Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_meta.h"
31 #include "anv_meta_clear.h"
32 #include "anv_private.h"
33 #include "anv_nir_builder.h"
34
35 struct anv_render_pass anv_meta_dummy_renderpass = {0};
36
37 static nir_shader *
38 build_nir_vertex_shader(bool attr_flat)
39 {
40 nir_builder b;
41
42 const struct glsl_type *vertex_type = glsl_vec4_type();
43
44 nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX);
45
46 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
47 vertex_type, "a_pos");
48 pos_in->data.location = VERT_ATTRIB_GENERIC0;
49 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
50 vertex_type, "gl_Position");
51 pos_in->data.location = VARYING_SLOT_POS;
52 nir_copy_var(&b, pos_out, pos_in);
53
54 /* Add one more pass-through attribute. For clear shaders, this is used
55 * to store the color and for blit shaders it's the texture coordinate.
56 */
57 const struct glsl_type *attr_type = glsl_vec4_type();
58 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
59 attr_type, "a_attr");
60 attr_in->data.location = VERT_ATTRIB_GENERIC1;
61 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
62 attr_type, "v_attr");
63 attr_out->data.location = VARYING_SLOT_VAR0;
64 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
65 INTERP_QUALIFIER_SMOOTH;
66 nir_copy_var(&b, attr_out, attr_in);
67
68 return b.shader;
69 }
70
71 static nir_shader *
72 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
73 {
74 nir_builder b;
75
76 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
77
78 const struct glsl_type *color_type = glsl_vec4_type();
79
80 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
81 glsl_vec4_type(), "v_attr");
82 tex_pos_in->data.location = VARYING_SLOT_VAR0;
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
86 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
87 sampler_type, "s_tex");
88 sampler->data.descriptor_set = 0;
89 sampler->data.binding = 0;
90
91 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
92 tex->sampler_dim = tex_dim;
93 tex->op = nir_texop_tex;
94 tex->src[0].src_type = nir_tex_src_coord;
95 tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
96 tex->dest_type = nir_type_float; /* TODO */
97
98 switch (tex_dim) {
99 case GLSL_SAMPLER_DIM_2D:
100 tex->coord_components = 2;
101 break;
102 case GLSL_SAMPLER_DIM_3D:
103 tex->coord_components = 3;
104 break;
105 default:
106 assert(!"Unsupported texture dimension");
107 }
108
109 tex->sampler = nir_deref_var_create(tex, sampler);
110
111 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
112 nir_builder_instr_insert(&b, &tex->instr);
113
114 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
115 color_type, "f_color");
116 color_out->data.location = FRAG_RESULT_DATA0;
117 nir_store_var(&b, color_out, &tex->dest.ssa);
118
119 return b.shader;
120 }
121
122 void
123 anv_meta_save(struct anv_meta_saved_state *state,
124 const struct anv_cmd_buffer *cmd_buffer,
125 uint32_t dynamic_mask)
126 {
127 state->old_pipeline = cmd_buffer->state.pipeline;
128 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
129 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
130 sizeof(state->old_vertex_bindings));
131
132 state->dynamic_mask = dynamic_mask;
133 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
134 dynamic_mask);
135 }
136
137 void
138 anv_meta_restore(const struct anv_meta_saved_state *state,
139 struct anv_cmd_buffer *cmd_buffer)
140 {
141 cmd_buffer->state.pipeline = state->old_pipeline;
142 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
143 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
144 sizeof(state->old_vertex_bindings));
145
146 cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
147 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
148 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
149
150 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
151 state->dynamic_mask);
152 cmd_buffer->state.dirty |= state->dynamic_mask;
153 }
154
155 static VkImageViewType
156 meta_blit_get_src_image_view_type(const struct anv_image *src_image)
157 {
158 switch (src_image->type) {
159 case VK_IMAGE_TYPE_1D:
160 return VK_IMAGE_VIEW_TYPE_1D;
161 case VK_IMAGE_TYPE_2D:
162 return VK_IMAGE_VIEW_TYPE_2D;
163 case VK_IMAGE_TYPE_3D:
164 return VK_IMAGE_VIEW_TYPE_3D;
165 default:
166 assert(!"bad VkImageType");
167 return 0;
168 }
169 }
170
171 static uint32_t
172 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
173 const VkImageSubresourceCopy *dest_subresource,
174 const VkOffset3D *dest_offset)
175 {
176 switch (dest_image->type) {
177 case VK_IMAGE_TYPE_1D:
178 case VK_IMAGE_TYPE_2D:
179 return dest_subresource->arrayLayer;
180 case VK_IMAGE_TYPE_3D:
181 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
182 * but meta does it anyway. When doing so, we translate the
183 * destination's z offset into an array offset.
184 */
185 return dest_offset->z;
186 default:
187 assert(!"bad VkImageType");
188 return 0;
189 }
190 }
191
192 static void
193 anv_device_init_meta_blit_state(struct anv_device *device)
194 {
195 anv_CreateRenderPass(anv_device_to_handle(device),
196 &(VkRenderPassCreateInfo) {
197 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
198 .attachmentCount = 1,
199 .pAttachments = &(VkAttachmentDescription) {
200 .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
201 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
202 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
203 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
204 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
205 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
206 },
207 .subpassCount = 1,
208 .pSubpasses = &(VkSubpassDescription) {
209 .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION,
210 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
211 .inputCount = 0,
212 .colorCount = 1,
213 .pColorAttachments = &(VkAttachmentReference) {
214 .attachment = 0,
215 .layout = VK_IMAGE_LAYOUT_GENERAL,
216 },
217 .pResolveAttachments = NULL,
218 .depthStencilAttachment = (VkAttachmentReference) {
219 .attachment = VK_ATTACHMENT_UNUSED,
220 .layout = VK_IMAGE_LAYOUT_GENERAL,
221 },
222 .preserveCount = 1,
223 .pPreserveAttachments = &(VkAttachmentReference) {
224 .attachment = 0,
225 .layout = VK_IMAGE_LAYOUT_GENERAL,
226 },
227 },
228 .dependencyCount = 0,
229 }, &device->meta_state.blit.render_pass);
230
231 /* We don't use a vertex shader for clearing, but instead build and pass
232 * the VUEs directly to the rasterization backend. However, we do need
233 * to provide GLSL source for the vertex shader so that the compiler
234 * does not dead-code our inputs.
235 */
236 struct anv_shader_module vsm = {
237 .nir = build_nir_vertex_shader(false),
238 };
239
240 struct anv_shader_module fsm_2d = {
241 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
242 };
243
244 struct anv_shader_module fsm_3d = {
245 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
246 };
247
248 VkShader vs;
249 anv_CreateShader(anv_device_to_handle(device),
250 &(VkShaderCreateInfo) {
251 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
252 .module = anv_shader_module_to_handle(&vsm),
253 .pName = "main",
254 }, &vs);
255
256 VkShader fs_2d;
257 anv_CreateShader(anv_device_to_handle(device),
258 &(VkShaderCreateInfo) {
259 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
260 .module = anv_shader_module_to_handle(&fsm_2d),
261 .pName = "main",
262 }, &fs_2d);
263
264 VkShader fs_3d;
265 anv_CreateShader(anv_device_to_handle(device),
266 &(VkShaderCreateInfo) {
267 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
268 .module = anv_shader_module_to_handle(&fsm_3d),
269 .pName = "main",
270 }, &fs_3d);
271
272 VkPipelineVertexInputStateCreateInfo vi_create_info = {
273 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
274 .bindingCount = 2,
275 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
276 {
277 .binding = 0,
278 .strideInBytes = 0,
279 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
280 },
281 {
282 .binding = 1,
283 .strideInBytes = 5 * sizeof(float),
284 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
285 },
286 },
287 .attributeCount = 3,
288 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
289 {
290 /* VUE Header */
291 .location = 0,
292 .binding = 0,
293 .format = VK_FORMAT_R32G32B32A32_UINT,
294 .offsetInBytes = 0
295 },
296 {
297 /* Position */
298 .location = 1,
299 .binding = 1,
300 .format = VK_FORMAT_R32G32_SFLOAT,
301 .offsetInBytes = 0
302 },
303 {
304 /* Texture Coordinate */
305 .location = 2,
306 .binding = 1,
307 .format = VK_FORMAT_R32G32B32_SFLOAT,
308 .offsetInBytes = 8
309 }
310 }
311 };
312
313 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
314 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
315 .count = 1,
316 .pBinding = (VkDescriptorSetLayoutBinding[]) {
317 {
318 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
319 .arraySize = 1,
320 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
321 .pImmutableSamplers = NULL
322 },
323 }
324 };
325 anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info,
326 &device->meta_state.blit.ds_layout);
327
328 anv_CreatePipelineLayout(anv_device_to_handle(device),
329 &(VkPipelineLayoutCreateInfo) {
330 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
331 .descriptorSetCount = 1,
332 .pSetLayouts = &device->meta_state.blit.ds_layout,
333 },
334 &device->meta_state.blit.pipeline_layout);
335
336 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
337 {
338 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
339 .stage = VK_SHADER_STAGE_VERTEX,
340 .shader = vs,
341 .pSpecializationInfo = NULL
342 }, {
343 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
344 .stage = VK_SHADER_STAGE_FRAGMENT,
345 .shader = {0}, /* TEMPLATE VALUE! FILL ME IN! */
346 .pSpecializationInfo = NULL
347 },
348 };
349
350 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
351 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
352 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
353 .pStages = pipeline_shader_stages,
354 .pVertexInputState = &vi_create_info,
355 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
356 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
357 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
358 .primitiveRestartEnable = false,
359 },
360 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
361 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
362 .viewportCount = 1,
363 .scissorCount = 1,
364 },
365 .pRasterState = &(VkPipelineRasterStateCreateInfo) {
366 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTER_STATE_CREATE_INFO,
367 .depthClipEnable = true,
368 .rasterizerDiscardEnable = false,
369 .fillMode = VK_FILL_MODE_SOLID,
370 .cullMode = VK_CULL_MODE_NONE,
371 .frontFace = VK_FRONT_FACE_CCW
372 },
373 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
374 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
375 .rasterSamples = 1,
376 .sampleShadingEnable = false,
377 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
378 },
379 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
380 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
381 .attachmentCount = 1,
382 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
383 { .channelWriteMask = VK_CHANNEL_A_BIT |
384 VK_CHANNEL_R_BIT | VK_CHANNEL_G_BIT | VK_CHANNEL_B_BIT },
385 }
386 },
387 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
388 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
389 .dynamicStateCount = 9,
390 .pDynamicStates = (VkDynamicState[]) {
391 VK_DYNAMIC_STATE_VIEWPORT,
392 VK_DYNAMIC_STATE_SCISSOR,
393 VK_DYNAMIC_STATE_LINE_WIDTH,
394 VK_DYNAMIC_STATE_DEPTH_BIAS,
395 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
396 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
397 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
398 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
399 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
400 },
401 },
402 .flags = 0,
403 .layout = device->meta_state.blit.pipeline_layout,
404 .renderPass = device->meta_state.blit.render_pass,
405 .subpass = 0,
406 };
407
408 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
409 .use_repclear = false,
410 .disable_viewport = true,
411 .disable_scissor = true,
412 .disable_vs = true,
413 .use_rectlist = true
414 };
415
416 pipeline_shader_stages[1].shader = fs_2d;
417 anv_graphics_pipeline_create(anv_device_to_handle(device),
418 &vk_pipeline_info, &anv_pipeline_info,
419 &device->meta_state.blit.pipeline_2d_src);
420
421 pipeline_shader_stages[1].shader = fs_3d;
422 anv_graphics_pipeline_create(anv_device_to_handle(device),
423 &vk_pipeline_info, &anv_pipeline_info,
424 &device->meta_state.blit.pipeline_3d_src);
425
426 anv_DestroyShader(anv_device_to_handle(device), vs);
427 anv_DestroyShader(anv_device_to_handle(device), fs_2d);
428 anv_DestroyShader(anv_device_to_handle(device), fs_3d);
429 ralloc_free(vsm.nir);
430 ralloc_free(fsm_2d.nir);
431 ralloc_free(fsm_3d.nir);
432 }
433
434 static void
435 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
436 struct anv_meta_saved_state *saved_state)
437 {
438 anv_meta_save(saved_state, cmd_buffer,
439 (1 << VK_DYNAMIC_STATE_VIEWPORT));
440 }
441
442 struct blit_region {
443 VkOffset3D src_offset;
444 VkExtent3D src_extent;
445 VkOffset3D dest_offset;
446 VkExtent3D dest_extent;
447 };
448
449 static void
450 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
451 struct anv_image *src_image,
452 struct anv_image_view *src_iview,
453 VkOffset3D src_offset,
454 VkExtent3D src_extent,
455 struct anv_image *dest_image,
456 struct anv_image_view *dest_iview,
457 VkOffset3D dest_offset,
458 VkExtent3D dest_extent,
459 VkTexFilter blit_filter)
460 {
461 struct anv_device *device = cmd_buffer->device;
462 VkDescriptorPool dummy_desc_pool = { .handle = 1 };
463
464 struct blit_vb_data {
465 float pos[2];
466 float tex_coord[3];
467 } *vb_data;
468
469 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
470
471 struct anv_state vb_state =
472 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
473 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
474 vb_data = vb_state.map + sizeof(struct anv_vue_header);
475
476 vb_data[0] = (struct blit_vb_data) {
477 .pos = {
478 dest_offset.x + dest_extent.width,
479 dest_offset.y + dest_extent.height,
480 },
481 .tex_coord = {
482 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
483 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
484 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
485 },
486 };
487
488 vb_data[1] = (struct blit_vb_data) {
489 .pos = {
490 dest_offset.x,
491 dest_offset.y + dest_extent.height,
492 },
493 .tex_coord = {
494 (float)src_offset.x / (float)src_iview->extent.width,
495 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
496 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
497 },
498 };
499
500 vb_data[2] = (struct blit_vb_data) {
501 .pos = {
502 dest_offset.x,
503 dest_offset.y,
504 },
505 .tex_coord = {
506 (float)src_offset.x / (float)src_iview->extent.width,
507 (float)src_offset.y / (float)src_iview->extent.height,
508 (float)src_offset.z / (float)src_iview->extent.depth,
509 },
510 };
511
512 struct anv_buffer vertex_buffer = {
513 .device = device,
514 .size = vb_size,
515 .bo = &device->dynamic_state_block_pool.bo,
516 .offset = vb_state.offset,
517 };
518
519 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
520 (VkBuffer[]) {
521 anv_buffer_to_handle(&vertex_buffer),
522 anv_buffer_to_handle(&vertex_buffer)
523 },
524 (VkDeviceSize[]) {
525 0,
526 sizeof(struct anv_vue_header),
527 });
528
529 VkSampler sampler;
530 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
531 &(VkSamplerCreateInfo) {
532 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
533 .magFilter = blit_filter,
534 .minFilter = blit_filter,
535 }, &sampler);
536
537 VkDescriptorSet set;
538 anv_AllocDescriptorSets(anv_device_to_handle(device), dummy_desc_pool,
539 VK_DESCRIPTOR_SET_USAGE_ONE_SHOT,
540 1, &device->meta_state.blit.ds_layout, &set);
541 anv_UpdateDescriptorSets(anv_device_to_handle(device),
542 1, /* writeCount */
543 (VkWriteDescriptorSet[]) {
544 {
545 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
546 .destSet = set,
547 .destBinding = 0,
548 .destArrayElement = 0,
549 .count = 1,
550 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
551 .pDescriptors = (VkDescriptorInfo[]) {
552 {
553 .imageView = anv_image_view_to_handle(src_iview),
554 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
555 .sampler = sampler,
556 },
557 }
558 }
559 }, 0, NULL);
560
561 VkFramebuffer fb;
562 anv_CreateFramebuffer(anv_device_to_handle(device),
563 &(VkFramebufferCreateInfo) {
564 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
565 .attachmentCount = 1,
566 .pAttachments = (VkImageView[]) {
567 anv_image_view_to_handle(dest_iview),
568 },
569 .width = dest_iview->extent.width,
570 .height = dest_iview->extent.height,
571 .layers = 1
572 }, &fb);
573
574 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
575 &(VkRenderPassBeginInfo) {
576 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
577 .renderPass = device->meta_state.blit.render_pass,
578 .framebuffer = fb,
579 .renderArea = {
580 .offset = { dest_offset.x, dest_offset.y },
581 .extent = { dest_extent.width, dest_extent.height },
582 },
583 .clearValueCount = 0,
584 .pClearValues = NULL,
585 }, VK_RENDER_PASS_CONTENTS_INLINE);
586
587 VkPipeline pipeline;
588
589 switch (src_image->type) {
590 case VK_IMAGE_TYPE_1D:
591 anv_finishme("VK_IMAGE_TYPE_1D");
592 pipeline = device->meta_state.blit.pipeline_2d_src;
593 break;
594 case VK_IMAGE_TYPE_2D:
595 pipeline = device->meta_state.blit.pipeline_2d_src;
596 break;
597 case VK_IMAGE_TYPE_3D:
598 pipeline = device->meta_state.blit.pipeline_3d_src;
599 break;
600 default:
601 unreachable(!"bad VkImageType");
602 }
603
604 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
605 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
606 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
607 }
608
609 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1,
610 &(VkViewport) {
611 .originX = 0.0f,
612 .originY = 0.0f,
613 .width = dest_iview->extent.width,
614 .height = dest_iview->extent.height,
615 .minDepth = 0.0f,
616 .maxDepth = 1.0f,
617 });
618
619 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
620 VK_PIPELINE_BIND_POINT_GRAPHICS,
621 device->meta_state.blit.pipeline_layout, 0, 1,
622 &set, 0, NULL);
623
624 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
625
626 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
627
628 /* At the point where we emit the draw call, all data from the
629 * descriptor sets, etc. has been used. We are free to delete it.
630 */
631 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
632 anv_DestroySampler(anv_device_to_handle(device), sampler);
633 anv_DestroyFramebuffer(anv_device_to_handle(device), fb);
634 }
635
636 static void
637 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
638 const struct anv_meta_saved_state *saved_state)
639 {
640 anv_meta_restore(saved_state, cmd_buffer);
641 }
642
643 static VkFormat
644 vk_format_for_size(int bs)
645 {
646 switch (bs) {
647 case 1: return VK_FORMAT_R8_UINT;
648 case 2: return VK_FORMAT_R8G8_UINT;
649 case 3: return VK_FORMAT_R8G8B8_UINT;
650 case 4: return VK_FORMAT_R8G8B8A8_UINT;
651 case 6: return VK_FORMAT_R16G16B16_UINT;
652 case 8: return VK_FORMAT_R16G16B16A16_UINT;
653 case 12: return VK_FORMAT_R32G32B32_UINT;
654 case 16: return VK_FORMAT_R32G32B32A32_UINT;
655 default:
656 unreachable("Invalid format block size");
657 }
658 }
659
660 static void
661 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
662 struct anv_bo *src, uint64_t src_offset,
663 struct anv_bo *dest, uint64_t dest_offset,
664 int width, int height, VkFormat copy_format)
665 {
666 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
667
668 VkImageCreateInfo image_info = {
669 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
670 .imageType = VK_IMAGE_TYPE_2D,
671 .format = copy_format,
672 .extent = {
673 .width = width,
674 .height = height,
675 .depth = 1,
676 },
677 .mipLevels = 1,
678 .arraySize = 1,
679 .samples = 1,
680 .tiling = VK_IMAGE_TILING_LINEAR,
681 .usage = 0,
682 .flags = 0,
683 };
684
685 VkImage src_image;
686 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
687 anv_CreateImage(vk_device, &image_info, &src_image);
688
689 VkImage dest_image;
690 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
691 anv_CreateImage(vk_device, &image_info, &dest_image);
692
693 /* We could use a vk call to bind memory, but that would require
694 * creating a dummy memory object etc. so there's really no point.
695 */
696 anv_image_from_handle(src_image)->bo = src;
697 anv_image_from_handle(src_image)->offset = src_offset;
698 anv_image_from_handle(dest_image)->bo = dest;
699 anv_image_from_handle(dest_image)->offset = dest_offset;
700
701 struct anv_image_view src_iview;
702 anv_image_view_init(&src_iview, cmd_buffer->device,
703 &(VkImageViewCreateInfo) {
704 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
705 .image = src_image,
706 .viewType = VK_IMAGE_VIEW_TYPE_2D,
707 .format = copy_format,
708 .channels = {
709 VK_CHANNEL_SWIZZLE_R,
710 VK_CHANNEL_SWIZZLE_G,
711 VK_CHANNEL_SWIZZLE_B,
712 VK_CHANNEL_SWIZZLE_A
713 },
714 .subresourceRange = {
715 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
716 .baseMipLevel = 0,
717 .mipLevels = 1,
718 .baseArrayLayer = 0,
719 .arraySize = 1
720 },
721 },
722 cmd_buffer);
723
724 struct anv_image_view dest_iview;
725 anv_image_view_init(&dest_iview, cmd_buffer->device,
726 &(VkImageViewCreateInfo) {
727 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
728 .image = dest_image,
729 .viewType = VK_IMAGE_VIEW_TYPE_2D,
730 .format = copy_format,
731 .channels = {
732 .r = VK_CHANNEL_SWIZZLE_R,
733 .g = VK_CHANNEL_SWIZZLE_G,
734 .b = VK_CHANNEL_SWIZZLE_B,
735 .a = VK_CHANNEL_SWIZZLE_A,
736 },
737 .subresourceRange = {
738 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
739 .baseMipLevel = 0,
740 .mipLevels = 1,
741 .baseArrayLayer = 0,
742 .arraySize = 1,
743 },
744 },
745 cmd_buffer);
746
747 meta_emit_blit(cmd_buffer,
748 anv_image_from_handle(src_image),
749 &src_iview,
750 (VkOffset3D) { 0, 0, 0 },
751 (VkExtent3D) { width, height, 1 },
752 anv_image_from_handle(dest_image),
753 &dest_iview,
754 (VkOffset3D) { 0, 0, 0 },
755 (VkExtent3D) { width, height, 1 },
756 VK_TEX_FILTER_NEAREST);
757
758 anv_DestroyImage(vk_device, src_image);
759 anv_DestroyImage(vk_device, dest_image);
760 }
761
762 void anv_CmdCopyBuffer(
763 VkCmdBuffer cmdBuffer,
764 VkBuffer srcBuffer,
765 VkBuffer destBuffer,
766 uint32_t regionCount,
767 const VkBufferCopy* pRegions)
768 {
769 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
770 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
771 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
772
773 struct anv_meta_saved_state saved_state;
774
775 meta_prepare_blit(cmd_buffer, &saved_state);
776
777 for (unsigned r = 0; r < regionCount; r++) {
778 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
779 uint64_t dest_offset = dest_buffer->offset + pRegions[r].destOffset;
780 uint64_t copy_size = pRegions[r].copySize;
781
782 /* First, we compute the biggest format that can be used with the
783 * given offsets and size.
784 */
785 int bs = 16;
786
787 int fs = ffs(src_offset) - 1;
788 if (fs != -1)
789 bs = MIN2(bs, 1 << fs);
790 assert(src_offset % bs == 0);
791
792 fs = ffs(dest_offset) - 1;
793 if (fs != -1)
794 bs = MIN2(bs, 1 << fs);
795 assert(dest_offset % bs == 0);
796
797 fs = ffs(pRegions[r].copySize) - 1;
798 if (fs != -1)
799 bs = MIN2(bs, 1 << fs);
800 assert(pRegions[r].copySize % bs == 0);
801
802 VkFormat copy_format = vk_format_for_size(bs);
803
804 /* This is maximum possible width/height our HW can handle */
805 uint64_t max_surface_dim = 1 << 14;
806
807 /* First, we make a bunch of max-sized copies */
808 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
809 while (copy_size > max_copy_size) {
810 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
811 dest_buffer->bo, dest_offset,
812 max_surface_dim, max_surface_dim, copy_format);
813 copy_size -= max_copy_size;
814 src_offset += max_copy_size;
815 dest_offset += max_copy_size;
816 }
817
818 uint64_t height = copy_size / (max_surface_dim * bs);
819 assert(height < max_surface_dim);
820 if (height != 0) {
821 uint64_t rect_copy_size = height * max_surface_dim * bs;
822 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
823 dest_buffer->bo, dest_offset,
824 max_surface_dim, height, copy_format);
825 copy_size -= rect_copy_size;
826 src_offset += rect_copy_size;
827 dest_offset += rect_copy_size;
828 }
829
830 if (copy_size != 0) {
831 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
832 dest_buffer->bo, dest_offset,
833 copy_size / bs, 1, copy_format);
834 }
835 }
836
837 meta_finish_blit(cmd_buffer, &saved_state);
838 }
839
840 void anv_CmdCopyImage(
841 VkCmdBuffer cmdBuffer,
842 VkImage srcImage,
843 VkImageLayout srcImageLayout,
844 VkImage destImage,
845 VkImageLayout destImageLayout,
846 uint32_t regionCount,
847 const VkImageCopy* pRegions)
848 {
849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
850 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
851 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
852
853 const VkImageViewType src_iview_type =
854 meta_blit_get_src_image_view_type(src_image);
855
856 struct anv_meta_saved_state saved_state;
857
858 meta_prepare_blit(cmd_buffer, &saved_state);
859
860 for (unsigned r = 0; r < regionCount; r++) {
861 struct anv_image_view src_iview;
862 anv_image_view_init(&src_iview, cmd_buffer->device,
863 &(VkImageViewCreateInfo) {
864 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
865 .image = srcImage,
866 .viewType = src_iview_type,
867 .format = src_image->format->vk_format,
868 .channels = {
869 VK_CHANNEL_SWIZZLE_R,
870 VK_CHANNEL_SWIZZLE_G,
871 VK_CHANNEL_SWIZZLE_B,
872 VK_CHANNEL_SWIZZLE_A
873 },
874 .subresourceRange = {
875 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
876 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
877 .mipLevels = 1,
878 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
879 .arraySize = 1
880 },
881 },
882 cmd_buffer);
883
884 const VkOffset3D dest_offset = {
885 .x = pRegions[r].destOffset.x,
886 .y = pRegions[r].destOffset.y,
887 .z = 0,
888 };
889
890 const uint32_t dest_array_slice =
891 meta_blit_get_dest_view_base_array_slice(dest_image,
892 &pRegions[r].destSubresource,
893 &pRegions[r].destOffset);
894
895 if (pRegions[r].srcSubresource.arraySize > 1)
896 anv_finishme("FINISHME: copy multiple array layers");
897
898 if (pRegions[r].extent.depth > 1)
899 anv_finishme("FINISHME: copy multiple depth layers");
900
901 struct anv_image_view dest_iview;
902 anv_image_view_init(&dest_iview, cmd_buffer->device,
903 &(VkImageViewCreateInfo) {
904 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
905 .image = destImage,
906 .viewType = VK_IMAGE_VIEW_TYPE_2D,
907 .format = dest_image->format->vk_format,
908 .channels = {
909 VK_CHANNEL_SWIZZLE_R,
910 VK_CHANNEL_SWIZZLE_G,
911 VK_CHANNEL_SWIZZLE_B,
912 VK_CHANNEL_SWIZZLE_A
913 },
914 .subresourceRange = {
915 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
916 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
917 .mipLevels = 1,
918 .baseArrayLayer = dest_array_slice,
919 .arraySize = 1
920 },
921 },
922 cmd_buffer);
923
924 meta_emit_blit(cmd_buffer,
925 src_image, &src_iview,
926 pRegions[r].srcOffset,
927 pRegions[r].extent,
928 dest_image, &dest_iview,
929 dest_offset,
930 pRegions[r].extent,
931 VK_TEX_FILTER_NEAREST);
932 }
933
934 meta_finish_blit(cmd_buffer, &saved_state);
935 }
936
937 void anv_CmdBlitImage(
938 VkCmdBuffer cmdBuffer,
939 VkImage srcImage,
940 VkImageLayout srcImageLayout,
941 VkImage destImage,
942 VkImageLayout destImageLayout,
943 uint32_t regionCount,
944 const VkImageBlit* pRegions,
945 VkTexFilter filter)
946
947 {
948 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
949 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
950 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
951
952 const VkImageViewType src_iview_type =
953 meta_blit_get_src_image_view_type(src_image);
954
955 struct anv_meta_saved_state saved_state;
956
957 anv_finishme("respect VkTexFilter");
958
959 meta_prepare_blit(cmd_buffer, &saved_state);
960
961 for (unsigned r = 0; r < regionCount; r++) {
962 struct anv_image_view src_iview;
963 anv_image_view_init(&src_iview, cmd_buffer->device,
964 &(VkImageViewCreateInfo) {
965 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
966 .image = srcImage,
967 .viewType = src_iview_type,
968 .format = src_image->format->vk_format,
969 .channels = {
970 VK_CHANNEL_SWIZZLE_R,
971 VK_CHANNEL_SWIZZLE_G,
972 VK_CHANNEL_SWIZZLE_B,
973 VK_CHANNEL_SWIZZLE_A
974 },
975 .subresourceRange = {
976 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
977 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
978 .mipLevels = 1,
979 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
980 .arraySize = 1
981 },
982 },
983 cmd_buffer);
984
985 const VkOffset3D dest_offset = {
986 .x = pRegions[r].destOffset.x,
987 .y = pRegions[r].destOffset.y,
988 .z = 0,
989 };
990
991 const uint32_t dest_array_slice =
992 meta_blit_get_dest_view_base_array_slice(dest_image,
993 &pRegions[r].destSubresource,
994 &pRegions[r].destOffset);
995
996 if (pRegions[r].srcSubresource.arraySize > 1)
997 anv_finishme("FINISHME: copy multiple array layers");
998
999 if (pRegions[r].destExtent.depth > 1)
1000 anv_finishme("FINISHME: copy multiple depth layers");
1001
1002 struct anv_image_view dest_iview;
1003 anv_image_view_init(&dest_iview, cmd_buffer->device,
1004 &(VkImageViewCreateInfo) {
1005 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1006 .image = destImage,
1007 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1008 .format = dest_image->format->vk_format,
1009 .channels = {
1010 VK_CHANNEL_SWIZZLE_R,
1011 VK_CHANNEL_SWIZZLE_G,
1012 VK_CHANNEL_SWIZZLE_B,
1013 VK_CHANNEL_SWIZZLE_A
1014 },
1015 .subresourceRange = {
1016 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1017 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
1018 .mipLevels = 1,
1019 .baseArrayLayer = dest_array_slice,
1020 .arraySize = 1
1021 },
1022 },
1023 cmd_buffer);
1024
1025 meta_emit_blit(cmd_buffer,
1026 src_image, &src_iview,
1027 pRegions[r].srcOffset,
1028 pRegions[r].srcExtent,
1029 dest_image, &dest_iview,
1030 dest_offset,
1031 pRegions[r].destExtent,
1032 filter);
1033 }
1034
1035 meta_finish_blit(cmd_buffer, &saved_state);
1036 }
1037
1038 static VkImage
1039 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
1040 VkImageUsageFlags usage,
1041 const VkBufferImageCopy *copy)
1042 {
1043 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
1044
1045 VkExtent3D extent = copy->imageExtent;
1046 if (copy->bufferRowLength)
1047 extent.width = copy->bufferRowLength;
1048 if (copy->bufferImageHeight)
1049 extent.height = copy->bufferImageHeight;
1050 extent.depth = 1;
1051
1052 VkImage vk_image;
1053 VkResult result = anv_CreateImage(vk_device,
1054 &(VkImageCreateInfo) {
1055 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1056 .imageType = VK_IMAGE_TYPE_2D,
1057 .format = format,
1058 .extent = extent,
1059 .mipLevels = 1,
1060 .arraySize = 1,
1061 .samples = 1,
1062 .tiling = VK_IMAGE_TILING_LINEAR,
1063 .usage = usage,
1064 .flags = 0,
1065 }, &vk_image);
1066 assert(result == VK_SUCCESS);
1067
1068 ANV_FROM_HANDLE(anv_image, image, vk_image);
1069
1070 /* We could use a vk call to bind memory, but that would require
1071 * creating a dummy memory object etc. so there's really no point.
1072 */
1073 image->bo = buffer->bo;
1074 image->offset = buffer->offset + copy->bufferOffset;
1075
1076 return anv_image_to_handle(image);
1077 }
1078
1079 void anv_CmdCopyBufferToImage(
1080 VkCmdBuffer cmdBuffer,
1081 VkBuffer srcBuffer,
1082 VkImage destImage,
1083 VkImageLayout destImageLayout,
1084 uint32_t regionCount,
1085 const VkBufferImageCopy* pRegions)
1086 {
1087 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1088 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1089 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1090 const VkFormat orig_format = dest_image->format->vk_format;
1091 struct anv_meta_saved_state saved_state;
1092
1093 meta_prepare_blit(cmd_buffer, &saved_state);
1094
1095 for (unsigned r = 0; r < regionCount; r++) {
1096 VkFormat proxy_format = orig_format;
1097 VkImageAspect proxy_aspect = pRegions[r].imageSubresource.aspect;
1098
1099 if (orig_format == VK_FORMAT_S8_UINT) {
1100 proxy_format = VK_FORMAT_R8_UINT;
1101 proxy_aspect = VK_IMAGE_ASPECT_COLOR;
1102 }
1103
1104 VkImage srcImage = make_image_for_buffer(vk_device, srcBuffer,
1105 proxy_format, VK_IMAGE_USAGE_SAMPLED_BIT, &pRegions[r]);
1106
1107 struct anv_image_view src_iview;
1108 anv_image_view_init(&src_iview, cmd_buffer->device,
1109 &(VkImageViewCreateInfo) {
1110 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1111 .image = srcImage,
1112 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1113 .format = proxy_format,
1114 .channels = {
1115 VK_CHANNEL_SWIZZLE_R,
1116 VK_CHANNEL_SWIZZLE_G,
1117 VK_CHANNEL_SWIZZLE_B,
1118 VK_CHANNEL_SWIZZLE_A
1119 },
1120 .subresourceRange = {
1121 .aspectMask = 1 << proxy_aspect,
1122 .baseMipLevel = 0,
1123 .mipLevels = 1,
1124 .baseArrayLayer = 0,
1125 .arraySize = 1
1126 },
1127 },
1128 cmd_buffer);
1129
1130 const VkOffset3D dest_offset = {
1131 .x = pRegions[r].imageOffset.x,
1132 .y = pRegions[r].imageOffset.y,
1133 .z = 0,
1134 };
1135
1136 const uint32_t dest_array_slice =
1137 meta_blit_get_dest_view_base_array_slice(dest_image,
1138 &pRegions[r].imageSubresource,
1139 &pRegions[r].imageOffset);
1140
1141 if (pRegions[r].imageExtent.depth > 1)
1142 anv_finishme("FINISHME: copy multiple depth layers");
1143
1144 struct anv_image_view dest_iview;
1145 anv_image_view_init(&dest_iview, cmd_buffer->device,
1146 &(VkImageViewCreateInfo) {
1147 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1148 .image = anv_image_to_handle(dest_image),
1149 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1150 .format = proxy_format,
1151 .channels = {
1152 VK_CHANNEL_SWIZZLE_R,
1153 VK_CHANNEL_SWIZZLE_G,
1154 VK_CHANNEL_SWIZZLE_B,
1155 VK_CHANNEL_SWIZZLE_A
1156 },
1157 .subresourceRange = {
1158 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1159 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1160 .mipLevels = 1,
1161 .baseArrayLayer = dest_array_slice,
1162 .arraySize = 1
1163 },
1164 },
1165 cmd_buffer);
1166
1167 meta_emit_blit(cmd_buffer,
1168 anv_image_from_handle(srcImage),
1169 &src_iview,
1170 (VkOffset3D) { 0, 0, 0 },
1171 pRegions[r].imageExtent,
1172 dest_image,
1173 &dest_iview,
1174 dest_offset,
1175 pRegions[r].imageExtent,
1176 VK_TEX_FILTER_NEAREST);
1177
1178 anv_DestroyImage(vk_device, srcImage);
1179 }
1180
1181 meta_finish_blit(cmd_buffer, &saved_state);
1182 }
1183
1184 void anv_CmdCopyImageToBuffer(
1185 VkCmdBuffer cmdBuffer,
1186 VkImage srcImage,
1187 VkImageLayout srcImageLayout,
1188 VkBuffer destBuffer,
1189 uint32_t regionCount,
1190 const VkBufferImageCopy* pRegions)
1191 {
1192 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1193 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1194 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1195 struct anv_meta_saved_state saved_state;
1196
1197 const VkImageViewType src_iview_type =
1198 meta_blit_get_src_image_view_type(src_image);
1199
1200 meta_prepare_blit(cmd_buffer, &saved_state);
1201
1202 for (unsigned r = 0; r < regionCount; r++) {
1203 if (pRegions[r].imageSubresource.arraySize > 1)
1204 anv_finishme("FINISHME: copy multiple array layers");
1205
1206 if (pRegions[r].imageExtent.depth > 1)
1207 anv_finishme("FINISHME: copy multiple depth layers");
1208
1209 struct anv_image_view src_iview;
1210 anv_image_view_init(&src_iview, cmd_buffer->device,
1211 &(VkImageViewCreateInfo) {
1212 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1213 .image = srcImage,
1214 .viewType = src_iview_type,
1215 .format = src_image->format->vk_format,
1216 .channels = {
1217 VK_CHANNEL_SWIZZLE_R,
1218 VK_CHANNEL_SWIZZLE_G,
1219 VK_CHANNEL_SWIZZLE_B,
1220 VK_CHANNEL_SWIZZLE_A
1221 },
1222 .subresourceRange = {
1223 .aspectMask = 1 << pRegions[r].imageSubresource.aspect,
1224 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1225 .mipLevels = 1,
1226 .baseArrayLayer = pRegions[r].imageSubresource.arrayLayer,
1227 .arraySize = 1
1228 },
1229 },
1230 cmd_buffer);
1231
1232 VkFormat dest_format = src_image->format->vk_format;
1233 if (dest_format == VK_FORMAT_S8_UINT) {
1234 dest_format = VK_FORMAT_R8_UINT;
1235 }
1236
1237 VkImage destImage = make_image_for_buffer(vk_device, destBuffer,
1238 dest_format, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pRegions[r]);
1239
1240 struct anv_image_view dest_iview;
1241 anv_image_view_init(&dest_iview, cmd_buffer->device,
1242 &(VkImageViewCreateInfo) {
1243 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1244 .image = destImage,
1245 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1246 .format = dest_format,
1247 .channels = {
1248 VK_CHANNEL_SWIZZLE_R,
1249 VK_CHANNEL_SWIZZLE_G,
1250 VK_CHANNEL_SWIZZLE_B,
1251 VK_CHANNEL_SWIZZLE_A
1252 },
1253 .subresourceRange = {
1254 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1255 .baseMipLevel = 0,
1256 .mipLevels = 1,
1257 .baseArrayLayer = 0,
1258 .arraySize = 1
1259 },
1260 },
1261 cmd_buffer);
1262
1263 meta_emit_blit(cmd_buffer,
1264 anv_image_from_handle(srcImage),
1265 &src_iview,
1266 pRegions[r].imageOffset,
1267 pRegions[r].imageExtent,
1268 anv_image_from_handle(destImage),
1269 &dest_iview,
1270 (VkOffset3D) { 0, 0, 0 },
1271 pRegions[r].imageExtent,
1272 VK_TEX_FILTER_NEAREST);
1273
1274 anv_DestroyImage(vk_device, destImage);
1275 }
1276
1277 meta_finish_blit(cmd_buffer, &saved_state);
1278 }
1279
1280 void anv_CmdUpdateBuffer(
1281 VkCmdBuffer cmdBuffer,
1282 VkBuffer destBuffer,
1283 VkDeviceSize destOffset,
1284 VkDeviceSize dataSize,
1285 const uint32_t* pData)
1286 {
1287 stub();
1288 }
1289
1290 void anv_CmdFillBuffer(
1291 VkCmdBuffer cmdBuffer,
1292 VkBuffer destBuffer,
1293 VkDeviceSize destOffset,
1294 VkDeviceSize fillSize,
1295 uint32_t data)
1296 {
1297 stub();
1298 }
1299
1300 void anv_CmdResolveImage(
1301 VkCmdBuffer cmdBuffer,
1302 VkImage srcImage,
1303 VkImageLayout srcImageLayout,
1304 VkImage destImage,
1305 VkImageLayout destImageLayout,
1306 uint32_t regionCount,
1307 const VkImageResolve* pRegions)
1308 {
1309 stub();
1310 }
1311
1312 void
1313 anv_device_init_meta(struct anv_device *device)
1314 {
1315 anv_device_init_meta_clear_state(device);
1316 anv_device_init_meta_blit_state(device);
1317 }
1318
1319 void
1320 anv_device_finish_meta(struct anv_device *device)
1321 {
1322 anv_device_finish_meta_clear_state(device);
1323
1324 /* Blit */
1325 anv_DestroyRenderPass(anv_device_to_handle(device),
1326 device->meta_state.blit.render_pass);
1327 anv_DestroyPipeline(anv_device_to_handle(device),
1328 device->meta_state.blit.pipeline_2d_src);
1329 anv_DestroyPipeline(anv_device_to_handle(device),
1330 device->meta_state.blit.pipeline_3d_src);
1331 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1332 device->meta_state.blit.pipeline_layout);
1333 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1334 device->meta_state.blit.ds_layout);
1335 }