = &(VkSubpassDescription) {
212 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
213 .inputAttachmentCount = 0,
214 .colorAttachmentCount = 1,
215 .pColorAttachments = &(VkAttachmentReference) {
216 .attachment = 0,
217 .layout = VK_IMAGE_LAYOUT_GENERAL,
218 },
219 .pResolveAttachments = NULL,
220 .pDepthStencilAttachment = &(VkAttachmentReference) {
221 .attachment = VK_ATTACHMENT_UNUSED,
222 .layout = VK_IMAGE_LAYOUT_GENERAL,
223 },
224 .preserveAttachmentCount = 1,
225 .pPreserveAttachments = (uint32_t[]) { 0 },
226 },
227 .dependencyCount = 0,
228 }, &device->meta_state.alloc, &device->meta_state.blit.render_pass);
229 if (result != VK_SUCCESS)
230 goto fail;
231
232 /* We don't use a vertex shader for clearing, but instead build and pass
233 * the VUEs directly to the rasterization backend. However, we do need
234 * to provide GLSL source for the vertex shader so that the compiler
235 * does not dead-code our inputs.
236 */
237 struct anv_shader_module vs = {
238 .nir = build_nir_vertex_shader(false),
239 };
240
241 struct anv_shader_module fs_1d = {
242 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
243 };
244
245 struct anv_shader_module fs_2d = {
246 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
247 };
248
249 struct anv_shader_module fs_3d = {
250 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
251 };
252
253 VkPipelineVertexInputStateCreateInfo vi_create_info = {
254 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
255 .vertexBindingDescriptionCount = 2,
256 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
257 {
258 .binding = 0,
259 .stride = 0,
260 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
261 },
262 {
263 .binding = 1,
264 .stride = 5 * sizeof(float),
265 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
266 },
267 },
268 .vertexAttributeDescriptionCount = 3,
269 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
270 {
271 /* VUE Header */
272 .location = 0,
273 .binding = 0,
274 .format = VK_FORMAT_R32G32B32A32_UINT,
275 .offset = 0
276 },
277 {
278 /* Position */
279 .location = 1,
280 .binding = 1,
281 .format = VK_FORMAT_R32G32_SFLOAT,
282 .offset = 0
283 },
284 {
285 /* Texture Coordinate */
286 .location = 2,
287 .binding = 1,
288 .format = VK_FORMAT_R32G32B32_SFLOAT,
289 .offset = 8
290 }
291 }
292 };
293
294 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
295 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
296 .bindingCount = 1,
297 .pBindings = (VkDescriptorSetLayoutBinding[]) {
298 {
299 .binding = 0,
300 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
301 .descriptorCount = 1,
302 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
303 .pImmutableSamplers = NULL
304 },
305 }
306 };
307 result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
308 &ds_layout_info,
309 &device->meta_state.alloc,
310 &device->meta_state.blit.ds_layout);
311 if (result != VK_SUCCESS)
312 goto fail_render_pass;
313
314 result = anv_CreatePipelineLayout(anv_device_to_handle(device),
315 &(VkPipelineLayoutCreateInfo) {
316 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
317 .setLayoutCount = 1,
318 .pSetLayouts = &device->meta_state.blit.ds_layout,
319 },
320 &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout);
321 if (result != VK_SUCCESS)
322 goto fail_descriptor_set_layout;
323
324 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
325 {
326 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
327 .stage = VK_SHADER_STAGE_VERTEX_BIT,
328 .module = anv_shader_module_to_handle(&vs),
329 .pName = "main",
330 .pSpecializationInfo = NULL
331 }, {
332 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
333 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
334 .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
335 .pName = "main",
336 .pSpecializationInfo = NULL
337 },
338 };
339
340 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
341 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
342 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
343 .pStages = pipeline_shader_stages,
344 .pVertexInputState = &vi_create_info,
345 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
346 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
347 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
348 .primitiveRestartEnable = false,
349 },
350 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
351 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
352 .viewportCount = 1,
353 .scissorCount = 1,
354 },
355 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
356 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
357 .rasterizerDiscardEnable = false,
358 .polygonMode = VK_POLYGON_MODE_FILL,
359 .cullMode = VK_CULL_MODE_NONE,
360 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
361 },
362 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
363 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
364 .rasterizationSamples = 1,
365 .sampleShadingEnable = false,
366 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
367 },
368 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
369 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
370 .attachmentCount = 1,
371 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
372 { .colorWriteMask =
373 VK_COLOR_COMPONENT_A_BIT |
374 VK_COLOR_COMPONENT_R_BIT |
375 VK_COLOR_COMPONENT_G_BIT |
376 VK_COLOR_COMPONENT_B_BIT },
377 }
378 },
379 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
380 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
381 .dynamicStateCount = 9,
382 .pDynamicStates = (VkDynamicState[]) {
383 VK_DYNAMIC_STATE_VIEWPORT,
384 VK_DYNAMIC_STATE_SCISSOR,
385 VK_DYNAMIC_STATE_LINE_WIDTH,
386 VK_DYNAMIC_STATE_DEPTH_BIAS,
387 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
388 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
389 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
390 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
391 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
392 },
393 },
394 .flags = 0,
395 .layout = device->meta_state.blit.pipeline_layout,
396 .renderPass = device->meta_state.blit.render_pass,
397 .subpass = 0,
398 };
399
400 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
401 .color_attachment_count = -1,
402 .use_repclear = false,
403 .disable_viewport = true,
404 .disable_scissor = true,
405 .disable_vs = true,
406 .use_rectlist = true
407 };
408
409 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
410 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
411 VK_NULL_HANDLE,
412 &vk_pipeline_info, &anv_pipeline_info,
413 &device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src);
414 if (result != VK_SUCCESS)
415 goto fail_pipeline_layout;
416
417 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
418 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
419 VK_NULL_HANDLE,
420 &vk_pipeline_info, &anv_pipeline_info,
421 &device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src);
422 if (result != VK_SUCCESS)
423 goto fail_pipeline_1d;
424
425 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
426 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
427 VK_NULL_HANDLE,
428 &vk_pipeline_info, &anv_pipeline_info,
429 &device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src);
430 if (result != VK_SUCCESS)
431 goto fail_pipeline_2d;
432
433 ralloc_free(vs.nir);
434 ralloc_free(fs_1d.nir);
435 ralloc_free(fs_2d.nir);
436 ralloc_free(fs_3d.nir);
437
438 return VK_SUCCESS;
439
440 fail_pipeline_2d:
441 anv_DestroyPipeline(anv_device_to_handle(device),
442 device->meta_state.blit.pipeline_2d_src,
443 &device->meta_state.alloc);
444
445 fail_pipeline_1d:
446 anv_DestroyPipeline(anv_device_to_handle(device),
447 device->meta_state.blit.pipeline_1d_src,
448 &device->meta_state.alloc);
449
450 fail_pipeline_layout:
451 anv_DestroyPipelineLayout(anv_device_to_handle(device),
452 device->meta_state.blit.pipeline_layout,
453 &device->meta_state.alloc);
454 fail_descriptor_set_layout:
455 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
456 device->meta_state.blit.ds_layout,
457 &device->meta_state.alloc);
458 fail_render_pass:
459 anv_DestroyRenderPass(anv_device_to_handle(device),
460 device->meta_state.blit.render_pass,
461 &device->meta_state.alloc);
462
463 ralloc_free(vs.nir);
464 ralloc_free(fs_1d.nir);
465 ralloc_free(fs_2d.nir);
466 ralloc_free(fs_3d.nir);
467 fail:
468 return result;
469 }
470
471 static void
472 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
473 struct anv_meta_saved_state *saved_state)
474 {
475 anv_meta_save(saved_state, cmd_buffer,
476 (1 << VK_DYNAMIC_STATE_VIEWPORT));
477 }
478
479 struct blit_region {
480 VkOffset3D src_offset;
481 VkExtent3D src_extent;
482 VkOffset3D dest_offset;
483 VkExtent3D dest_extent;
484 };
485
486 /* Returns the user-provided VkBufferImageCopy::imageOffset in units of
487 * elements rather than texels. One element equals one texel or one block
488 * if Image is uncompressed or compressed, respectively.
489 */
490 static struct VkOffset3D
491 meta_region_offset_el(const struct anv_image * image,
492 const struct VkOffset3D * offset)
493 {
494 const struct isl_format_layout * isl_layout = image->format->isl_layout;
495 return (VkOffset3D) {
496 .x = offset->x / isl_layout->bw,
497 .y = offset->y / isl_layout->bh,
498 .z = offset->z / isl_layout->bd,
499 };
500 }
501
502 /* Returns the user-provided VkBufferImageCopy::imageExtent in units of
503 * elements rather than texels. One element equals one texel or one block
504 * if Image is uncompressed or compressed, respectively.
505 */
506 static struct VkExtent3D
507 meta_region_extent_el(const VkFormat format,
508 const struct VkExtent3D * extent)
509 {
510 const struct isl_format_layout * isl_layout =
511 anv_format_for_vk_format(format)->isl_layout;
512 return (VkExtent3D) {
513 .width = DIV_ROUND_UP(extent->width , isl_layout->bw),
514 .height = DIV_ROUND_UP(extent->height, isl_layout->bh),
515 .depth = DIV_ROUND_UP(extent->depth , isl_layout->bd),
516 };
517 }
518
519 static void
520 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
521 struct anv_image *src_image,
522 struct anv_image_view *src_iview,
523 VkOffset3D src_offset,
524 VkExtent3D src_extent,
525 struct anv_image *dest_image,
526 struct anv_image_view *dest_iview,
527 VkOffset3D dest_offset,
528 VkExtent3D dest_extent,
529 VkFilter blit_filter)
530 {
531 struct anv_device *device = cmd_buffer->device;
532 VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1;
533
534 struct blit_vb_data {
535 float pos[2];
536 float tex_coord[3];
537 } *vb_data;
538
539 assert(src_image->samples == dest_image->samples);
540
541 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
542
543 struct anv_state vb_state =
544 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
545 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
546 vb_data = vb_state.map + sizeof(struct anv_vue_header);
547
548 vb_data[0] = (struct blit_vb_data) {
549 .pos = {
550 dest_offset.x + dest_extent.width,
551 dest_offset.y + dest_extent.height,
552 },
553 .tex_coord = {
554 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
555 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
556 (float)src_offset.z / (float)src_iview->extent.depth,
557 },
558 };
559
560 vb_data[1] = (struct blit_vb_data) {
561 .pos = {
562 dest_offset.x,
563 dest_offset.y + dest_extent.height,
564 },
565 .tex_coord = {
566 (float)src_offset.x / (float)src_iview->extent.width,
567 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
568 (float)src_offset.z / (float)src_iview->extent.depth,
569 },
570 };
571
572 vb_data[2] = (struct blit_vb_data) {
573 .pos = {
574 dest_offset.x,
575 dest_offset.y,
576 },
577 .tex_coord = {
578 (float)src_offset.x / (float)src_iview->extent.width,
579 (float)src_offset.y / (float)src_iview->extent.height,
580 (float)src_offset.z / (float)src_iview->extent.depth,
581 },
582 };
583
584 anv_state_clflush(vb_state);
585
586 struct anv_buffer vertex_buffer = {
587 .device = device,
588 .size = vb_size,
589 .bo = &device->dynamic_state_block_pool.bo,
590 .offset = vb_state.offset,
591 };
592
593 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
594 (VkBuffer[]) {
595 anv_buffer_to_handle(&vertex_buffer),
596 anv_buffer_to_handle(&vertex_buffer)
597 },
598 (VkDeviceSize[]) {
599 0,
600 sizeof(struct anv_vue_header),
601 });
602
603 VkSampler sampler;
604 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
605 &(VkSamplerCreateInfo) {
606 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
607 .magFilter = blit_filter,
608 .minFilter = blit_filter,
609 }, &cmd_buffer->pool->alloc, &sampler);
610
611 VkDescriptorSet set;
612 anv_AllocateDescriptorSets(anv_device_to_handle(device),
613 &(VkDescriptorSetAllocateInfo) {
614 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
615 .descriptorPool = dummy_desc_pool,
616 .descriptorSetCount = 1,
617 .pSetLayouts = &device->meta_state.blit.ds_layout
618 }, &set);
619 anv_UpdateDescriptorSets(anv_device_to_handle(device),
620 1, /* writeCount */
621 (VkWriteDescriptorSet[]) {
622 {
623 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
624 .dstSet = set,
625 .dstBinding = 0,
626 .dstArrayElement = 0,
627 .descriptorCount = 1,
628 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
629 .pImageInfo = (VkDescriptorImageInfo[]) {
630 {
631 .sampler = sampler,
632 .imageView = anv_image_view_to_handle(src_iview),
633 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
634 },
635 }
636 }
637 }, 0, NULL);
638
639 VkFramebuffer fb;
640 anv_CreateFramebuffer(anv_device_to_handle(device),
641 &(VkFramebufferCreateInfo) {
642 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
643 .attachmentCount = 1,
644 .pAttachments = (VkImageView[]) {
645 anv_image_view_to_handle(dest_iview),
646 },
647 .width = dest_iview->extent.width,
648 .height = dest_iview->extent.height,
649 .layers = 1
650 }, &cmd_buffer->pool->alloc, &fb);
651
652 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
653 &(VkRenderPassBeginInfo) {
654 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
655 .renderPass = device->meta_state.blit.render_pass,
656 .framebuffer = fb,
657 .renderArea = {
658 .offset = { dest_offset.x, dest_offset.y },
659 .extent = { dest_extent.width, dest_extent.height },
660 },
661 .clearValueCount = 0,
662 .pClearValues = NULL,
663 }, VK_SUBPASS_CONTENTS_INLINE);
664
665 VkPipeline pipeline;
666
667 switch (src_image->type) {
668 case VK_IMAGE_TYPE_1D:
669 pipeline = device->meta_state.blit.pipeline_1d_src;
670 break;
671 case VK_IMAGE_TYPE_2D:
672 pipeline = device->meta_state.blit.pipeline_2d_src;
673 break;
674 case VK_IMAGE_TYPE_3D:
675 pipeline = device->meta_state.blit.pipeline_3d_src;
676 break;
677 default:
678 unreachable(!"bad VkImageType");
679 }
680
681 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
682 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
683 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
684 }
685
686 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
687 &(VkViewport) {
688 .x = 0.0f,
689 .y = 0.0f,
690 .width = dest_iview->extent.width,
691 .height = dest_iview->extent.height,
692 .minDepth = 0.0f,
693 .maxDepth = 1.0f,
694 });
695
696 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
697 VK_PIPELINE_BIND_POINT_GRAPHICS,
698 device->meta_state.blit.pipeline_layout, 0, 1,
699 &set, 0, NULL);
700
701 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
702
703 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
704
705 /* At the point where we emit the draw call, all data from the
706 * descriptor sets, etc. has been used. We are free to delete it.
707 */
708 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
709 anv_DestroySampler(anv_device_to_handle(device), sampler,
710 &cmd_buffer->pool->alloc);
711 anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
712 &cmd_buffer->pool->alloc);
713 }
714
715 static void
716 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
717 const struct anv_meta_saved_state *saved_state)
718 {
719 anv_meta_restore(saved_state, cmd_buffer);
720 }
721
722 static VkFormat
723 vk_format_for_size(int bs)
724 {
725 /* Note: We intentionally use the 4-channel formats whenever we can.
726 * This is so that, when we do a RGB <-> RGBX copy, the two formats will
727 * line up even though one of them is 3/4 the size of the other.
728 */
729 switch (bs) {
730 case 1: return VK_FORMAT_R8_UINT;
731 case 2: return VK_FORMAT_R8G8_UINT;
732 case 3: return VK_FORMAT_R8G8B8_UINT;
733 case 4: return VK_FORMAT_R8G8B8A8_UINT;
734 case 6: return VK_FORMAT_R16G16B16_UINT;
735 case 8: return VK_FORMAT_R16G16B16A16_UINT;
736 case 12: return VK_FORMAT_R32G32B32_UINT;
737 case 16: return VK_FORMAT_R32G32B32A32_UINT;
738 default:
739 unreachable("Invalid format block size");
740 }
741 }
742
743 static void
744 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
745 struct anv_bo *src, uint64_t src_offset,
746 struct anv_bo *dest, uint64_t dest_offset,
747 int width, int height, VkFormat copy_format)
748 {
749 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
750
751 VkImageCreateInfo image_info = {
752 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
753 .imageType = VK_IMAGE_TYPE_2D,
754 .format = copy_format,
755 .extent = {
756 .width = width,
757 .height = height,
758 .depth = 1,
759 },
760 .mipLevels = 1,
761 .arrayLayers = 1,
762 .samples = 1,
763 .tiling = VK_IMAGE_TILING_LINEAR,
764 .usage = 0,
765 .flags = 0,
766 };
767
768 VkImage src_image;
769 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
770 anv_CreateImage(vk_device, &image_info,
771 &cmd_buffer->pool->alloc, &src_image);
772
773 VkImage dest_image;
774 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
775 anv_CreateImage(vk_device, &image_info,
776 &cmd_buffer->pool->alloc, &dest_image);
777
778 /* We could use a vk call to bind memory, but that would require
779 * creating a dummy memory object etc. so there's really no point.
780 */
781 anv_image_from_handle(src_image)->bo = src;
782 anv_image_from_handle(src_image)->offset = src_offset;
783 anv_image_from_handle(dest_image)->bo = dest;
784 anv_image_from_handle(dest_image)->offset = dest_offset;
785
786 struct anv_image_view src_iview;
787 anv_image_view_init(&src_iview, cmd_buffer->device,
788 &(VkImageViewCreateInfo) {
789 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
790 .image = src_image,
791 .viewType = VK_IMAGE_VIEW_TYPE_2D,
792 .format = copy_format,
793 .subresourceRange = {
794 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
795 .baseMipLevel = 0,
796 .levelCount = 1,
797 .baseArrayLayer = 0,
798 .layerCount = 1
799 },
800 },
801 cmd_buffer, 0);
802
803 struct anv_image_view dest_iview;
804 anv_image_view_init(&dest_iview, cmd_buffer->device,
805 &(VkImageViewCreateInfo) {
806 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
807 .image = dest_image,
808 .viewType = VK_IMAGE_VIEW_TYPE_2D,
809 .format = copy_format,
810 .subresourceRange = {
811 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
812 .baseMipLevel = 0,
813 .levelCount = 1,
814 .baseArrayLayer = 0,
815 .layerCount = 1,
816 },
817 },
818 cmd_buffer, 0);
819
820 meta_emit_blit(cmd_buffer,
821 anv_image_from_handle(src_image),
822 &src_iview,
823 (VkOffset3D) { 0, 0, 0 },
824 (VkExtent3D) { width, height, 1 },
825 anv_image_from_handle(dest_image),
826 &dest_iview,
827 (VkOffset3D) { 0, 0, 0 },
828 (VkExtent3D) { width, height, 1 },
829 VK_FILTER_NEAREST);
830
831 anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
832 anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc);
833 }
834
835 void anv_CmdCopyBuffer(
836 VkCommandBuffer commandBuffer,
837 VkBuffer srcBuffer,
838 VkBuffer destBuffer,
839 uint32_t regionCount,
840 const VkBufferCopy* pRegions)
841 {
842 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
843 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
844 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
845
846 struct anv_meta_saved_state saved_state;
847
848 meta_prepare_blit(cmd_buffer, &saved_state);
849
850 for (unsigned r = 0; r < regionCount; r++) {
851 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
852 uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
853 uint64_t copy_size = pRegions[r].size;
854
855 /* First, we compute the biggest format that can be used with the
856 * given offsets and size.
857 */
858 int bs = 16;
859
860 int fs = ffs(src_offset) - 1;
861 if (fs != -1)
862 bs = MIN2(bs, 1 << fs);
863 assert(src_offset % bs == 0);
864
865 fs = ffs(dest_offset) - 1;
866 if (fs != -1)
867 bs = MIN2(bs, 1 << fs);
868 assert(dest_offset % bs == 0);
869
870 fs = ffs(pRegions[r].size) - 1;
871 if (fs != -1)
872 bs = MIN2(bs, 1 << fs);
873 assert(pRegions[r].size % bs == 0);
874
875 VkFormat copy_format = vk_format_for_size(bs);
876
877 /* This is maximum possible width/height our HW can handle */
878 uint64_t max_surface_dim = 1 << 14;
879
880 /* First, we make a bunch of max-sized copies */
881 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
882 while (copy_size >= max_copy_size) {
883 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
884 dest_buffer->bo, dest_offset,
885 max_surface_dim, max_surface_dim, copy_format);
886 copy_size -= max_copy_size;
887 src_offset += max_copy_size;
888 dest_offset += max_copy_size;
889 }
890
891 uint64_t height = copy_size / (max_surface_dim * bs);
892 assert(height < max_surface_dim);
893 if (height != 0) {
894 uint64_t rect_copy_size = height * max_surface_dim * bs;
895 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
896 dest_buffer->bo, dest_offset,
897 max_surface_dim, height, copy_format);
898 copy_size -= rect_copy_size;
899 src_offset += rect_copy_size;
900 dest_offset += rect_copy_size;
901 }
902
903 if (copy_size != 0) {
904 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
905 dest_buffer->bo, dest_offset,
906 copy_size / bs, 1, copy_format);
907 }
908 }
909
910 meta_finish_blit(cmd_buffer, &saved_state);
911 }
912
913 void anv_CmdUpdateBuffer(
914 VkCommandBuffer commandBuffer,
915 VkBuffer dstBuffer,
916 VkDeviceSize dstOffset,
917 VkDeviceSize dataSize,
918 const uint32_t* pData)
919 {
920 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
921 ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
922 struct anv_meta_saved_state saved_state;
923
924 meta_prepare_blit(cmd_buffer, &saved_state);
925
926 /* We can't quite grab a full block because the state stream needs a
927 * little data at the top to build its linked list.
928 */
929 const uint32_t max_update_size =
930 cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
931
932 assert(max_update_size < (1 << 14) * 4);
933
934 while (dataSize) {
935 const uint32_t copy_size = MIN2(dataSize, max_update_size);
936
937 struct anv_state tmp_data =
938 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
939
940 memcpy(tmp_data.map, pData, copy_size);
941
942 VkFormat format;
943 int bs;
944 if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
945 format = VK_FORMAT_R32G32B32A32_UINT;
946 bs = 16;
947 } else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
948 format = VK_FORMAT_R32G32_UINT;
949 bs = 8;
950 } else {
951 assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
952 format = VK_FORMAT_R32_UINT;
953 bs = 4;
954 }
955
956 do_buffer_copy(cmd_buffer,
957 &cmd_buffer->device->dynamic_state_block_pool.bo,
958 tmp_data.offset,
959 dst_buffer->bo, dst_buffer->offset + dstOffset,
960 copy_size / bs, 1, format);
961
962 dataSize -= copy_size;
963 dstOffset += copy_size;
964 pData = (void *)pData + copy_size;
965 }
966 }
967
968 static VkFormat
969 choose_iview_format(struct anv_image *image, VkImageAspectFlagBits aspect)
970 {
971 assert(__builtin_popcount(aspect) == 1);
972
973 struct isl_surf *surf =
974 &anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
975
976 /* vkCmdCopyImage behaves like memcpy. Therefore we choose identical UINT
977 * formats for the source and destination image views.
978 *
979 * From the Vulkan spec (2015-12-30):
980 *
981 * vkCmdCopyImage performs image copies in a similar manner to a host
982 * memcpy. It does not perform general-purpose conversions such as
983 * scaling, resizing, blending, color-space conversion, or format
984 * conversions. Rather, it simply copies raw image data. vkCmdCopyImage
985 * can copy between images with different formats, provided the formats
986 * are compatible as defined below.
987 *
988 * [The spec later defines compatibility as having the same number of
989 * bytes per block].
990 */
991 return vk_format_for_size(isl_format_layouts[surf->format].bs);
992 }
993
994 static VkFormat
995 choose_buffer_format(struct anv_image *image, VkImageAspectFlagBits aspect)
996 {
997 assert(__builtin_popcount(aspect) == 1);
998
999 /* vkCmdCopy* commands behave like memcpy. Therefore we choose
1000 * compatable UINT formats for the source and destination image views.
1001 *
1002 * For the buffer, we go back to the original image format and get a
1003 * the format as if it were linear. This way, for RGB formats, we get
1004 * an RGB format here even if the tiled image is RGBA. XXX: This doesn't
1005 * work if the buffer is the destination.
1006 */
1007 enum isl_format linear_format = anv_get_isl_format(image->vk_format, aspect,
1008 VK_IMAGE_TILING_LINEAR,
1009 NULL);
1010
1011 return vk_format_for_size(isl_format_layouts[linear_format].bs);
1012 }
1013
1014 void anv_CmdCopyImage(
1015 VkCommandBuffer commandBuffer,
1016 VkImage srcImage,
1017 VkImageLayout srcImageLayout,
1018 VkImage destImage,
1019 VkImageLayout destImageLayout,
1020 uint32_t regionCount,
1021 const VkImageCopy* pRegions)
1022 {
1023 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1024 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1025 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1026 struct anv_meta_saved_state saved_state;
1027
1028 /* From the Vulkan 1.0 spec:
1029 *
1030 * vkCmdCopyImage can be used to copy image data between multisample
1031 * images, but both images must have the same number of samples.
1032 */
1033 assert(src_image->samples == dest_image->samples);
1034
1035 meta_prepare_blit(cmd_buffer, &saved_state);
1036
1037 for (unsigned r = 0; r < regionCount; r++) {
1038 assert(pRegions[r].srcSubresource.aspectMask ==
1039 pRegions[r].dstSubresource.aspectMask);
1040
1041 VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
1042
1043 VkFormat src_format = choose_iview_format(src_image, aspect);
1044 VkFormat dst_format = choose_iview_format(dest_image, aspect);
1045
1046 struct anv_image_view src_iview;
1047 anv_image_view_init(&src_iview, cmd_buffer->device,
1048 &(VkImageViewCreateInfo) {
1049 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1050 .image = srcImage,
1051 .viewType = anv_meta_get_view_type(src_image),
1052 .format = src_format,
1053 .subresourceRange = {
1054 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1055 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
1056 .levelCount = 1,
1057 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
1058 .layerCount = pRegions[r].dstSubresource.layerCount,
1059 },
1060 },
1061 cmd_buffer, 0);
1062
1063 const VkOffset3D dest_offset = {
1064 .x = pRegions[r].dstOffset.x,
1065 .y = pRegions[r].dstOffset.y,
1066 .z = 0,
1067 };
1068
1069 unsigned num_slices;
1070 if (src_image->type == VK_IMAGE_TYPE_3D) {
1071 assert(pRegions[r].srcSubresource.layerCount == 1 &&
1072 pRegions[r].dstSubresource.layerCount == 1);
1073 num_slices = pRegions[r].extent.depth;
1074 } else {
1075 assert(pRegions[r].srcSubresource.layerCount ==
1076 pRegions[r].dstSubresource.layerCount);
1077 assert(pRegions[r].extent.depth == 1);
1078 num_slices = pRegions[r].dstSubresource.layerCount;
1079 }
1080
1081 const uint32_t dest_base_array_slice =
1082 meta_blit_get_dest_view_base_array_slice(dest_image,
1083 &pRegions[r].dstSubresource,
1084 &pRegions[r].dstOffset);
1085
1086 for (unsigned slice = 0; slice < num_slices; slice++) {
1087 VkOffset3D src_offset = pRegions[r].srcOffset;
1088 src_offset.z += slice;
1089
1090 struct anv_image_view dest_iview;
1091 anv_image_view_init(&dest_iview, cmd_buffer->device,
1092 &(VkImageViewCreateInfo) {
1093 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1094 .image = destImage,
1095 .viewType = anv_meta_get_view_type(dest_image),
1096 .format = dst_format,
1097 .subresourceRange = {
1098 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1099 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
1100 .levelCount = 1,
1101 .baseArrayLayer = dest_base_array_slice + slice,
1102 .layerCount = 1
1103 },
1104 },
1105 cmd_buffer, 0);
1106
1107 meta_emit_blit(cmd_buffer,
1108 src_image, &src_iview,
1109 src_offset,
1110 pRegions[r].extent,
1111 dest_image, &dest_iview,
1112 dest_offset,
1113 pRegions[r].extent,
1114 VK_FILTER_NEAREST);
1115 }
1116 }
1117
1118 meta_finish_blit(cmd_buffer, &saved_state);
1119 }
1120
1121 void anv_CmdBlitImage(
1122 VkCommandBuffer commandBuffer,
1123 VkImage srcImage,
1124 VkImageLayout srcImageLayout,
1125 VkImage destImage,
1126 VkImageLayout destImageLayout,
1127 uint32_t regionCount,
1128 const VkImageBlit* pRegions,
1129 VkFilter filter)
1130
1131 {
1132 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1133 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1134 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1135 struct anv_meta_saved_state saved_state;
1136
1137 /* From the Vulkan 1.0 spec:
1138 *
1139 * vkCmdBlitImage must not be used for multisampled source or
1140 * destination images. Use vkCmdResolveImage for this purpose.
1141 */
1142 assert(src_image->samples == 1);
1143 assert(dest_image->samples == 1);
1144
1145 anv_finishme("respect VkFilter");
1146
1147 meta_prepare_blit(cmd_buffer, &saved_state);
1148
1149 for (unsigned r = 0; r < regionCount; r++) {
1150 struct anv_image_view src_iview;
1151 anv_image_view_init(&src_iview, cmd_buffer->device,
1152 &(VkImageViewCreateInfo) {
1153 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1154 .image = srcImage,
1155 .viewType = anv_meta_get_view_type(src_image),
1156 .format = src_image->vk_format,
1157 .subresourceRange = {
1158 .aspectMask = pRegions[r].srcSubresource.aspectMask,
1159 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
1160 .levelCount = 1,
1161 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
1162 .layerCount = 1
1163 },
1164 },
1165 cmd_buffer, 0);
1166
1167 const VkOffset3D dest_offset = {
1168 .x = pRegions[r].dstOffsets[0].x,
1169 .y = pRegions[r].dstOffsets[0].y,
1170 .z = 0,
1171 };
1172
1173 if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x ||
1174 pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y ||
1175 pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x ||
1176 pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y)
1177 anv_finishme("FINISHME: Allow flipping in blits");
1178
1179 const VkExtent3D dest_extent = {
1180 .width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x,
1181 .height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y,
1182 };
1183
1184 const VkExtent3D src_extent = {
1185 .width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x,
1186 .height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y,
1187 };
1188
1189 const uint32_t dest_array_slice =
1190 meta_blit_get_dest_view_base_array_slice(dest_image,
1191 &pRegions[r].dstSubresource,
1192 &pRegions[r].dstOffsets[0]);
1193
1194 if (pRegions[r].srcSubresource.layerCount > 1)
1195 anv_finishme("FINISHME: copy multiple array layers");
1196
1197 if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z ||
1198 pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z)
1199 anv_finishme("FINISHME: copy multiple depth layers");
1200
1201 struct anv_image_view dest_iview;
1202 anv_image_view_init(&dest_iview, cmd_buffer->device,
1203 &(VkImageViewCreateInfo) {
1204 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1205 .image = destImage,
1206 .viewType = anv_meta_get_view_type(dest_image),
1207 .format = dest_image->vk_format,
1208 .subresourceRange = {
1209 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1210 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
1211 .levelCount = 1,
1212 .baseArrayLayer = dest_array_slice,
1213 .layerCount = 1
1214 },
1215 },
1216 cmd_buffer, 0);
1217
1218 meta_emit_blit(cmd_buffer,
1219 src_image, &src_iview,
1220 pRegions[r].srcOffsets[0], src_extent,
1221 dest_image, &dest_iview,
1222 dest_offset, dest_extent,
1223 filter);
1224 }
1225
1226 meta_finish_blit(cmd_buffer, &saved_state);
1227 }
1228
1229 static struct anv_image *
1230 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
1231 VkImageUsageFlags usage,
1232 VkImageType image_type,
1233 const VkAllocationCallbacks *alloc,
1234 const VkBufferImageCopy *copy)
1235 {
1236 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
1237
1238 VkExtent3D extent = copy->imageExtent;
1239 if (copy->bufferRowLength)
1240 extent.width = copy->bufferRowLength;
1241 if (copy->bufferImageHeight)
1242 extent.height = copy->bufferImageHeight;
1243 extent.depth = 1;
1244
1245 VkImage vk_image;
1246 VkResult result = anv_CreateImage(vk_device,
1247 &(VkImageCreateInfo) {
1248 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1249 .imageType = VK_IMAGE_TYPE_2D,
1250 .format = format,
1251 .extent = extent,
1252 .mipLevels = 1,
1253 .arrayLayers = 1,
1254 .samples = 1,
1255 .tiling = VK_IMAGE_TILING_LINEAR,
1256 .usage = usage,
1257 .flags = 0,
1258 }, alloc, &vk_image);
1259 assert(result == VK_SUCCESS);
1260
1261 ANV_FROM_HANDLE(anv_image, image, vk_image);
1262
1263 /* We could use a vk call to bind memory, but that would require
1264 * creating a dummy memory object etc. so there's really no point.
1265 */
1266 image->bo = buffer->bo;
1267 image->offset = buffer->offset + copy->bufferOffset;
1268
1269 return image;
1270 }
1271
1272 void anv_CmdCopyBufferToImage(
1273 VkCommandBuffer commandBuffer,
1274 VkBuffer srcBuffer,
1275 VkImage destImage,
1276 VkImageLayout destImageLayout,
1277 uint32_t regionCount,
1278 const VkBufferImageCopy* pRegions)
1279 {
1280 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1281 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1282 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1283 struct anv_meta_saved_state saved_state;
1284
1285 /* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
1286 * VK_SAMPLE_COUNT_1_BIT."
1287 */
1288 assert(dest_image->samples == 1);
1289
1290 meta_prepare_blit(cmd_buffer, &saved_state);
1291
1292 for (unsigned r = 0; r < regionCount; r++) {
1293 VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
1294
1295 VkFormat image_format = choose_iview_format(dest_image, aspect);
1296 VkFormat buffer_format = choose_buffer_format(dest_image, aspect);
1297
1298 struct anv_image *src_image =
1299 make_image_for_buffer(vk_device, srcBuffer, buffer_format,
1300 VK_IMAGE_USAGE_SAMPLED_BIT,
1301 dest_image->type, &cmd_buffer->pool->alloc,
1302 &pRegions[r]);
1303
1304 const uint32_t dest_base_array_slice =
1305 meta_blit_get_dest_view_base_array_slice(dest_image,
1306 &pRegions[r].imageSubresource,
1307 &pRegions[r].imageOffset);
1308
1309 unsigned num_slices_3d = pRegions[r].imageExtent.depth;
1310 unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
1311 unsigned slice_3d = 0;
1312 unsigned slice_array = 0;
1313 while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
1314 struct anv_image_view src_iview;
1315 anv_image_view_init(&src_iview, cmd_buffer->device,
1316 &(VkImageViewCreateInfo) {
1317 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1318 .image = anv_image_to_handle(src_image),
1319 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1320 .format = buffer_format,
1321 .subresourceRange = {
1322 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1323 .baseMipLevel = 0,
1324 .levelCount = 1,
1325 .baseArrayLayer = 0,
1326 .layerCount = 1,
1327 },
1328 },
1329 cmd_buffer, 0);
1330
1331 uint32_t img_x = 0;
1332 uint32_t img_y = 0;
1333 uint32_t img_o = 0;
1334 if (isl_format_is_compressed(dest_image->format->surface_format))
1335 isl_surf_get_image_intratile_offset_el(&cmd_buffer->device->isl_dev,
1336 &dest_image->color_surface.isl,
1337 pRegions[r].imageSubresource.mipLevel,
1338 pRegions[r].imageSubresource.baseArrayLayer + slice_array,
1339 pRegions[r].imageOffset.z + slice_3d,
1340 &img_o, &img_x, &img_y);
1341
1342 VkOffset3D dest_offset_el = meta_region_offset_el(dest_image, & pRegions[r].imageOffset);
1343 dest_offset_el.x += img_x;
1344 dest_offset_el.y += img_y;
1345 dest_offset_el.z = 0;
1346
1347 struct anv_image_view dest_iview;
1348 anv_image_view_init(&dest_iview, cmd_buffer->device,
1349 &(VkImageViewCreateInfo) {
1350 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1351 .image = anv_image_to_handle(dest_image),
1352 .viewType = anv_meta_get_view_type(dest_image),
1353 .format = image_format,
1354 .subresourceRange = {
1355 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1356 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1357 .levelCount = 1,
1358 .baseArrayLayer = dest_base_array_slice +
1359 slice_array + slice_3d,
1360 .layerCount = 1
1361 },
1362 },
1363 cmd_buffer, img_o);
1364
1365 const VkExtent3D img_extent_el = meta_region_extent_el(dest_image->vk_format,
1366 &pRegions[r].imageExtent);
1367
1368 meta_emit_blit(cmd_buffer,
1369 src_image,
1370 &src_iview,
1371 (VkOffset3D){0, 0, 0},
1372 img_extent_el,
1373 dest_image,
1374 &dest_iview,
1375 dest_offset_el,
1376 img_extent_el,
1377 VK_FILTER_NEAREST);
1378
1379 /* Once we've done the blit, all of the actual information about
1380 * the image is embedded in the command buffer so we can just
1381 * increment the offset directly in the image effectively
1382 * re-binding it to different backing memory.
1383 */
1384 src_image->offset += src_image->extent.width *
1385 src_image->extent.height *
1386 src_image->format->isl_layout->bs;
1387
1388 if (dest_image->type == VK_IMAGE_TYPE_3D)
1389 slice_3d++;
1390 else
1391 slice_array++;
1392 }
1393
1394 anv_DestroyImage(vk_device, anv_image_to_handle(src_image),
1395 &cmd_buffer->pool->alloc);
1396 }
1397
1398 meta_finish_blit(cmd_buffer, &saved_state);
1399 }
1400
1401 void anv_CmdCopyImageToBuffer(
1402 VkCommandBuffer commandBuffer,
1403 VkImage srcImage,
1404 VkImageLayout srcImageLayout,
1405 VkBuffer destBuffer,
1406 uint32_t regionCount,
1407 const VkBufferImageCopy* pRegions)
1408 {
1409 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1410 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1411 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1412 struct anv_meta_saved_state saved_state;
1413
1414
1415 /* The Vulkan 1.0 spec says "srcImage must have a sample count equal to
1416 * VK_SAMPLE_COUNT_1_BIT."
1417 */
1418 assert(src_image->samples == 1);
1419
1420 meta_prepare_blit(cmd_buffer, &saved_state);
1421
1422 for (unsigned r = 0; r < regionCount; r++) {
1423 VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
1424
1425 VkFormat image_format = choose_iview_format(src_image, aspect);
1426 VkFormat buffer_format = choose_buffer_format(src_image, aspect);
1427
1428 struct anv_image_view src_iview;
1429 anv_image_view_init(&src_iview, cmd_buffer->device,
1430 &(VkImageViewCreateInfo) {
1431 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1432 .image = srcImage,
1433 .viewType = anv_meta_get_view_type(src_image),
1434 .format = image_format,
1435 .subresourceRange = {
1436 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1437 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1438 .levelCount = 1,
1439 .baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer,
1440 .layerCount = pRegions[r].imageSubresource.layerCount,
1441 },
1442 },
1443 cmd_buffer, 0);
1444
1445 struct anv_image *dest_image =
1446 make_image_for_buffer(vk_device, destBuffer, buffer_format,
1447 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
1448 src_image->type, &cmd_buffer->pool->alloc,
1449 &pRegions[r]);
1450
1451 unsigned num_slices;
1452 if (src_image->type == VK_IMAGE_TYPE_3D) {
1453 assert(pRegions[r].imageSubresource.layerCount == 1);
1454 num_slices = pRegions[r].imageExtent.depth;
1455 } else {
1456 assert(pRegions[r].imageExtent.depth == 1);
1457 num_slices = pRegions[r].imageSubresource.layerCount;
1458 }
1459
1460 for (unsigned slice = 0; slice < num_slices; slice++) {
1461 VkOffset3D src_offset = pRegions[r].imageOffset;
1462 src_offset.z += slice;
1463
1464 struct anv_image_view dest_iview;
1465 anv_image_view_init(&dest_iview, cmd_buffer->device,
1466 &(VkImageViewCreateInfo) {
1467 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1468 .image = anv_image_to_handle(dest_image),
1469 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1470 .format = buffer_format,
1471 .subresourceRange = {
1472 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1473 .baseMipLevel = 0,
1474 .levelCount = 1,
1475 .baseArrayLayer = 0,
1476 .layerCount = 1
1477 },
1478 },
1479 cmd_buffer, 0);
1480
1481 meta_emit_blit(cmd_buffer,
1482 anv_image_from_handle(srcImage),
1483 &src_iview,
1484 src_offset,
1485 pRegions[r].imageExtent,
1486 dest_image,
1487 &dest_iview,
1488 (VkOffset3D) { 0, 0, 0 },
1489 pRegions[r].imageExtent,
1490 VK_FILTER_NEAREST);
1491
1492 /* Once we've done the blit, all of the actual information about
1493 * the image is embedded in the command buffer so we can just
1494 * increment the offset directly in the image effectively
1495 * re-binding it to different backing memory.
1496 */
1497 dest_image->offset += dest_image->extent.width *
1498 dest_image->extent.height *
1499 src_image->format->isl_layout->bs;
1500 }
1501
1502 anv_DestroyImage(vk_device, anv_image_to_handle(dest_image),
1503 &cmd_buffer->pool->alloc);
1504 }
1505
1506 meta_finish_blit(cmd_buffer, &saved_state);
1507 }
1508
1509 void anv_CmdResolveImage(
1510 VkCommandBuffer commandBuffer,
1511 VkImage srcImage,
1512 VkImageLayout srcImageLayout,
1513 VkImage destImage,
1514 VkImageLayout destImageLayout,
1515 uint32_t regionCount,
1516 const VkImageResolve* pRegions)
1517 {
1518 stub();
1519 }
1520
1521 static void *
1522 meta_alloc(void* _device, size_t size, size_t alignment,
1523 VkSystemAllocationScope allocationScope)
1524 {
1525 struct anv_device *device = _device;
1526 return device->alloc.pfnAllocation(device->alloc.pUserData, size, alignment,
1527 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1528 }
1529
1530 static void *
1531 meta_realloc(void* _device, void *original, size_t size, size_t alignment,
1532 VkSystemAllocationScope allocationScope)
1533 {
1534 struct anv_device *device = _device;
1535 return device->alloc.pfnReallocation(device->alloc.pUserData, original,
1536 size, alignment,
1537 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1538 }
1539
1540 static void
1541 meta_free(void* _device, void *data)
1542 {
1543 struct anv_device *device = _device;
1544 return device->alloc.pfnFree(device->alloc.pUserData, data);
1545 }
1546
1547 VkResult
1548 anv_device_init_meta(struct anv_device *device)
1549 {
1550 device->meta_state.alloc = (VkAllocationCallbacks) {
1551 .pUserData = device,
1552 .pfnAllocation = meta_alloc,
1553 .pfnReallocation = meta_realloc,
1554 .pfnFree = meta_free,
1555 };
1556
1557 VkResult result;
1558 result = anv_device_init_meta_clear_state(device);
1559 if (result != VK_SUCCESS)
1560 return result;
1561
1562 result = anv_device_init_meta_blit_state(device);
1563 if (result != VK_SUCCESS) {
1564 anv_device_finish_meta_clear_state(device);
1565 return result;
1566 }
1567
1568 return VK_SUCCESS;
1569 }
1570
1571 void
1572 anv_device_finish_meta(struct anv_device *device)
1573 {
1574 anv_device_finish_meta_clear_state(device);
1575
1576 /* Blit */
1577 anv_DestroyRenderPass(anv_device_to_handle(device),
1578 device->meta_state.blit.render_pass,
1579 &device->meta_state.alloc);
1580 anv_DestroyPipeline(anv_device_to_handle(device),
1581 device->meta_state.blit.pipeline_1d_src,
1582 &device->meta_state.alloc);
1583 anv_DestroyPipeline(anv_device_to_handle(device),
1584 device->meta_state.blit.pipeline_2d_src,
1585 &device->meta_state.alloc);
1586 anv_DestroyPipeline(anv_device_to_handle(device),
1587 device->meta_state.blit.pipeline_3d_src,
1588 &device->meta_state.alloc);
1589 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1590 device->meta_state.blit.pipeline_layout,
1591 &device->meta_state.alloc);
1592 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1593 device->meta_state.blit.ds_layout,
1594 &device->meta_state.alloc);
1595 }