vk/0.210.0: Remove depth clip and add depth clamp
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_meta.h"
31 #include "anv_meta_clear.h"
32 #include "anv_private.h"
33 #include "anv_nir_builder.h"
34
35 struct anv_render_pass anv_meta_dummy_renderpass = {0};
36
37 static nir_shader *
38 build_nir_vertex_shader(bool attr_flat)
39 {
40 nir_builder b;
41
42 const struct glsl_type *vertex_type = glsl_vec4_type();
43
44 nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX);
45
46 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
47 vertex_type, "a_pos");
48 pos_in->data.location = VERT_ATTRIB_GENERIC0;
49 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
50 vertex_type, "gl_Position");
51 pos_in->data.location = VARYING_SLOT_POS;
52 nir_copy_var(&b, pos_out, pos_in);
53
54 /* Add one more pass-through attribute. For clear shaders, this is used
55 * to store the color and for blit shaders it's the texture coordinate.
56 */
57 const struct glsl_type *attr_type = glsl_vec4_type();
58 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
59 attr_type, "a_attr");
60 attr_in->data.location = VERT_ATTRIB_GENERIC1;
61 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
62 attr_type, "v_attr");
63 attr_out->data.location = VARYING_SLOT_VAR0;
64 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
65 INTERP_QUALIFIER_SMOOTH;
66 nir_copy_var(&b, attr_out, attr_in);
67
68 return b.shader;
69 }
70
71 static nir_shader *
72 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
73 {
74 nir_builder b;
75
76 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
77
78 const struct glsl_type *color_type = glsl_vec4_type();
79
80 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
81 glsl_vec4_type(), "v_attr");
82 tex_pos_in->data.location = VARYING_SLOT_VAR0;
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
86 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
87 sampler_type, "s_tex");
88 sampler->data.descriptor_set = 0;
89 sampler->data.binding = 0;
90
91 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
92 tex->sampler_dim = tex_dim;
93 tex->op = nir_texop_tex;
94 tex->src[0].src_type = nir_tex_src_coord;
95 tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
96 tex->dest_type = nir_type_float; /* TODO */
97
98 if (tex_dim == GLSL_SAMPLER_DIM_2D)
99 tex->is_array = true;
100 tex->coord_components = 3;
101
102 tex->sampler = nir_deref_var_create(tex, sampler);
103
104 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
105 nir_builder_instr_insert(&b, &tex->instr);
106
107 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
108 color_type, "f_color");
109 color_out->data.location = FRAG_RESULT_DATA0;
110 nir_store_var(&b, color_out, &tex->dest.ssa);
111
112 return b.shader;
113 }
114
115 void
116 anv_meta_save(struct anv_meta_saved_state *state,
117 const struct anv_cmd_buffer *cmd_buffer,
118 uint32_t dynamic_mask)
119 {
120 state->old_pipeline = cmd_buffer->state.pipeline;
121 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
122 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
123 sizeof(state->old_vertex_bindings));
124
125 state->dynamic_mask = dynamic_mask;
126 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
127 dynamic_mask);
128 }
129
130 void
131 anv_meta_restore(const struct anv_meta_saved_state *state,
132 struct anv_cmd_buffer *cmd_buffer)
133 {
134 cmd_buffer->state.pipeline = state->old_pipeline;
135 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
136 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
137 sizeof(state->old_vertex_bindings));
138
139 cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
140 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
141 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
142
143 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
144 state->dynamic_mask);
145 cmd_buffer->state.dirty |= state->dynamic_mask;
146 }
147
148 static VkImageViewType
149 meta_blit_get_src_image_view_type(const struct anv_image *src_image)
150 {
151 switch (src_image->type) {
152 case VK_IMAGE_TYPE_1D:
153 return VK_IMAGE_VIEW_TYPE_1D;
154 case VK_IMAGE_TYPE_2D:
155 return VK_IMAGE_VIEW_TYPE_2D;
156 case VK_IMAGE_TYPE_3D:
157 return VK_IMAGE_VIEW_TYPE_3D;
158 default:
159 assert(!"bad VkImageType");
160 return 0;
161 }
162 }
163
164 static uint32_t
165 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
166 const VkImageSubresourceLayers *dest_subresource,
167 const VkOffset3D *dest_offset)
168 {
169 switch (dest_image->type) {
170 case VK_IMAGE_TYPE_1D:
171 case VK_IMAGE_TYPE_2D:
172 return dest_subresource->baseArrayLayer;
173 case VK_IMAGE_TYPE_3D:
174 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
175 * but meta does it anyway. When doing so, we translate the
176 * destination's z offset into an array offset.
177 */
178 return dest_offset->z;
179 default:
180 assert(!"bad VkImageType");
181 return 0;
182 }
183 }
184
185 static void
186 anv_device_init_meta_blit_state(struct anv_device *device)
187 {
188 anv_CreateRenderPass(anv_device_to_handle(device),
189 &(VkRenderPassCreateInfo) {
190 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
191 .attachmentCount = 1,
192 .pAttachments = &(VkAttachmentDescription) {
193 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
194 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
195 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
196 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
197 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
198 },
199 .subpassCount = 1,
200 .pSubpasses = &(VkSubpassDescription) {
201 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
202 .inputAttachmentCount = 0,
203 .colorAttachmentCount = 1,
204 .pColorAttachments = &(VkAttachmentReference) {
205 .attachment = 0,
206 .layout = VK_IMAGE_LAYOUT_GENERAL,
207 },
208 .pResolveAttachments = NULL,
209 .pDepthStencilAttachment = &(VkAttachmentReference) {
210 .attachment = VK_ATTACHMENT_UNUSED,
211 .layout = VK_IMAGE_LAYOUT_GENERAL,
212 },
213 .preserveAttachmentCount = 1,
214 .pPreserveAttachments = &(VkAttachmentReference) {
215 .attachment = 0,
216 .layout = VK_IMAGE_LAYOUT_GENERAL,
217 },
218 },
219 .dependencyCount = 0,
220 }, NULL, &device->meta_state.blit.render_pass);
221
222 /* We don't use a vertex shader for clearing, but instead build and pass
223 * the VUEs directly to the rasterization backend. However, we do need
224 * to provide GLSL source for the vertex shader so that the compiler
225 * does not dead-code our inputs.
226 */
227 struct anv_shader_module vs = {
228 .nir = build_nir_vertex_shader(false),
229 };
230
231 struct anv_shader_module fs_2d = {
232 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
233 };
234
235 struct anv_shader_module fs_3d = {
236 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
237 };
238
239 VkPipelineVertexInputStateCreateInfo vi_create_info = {
240 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
241 .vertexBindingDescriptionCount = 2,
242 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
243 {
244 .binding = 0,
245 .stride = 0,
246 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
247 },
248 {
249 .binding = 1,
250 .stride = 5 * sizeof(float),
251 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
252 },
253 },
254 .vertexAttributeDescriptionCount = 3,
255 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
256 {
257 /* VUE Header */
258 .location = 0,
259 .binding = 0,
260 .format = VK_FORMAT_R32G32B32A32_UINT,
261 .offset = 0
262 },
263 {
264 /* Position */
265 .location = 1,
266 .binding = 1,
267 .format = VK_FORMAT_R32G32_SFLOAT,
268 .offset = 0
269 },
270 {
271 /* Texture Coordinate */
272 .location = 2,
273 .binding = 1,
274 .format = VK_FORMAT_R32G32B32_SFLOAT,
275 .offset = 8
276 }
277 }
278 };
279
280 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
281 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
282 .bindingCount = 1,
283 .pBinding = (VkDescriptorSetLayoutBinding[]) {
284 {
285 .binding = 0,
286 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
287 .descriptorCount = 1,
288 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
289 .pImmutableSamplers = NULL
290 },
291 }
292 };
293 anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info,
294 NULL, &device->meta_state.blit.ds_layout);
295
296 anv_CreatePipelineLayout(anv_device_to_handle(device),
297 &(VkPipelineLayoutCreateInfo) {
298 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
299 .setLayoutCount = 1,
300 .pSetLayouts = &device->meta_state.blit.ds_layout,
301 },
302 NULL, &device->meta_state.blit.pipeline_layout);
303
304 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
305 {
306 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
307 .stage = VK_SHADER_STAGE_VERTEX_BIT,
308 .module = anv_shader_module_to_handle(&vs),
309 .pName = "main",
310 .pSpecializationInfo = NULL
311 }, {
312 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
313 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
314 .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
315 .pName = "main",
316 .pSpecializationInfo = NULL
317 },
318 };
319
320 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
321 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
322 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
323 .pStages = pipeline_shader_stages,
324 .pVertexInputState = &vi_create_info,
325 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
326 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
327 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
328 .primitiveRestartEnable = false,
329 },
330 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
331 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
332 .viewportCount = 1,
333 .scissorCount = 1,
334 },
335 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
336 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
337 .rasterizerDiscardEnable = false,
338 .polygonMode = VK_POLYGON_MODE_FILL,
339 .cullMode = VK_CULL_MODE_NONE,
340 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
341 },
342 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
343 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
344 .rasterizationSamples = 1,
345 .sampleShadingEnable = false,
346 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
347 },
348 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
349 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
350 .attachmentCount = 1,
351 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
352 { .colorWriteMask =
353 VK_COLOR_COMPONENT_A_BIT |
354 VK_COLOR_COMPONENT_R_BIT |
355 VK_COLOR_COMPONENT_G_BIT |
356 VK_COLOR_COMPONENT_B_BIT },
357 }
358 },
359 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
360 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
361 .dynamicStateCount = 9,
362 .pDynamicStates = (VkDynamicState[]) {
363 VK_DYNAMIC_STATE_VIEWPORT,
364 VK_DYNAMIC_STATE_SCISSOR,
365 VK_DYNAMIC_STATE_LINE_WIDTH,
366 VK_DYNAMIC_STATE_DEPTH_BIAS,
367 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
368 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
369 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
370 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
371 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
372 },
373 },
374 .flags = 0,
375 .layout = device->meta_state.blit.pipeline_layout,
376 .renderPass = device->meta_state.blit.render_pass,
377 .subpass = 0,
378 };
379
380 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
381 .use_repclear = false,
382 .disable_viewport = true,
383 .disable_scissor = true,
384 .disable_vs = true,
385 .use_rectlist = true
386 };
387
388 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
389 anv_graphics_pipeline_create(anv_device_to_handle(device),
390 &vk_pipeline_info, &anv_pipeline_info,
391 NULL, &device->meta_state.blit.pipeline_2d_src);
392
393 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
394 anv_graphics_pipeline_create(anv_device_to_handle(device),
395 &vk_pipeline_info, &anv_pipeline_info,
396 NULL, &device->meta_state.blit.pipeline_3d_src);
397
398 ralloc_free(vs.nir);
399 ralloc_free(fs_2d.nir);
400 ralloc_free(fs_3d.nir);
401 }
402
403 static void
404 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
405 struct anv_meta_saved_state *saved_state)
406 {
407 anv_meta_save(saved_state, cmd_buffer,
408 (1 << VK_DYNAMIC_STATE_VIEWPORT));
409 }
410
411 struct blit_region {
412 VkOffset3D src_offset;
413 VkExtent3D src_extent;
414 VkOffset3D dest_offset;
415 VkExtent3D dest_extent;
416 };
417
418 static void
419 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
420 struct anv_image *src_image,
421 struct anv_image_view *src_iview,
422 VkOffset3D src_offset,
423 VkExtent3D src_extent,
424 struct anv_image *dest_image,
425 struct anv_image_view *dest_iview,
426 VkOffset3D dest_offset,
427 VkExtent3D dest_extent,
428 VkFilter blit_filter)
429 {
430 struct anv_device *device = cmd_buffer->device;
431 VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1;
432
433 struct blit_vb_data {
434 float pos[2];
435 float tex_coord[3];
436 } *vb_data;
437
438 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
439
440 struct anv_state vb_state =
441 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
442 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
443 vb_data = vb_state.map + sizeof(struct anv_vue_header);
444
445 vb_data[0] = (struct blit_vb_data) {
446 .pos = {
447 dest_offset.x + dest_extent.width,
448 dest_offset.y + dest_extent.height,
449 },
450 .tex_coord = {
451 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
452 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
453 (float)src_offset.z / (float)src_iview->extent.depth,
454 },
455 };
456
457 vb_data[1] = (struct blit_vb_data) {
458 .pos = {
459 dest_offset.x,
460 dest_offset.y + dest_extent.height,
461 },
462 .tex_coord = {
463 (float)src_offset.x / (float)src_iview->extent.width,
464 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
465 (float)src_offset.z / (float)src_iview->extent.depth,
466 },
467 };
468
469 vb_data[2] = (struct blit_vb_data) {
470 .pos = {
471 dest_offset.x,
472 dest_offset.y,
473 },
474 .tex_coord = {
475 (float)src_offset.x / (float)src_iview->extent.width,
476 (float)src_offset.y / (float)src_iview->extent.height,
477 (float)src_offset.z / (float)src_iview->extent.depth,
478 },
479 };
480
481 struct anv_buffer vertex_buffer = {
482 .device = device,
483 .size = vb_size,
484 .bo = &device->dynamic_state_block_pool.bo,
485 .offset = vb_state.offset,
486 };
487
488 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
489 (VkBuffer[]) {
490 anv_buffer_to_handle(&vertex_buffer),
491 anv_buffer_to_handle(&vertex_buffer)
492 },
493 (VkDeviceSize[]) {
494 0,
495 sizeof(struct anv_vue_header),
496 });
497
498 VkSampler sampler;
499 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
500 &(VkSamplerCreateInfo) {
501 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
502 .magFilter = blit_filter,
503 .minFilter = blit_filter,
504 }, &cmd_buffer->pool->alloc, &sampler);
505
506 VkDescriptorSet set;
507 anv_AllocateDescriptorSets(anv_device_to_handle(device),
508 &(VkDescriptorSetAllocateInfo) {
509 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
510 .descriptorPool = dummy_desc_pool,
511 .setLayoutCount = 1,
512 .pSetLayouts = &device->meta_state.blit.ds_layout
513 }, &set);
514 anv_UpdateDescriptorSets(anv_device_to_handle(device),
515 1, /* writeCount */
516 (VkWriteDescriptorSet[]) {
517 {
518 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
519 .dstSet = set,
520 .dstBinding = 0,
521 .dstArrayElement = 0,
522 .descriptorCount = 1,
523 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
524 .pImageInfo = (VkDescriptorImageInfo[]) {
525 {
526 .sampler = sampler,
527 .imageView = anv_image_view_to_handle(src_iview),
528 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
529 },
530 }
531 }
532 }, 0, NULL);
533
534 VkFramebuffer fb;
535 anv_CreateFramebuffer(anv_device_to_handle(device),
536 &(VkFramebufferCreateInfo) {
537 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
538 .attachmentCount = 1,
539 .pAttachments = (VkImageView[]) {
540 anv_image_view_to_handle(dest_iview),
541 },
542 .width = dest_iview->extent.width,
543 .height = dest_iview->extent.height,
544 .layers = 1
545 }, &cmd_buffer->pool->alloc, &fb);
546
547 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
548 &(VkRenderPassBeginInfo) {
549 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
550 .renderPass = device->meta_state.blit.render_pass,
551 .framebuffer = fb,
552 .renderArea = {
553 .offset = { dest_offset.x, dest_offset.y },
554 .extent = { dest_extent.width, dest_extent.height },
555 },
556 .clearValueCount = 0,
557 .pClearValues = NULL,
558 }, VK_SUBPASS_CONTENTS_INLINE);
559
560 VkPipeline pipeline;
561
562 switch (src_image->type) {
563 case VK_IMAGE_TYPE_1D:
564 anv_finishme("VK_IMAGE_TYPE_1D");
565 pipeline = device->meta_state.blit.pipeline_2d_src;
566 break;
567 case VK_IMAGE_TYPE_2D:
568 pipeline = device->meta_state.blit.pipeline_2d_src;
569 break;
570 case VK_IMAGE_TYPE_3D:
571 pipeline = device->meta_state.blit.pipeline_3d_src;
572 break;
573 default:
574 unreachable(!"bad VkImageType");
575 }
576
577 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
578 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
579 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
580 }
581
582 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1,
583 &(VkViewport) {
584 .x = 0.0f,
585 .y = 0.0f,
586 .width = dest_iview->extent.width,
587 .height = dest_iview->extent.height,
588 .minDepth = 0.0f,
589 .maxDepth = 1.0f,
590 });
591
592 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
593 VK_PIPELINE_BIND_POINT_GRAPHICS,
594 device->meta_state.blit.pipeline_layout, 0, 1,
595 &set, 0, NULL);
596
597 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
598
599 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
600
601 /* At the point where we emit the draw call, all data from the
602 * descriptor sets, etc. has been used. We are free to delete it.
603 */
604 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
605 anv_DestroySampler(anv_device_to_handle(device), sampler,
606 &cmd_buffer->pool->alloc);
607 anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
608 &cmd_buffer->pool->alloc);
609 }
610
611 static void
612 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
613 const struct anv_meta_saved_state *saved_state)
614 {
615 anv_meta_restore(saved_state, cmd_buffer);
616 }
617
618 static VkFormat
619 vk_format_for_size(int bs)
620 {
621 switch (bs) {
622 case 1: return VK_FORMAT_R8_UINT;
623 case 2: return VK_FORMAT_R8G8_UINT;
624 case 3: return VK_FORMAT_R8G8B8_UINT;
625 case 4: return VK_FORMAT_R8G8B8A8_UINT;
626 case 6: return VK_FORMAT_R16G16B16_UINT;
627 case 8: return VK_FORMAT_R16G16B16A16_UINT;
628 case 12: return VK_FORMAT_R32G32B32_UINT;
629 case 16: return VK_FORMAT_R32G32B32A32_UINT;
630 default:
631 unreachable("Invalid format block size");
632 }
633 }
634
635 static void
636 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
637 struct anv_bo *src, uint64_t src_offset,
638 struct anv_bo *dest, uint64_t dest_offset,
639 int width, int height, VkFormat copy_format)
640 {
641 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
642
643 VkImageCreateInfo image_info = {
644 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
645 .imageType = VK_IMAGE_TYPE_2D,
646 .format = copy_format,
647 .extent = {
648 .width = width,
649 .height = height,
650 .depth = 1,
651 },
652 .mipLevels = 1,
653 .arrayLayers = 1,
654 .samples = 1,
655 .tiling = VK_IMAGE_TILING_LINEAR,
656 .usage = 0,
657 .flags = 0,
658 };
659
660 VkImage src_image;
661 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
662 anv_CreateImage(vk_device, &image_info,
663 &cmd_buffer->pool->alloc, &src_image);
664
665 VkImage dest_image;
666 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
667 anv_CreateImage(vk_device, &image_info,
668 &cmd_buffer->pool->alloc, &dest_image);
669
670 /* We could use a vk call to bind memory, but that would require
671 * creating a dummy memory object etc. so there's really no point.
672 */
673 anv_image_from_handle(src_image)->bo = src;
674 anv_image_from_handle(src_image)->offset = src_offset;
675 anv_image_from_handle(dest_image)->bo = dest;
676 anv_image_from_handle(dest_image)->offset = dest_offset;
677
678 struct anv_image_view src_iview;
679 anv_image_view_init(&src_iview, cmd_buffer->device,
680 &(VkImageViewCreateInfo) {
681 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
682 .image = src_image,
683 .viewType = VK_IMAGE_VIEW_TYPE_2D,
684 .format = copy_format,
685 .subresourceRange = {
686 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
687 .baseMipLevel = 0,
688 .levelCount = 1,
689 .baseArrayLayer = 0,
690 .layerCount = 1
691 },
692 },
693 cmd_buffer);
694
695 struct anv_image_view dest_iview;
696 anv_image_view_init(&dest_iview, cmd_buffer->device,
697 &(VkImageViewCreateInfo) {
698 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
699 .image = dest_image,
700 .viewType = VK_IMAGE_VIEW_TYPE_2D,
701 .format = copy_format,
702 .subresourceRange = {
703 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
704 .baseMipLevel = 0,
705 .levelCount = 1,
706 .baseArrayLayer = 0,
707 .layerCount = 1,
708 },
709 },
710 cmd_buffer);
711
712 meta_emit_blit(cmd_buffer,
713 anv_image_from_handle(src_image),
714 &src_iview,
715 (VkOffset3D) { 0, 0, 0 },
716 (VkExtent3D) { width, height, 1 },
717 anv_image_from_handle(dest_image),
718 &dest_iview,
719 (VkOffset3D) { 0, 0, 0 },
720 (VkExtent3D) { width, height, 1 },
721 VK_FILTER_NEAREST);
722
723 anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
724 anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc);
725 }
726
727 void anv_CmdCopyBuffer(
728 VkCommandBuffer commandBuffer,
729 VkBuffer srcBuffer,
730 VkBuffer destBuffer,
731 uint32_t regionCount,
732 const VkBufferCopy* pRegions)
733 {
734 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
735 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
736 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
737
738 struct anv_meta_saved_state saved_state;
739
740 meta_prepare_blit(cmd_buffer, &saved_state);
741
742 for (unsigned r = 0; r < regionCount; r++) {
743 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
744 uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
745 uint64_t copy_size = pRegions[r].size;
746
747 /* First, we compute the biggest format that can be used with the
748 * given offsets and size.
749 */
750 int bs = 16;
751
752 int fs = ffs(src_offset) - 1;
753 if (fs != -1)
754 bs = MIN2(bs, 1 << fs);
755 assert(src_offset % bs == 0);
756
757 fs = ffs(dest_offset) - 1;
758 if (fs != -1)
759 bs = MIN2(bs, 1 << fs);
760 assert(dest_offset % bs == 0);
761
762 fs = ffs(pRegions[r].size) - 1;
763 if (fs != -1)
764 bs = MIN2(bs, 1 << fs);
765 assert(pRegions[r].size % bs == 0);
766
767 VkFormat copy_format = vk_format_for_size(bs);
768
769 /* This is maximum possible width/height our HW can handle */
770 uint64_t max_surface_dim = 1 << 14;
771
772 /* First, we make a bunch of max-sized copies */
773 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
774 while (copy_size > max_copy_size) {
775 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
776 dest_buffer->bo, dest_offset,
777 max_surface_dim, max_surface_dim, copy_format);
778 copy_size -= max_copy_size;
779 src_offset += max_copy_size;
780 dest_offset += max_copy_size;
781 }
782
783 uint64_t height = copy_size / (max_surface_dim * bs);
784 assert(height < max_surface_dim);
785 if (height != 0) {
786 uint64_t rect_copy_size = height * max_surface_dim * bs;
787 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
788 dest_buffer->bo, dest_offset,
789 max_surface_dim, height, copy_format);
790 copy_size -= rect_copy_size;
791 src_offset += rect_copy_size;
792 dest_offset += rect_copy_size;
793 }
794
795 if (copy_size != 0) {
796 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
797 dest_buffer->bo, dest_offset,
798 copy_size / bs, 1, copy_format);
799 }
800 }
801
802 meta_finish_blit(cmd_buffer, &saved_state);
803 }
804
805 void anv_CmdCopyImage(
806 VkCommandBuffer commandBuffer,
807 VkImage srcImage,
808 VkImageLayout srcImageLayout,
809 VkImage destImage,
810 VkImageLayout destImageLayout,
811 uint32_t regionCount,
812 const VkImageCopy* pRegions)
813 {
814 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
815 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
816 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
817
818 const VkImageViewType src_iview_type =
819 meta_blit_get_src_image_view_type(src_image);
820
821 struct anv_meta_saved_state saved_state;
822
823 meta_prepare_blit(cmd_buffer, &saved_state);
824
825 for (unsigned r = 0; r < regionCount; r++) {
826 struct anv_image_view src_iview;
827 anv_image_view_init(&src_iview, cmd_buffer->device,
828 &(VkImageViewCreateInfo) {
829 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
830 .image = srcImage,
831 .viewType = src_iview_type,
832 .format = src_image->format->vk_format,
833 .subresourceRange = {
834 .aspectMask = pRegions[r].srcSubresource.aspectMask,
835 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
836 .levelCount = 1,
837 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
838 .layerCount = pRegions[r].dstSubresource.layerCount,
839 },
840 },
841 cmd_buffer);
842
843 const VkOffset3D dest_offset = {
844 .x = pRegions[r].dstOffset.x,
845 .y = pRegions[r].dstOffset.y,
846 .z = 0,
847 };
848
849 unsigned num_slices;
850 if (src_image->type == VK_IMAGE_TYPE_3D) {
851 assert(pRegions[r].srcSubresource.layerCount == 1 &&
852 pRegions[r].dstSubresource.layerCount == 1);
853 num_slices = pRegions[r].extent.depth;
854 } else {
855 assert(pRegions[r].srcSubresource.layerCount ==
856 pRegions[r].dstSubresource.layerCount);
857 assert(pRegions[r].extent.depth == 1);
858 num_slices = pRegions[r].dstSubresource.layerCount;
859 }
860
861 const uint32_t dest_base_array_slice =
862 meta_blit_get_dest_view_base_array_slice(dest_image,
863 &pRegions[r].dstSubresource,
864 &pRegions[r].dstOffset);
865
866 for (unsigned slice = 0; slice < num_slices; slice++) {
867 VkOffset3D src_offset = pRegions[r].srcOffset;
868 src_offset.z += slice;
869
870 struct anv_image_view dest_iview;
871 anv_image_view_init(&dest_iview, cmd_buffer->device,
872 &(VkImageViewCreateInfo) {
873 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
874 .image = destImage,
875 .viewType = VK_IMAGE_VIEW_TYPE_2D,
876 .format = dest_image->format->vk_format,
877 .subresourceRange = {
878 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
879 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
880 .levelCount = 1,
881 .baseArrayLayer = dest_base_array_slice + slice,
882 .layerCount = 1
883 },
884 },
885 cmd_buffer);
886
887 meta_emit_blit(cmd_buffer,
888 src_image, &src_iview,
889 src_offset,
890 pRegions[r].extent,
891 dest_image, &dest_iview,
892 dest_offset,
893 pRegions[r].extent,
894 VK_FILTER_NEAREST);
895 }
896 }
897
898 meta_finish_blit(cmd_buffer, &saved_state);
899 }
900
901 void anv_CmdBlitImage(
902 VkCommandBuffer commandBuffer,
903 VkImage srcImage,
904 VkImageLayout srcImageLayout,
905 VkImage destImage,
906 VkImageLayout destImageLayout,
907 uint32_t regionCount,
908 const VkImageBlit* pRegions,
909 VkFilter filter)
910
911 {
912 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
913 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
914 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
915
916 const VkImageViewType src_iview_type =
917 meta_blit_get_src_image_view_type(src_image);
918
919 struct anv_meta_saved_state saved_state;
920
921 anv_finishme("respect VkFilter");
922
923 meta_prepare_blit(cmd_buffer, &saved_state);
924
925 for (unsigned r = 0; r < regionCount; r++) {
926 struct anv_image_view src_iview;
927 anv_image_view_init(&src_iview, cmd_buffer->device,
928 &(VkImageViewCreateInfo) {
929 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
930 .image = srcImage,
931 .viewType = src_iview_type,
932 .format = src_image->format->vk_format,
933 .subresourceRange = {
934 .aspectMask = pRegions[r].srcSubresource.aspectMask,
935 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
936 .levelCount = 1,
937 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
938 .layerCount = 1
939 },
940 },
941 cmd_buffer);
942
943 const VkOffset3D dest_offset = {
944 .x = pRegions[r].dstOffset.x,
945 .y = pRegions[r].dstOffset.y,
946 .z = 0,
947 };
948
949 const uint32_t dest_array_slice =
950 meta_blit_get_dest_view_base_array_slice(dest_image,
951 &pRegions[r].dstSubresource,
952 &pRegions[r].dstOffset);
953
954 if (pRegions[r].srcSubresource.layerCount > 1)
955 anv_finishme("FINISHME: copy multiple array layers");
956
957 if (pRegions[r].dstExtent.depth > 1)
958 anv_finishme("FINISHME: copy multiple depth layers");
959
960 struct anv_image_view dest_iview;
961 anv_image_view_init(&dest_iview, cmd_buffer->device,
962 &(VkImageViewCreateInfo) {
963 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
964 .image = destImage,
965 .viewType = VK_IMAGE_VIEW_TYPE_2D,
966 .format = dest_image->format->vk_format,
967 .subresourceRange = {
968 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
969 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
970 .levelCount = 1,
971 .baseArrayLayer = dest_array_slice,
972 .layerCount = 1
973 },
974 },
975 cmd_buffer);
976
977 meta_emit_blit(cmd_buffer,
978 src_image, &src_iview,
979 pRegions[r].srcOffset,
980 pRegions[r].srcExtent,
981 dest_image, &dest_iview,
982 dest_offset,
983 pRegions[r].dstExtent,
984 filter);
985 }
986
987 meta_finish_blit(cmd_buffer, &saved_state);
988 }
989
990 static struct anv_image *
991 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
992 VkImageUsageFlags usage,
993 VkImageType image_type,
994 const VkAllocationCallbacks *alloc,
995 const VkBufferImageCopy *copy)
996 {
997 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
998
999 VkExtent3D extent = copy->imageExtent;
1000 if (copy->bufferRowLength)
1001 extent.width = copy->bufferRowLength;
1002 if (copy->bufferImageHeight)
1003 extent.height = copy->bufferImageHeight;
1004 extent.depth = 1;
1005
1006 VkImage vk_image;
1007 VkResult result = anv_CreateImage(vk_device,
1008 &(VkImageCreateInfo) {
1009 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1010 .imageType = VK_IMAGE_TYPE_2D,
1011 .format = format,
1012 .extent = extent,
1013 .mipLevels = 1,
1014 .arrayLayers = 1,
1015 .samples = 1,
1016 .tiling = VK_IMAGE_TILING_LINEAR,
1017 .usage = usage,
1018 .flags = 0,
1019 }, alloc, &vk_image);
1020 assert(result == VK_SUCCESS);
1021
1022 ANV_FROM_HANDLE(anv_image, image, vk_image);
1023
1024 /* We could use a vk call to bind memory, but that would require
1025 * creating a dummy memory object etc. so there's really no point.
1026 */
1027 image->bo = buffer->bo;
1028 image->offset = buffer->offset + copy->bufferOffset;
1029
1030 return image;
1031 }
1032
1033 void anv_CmdCopyBufferToImage(
1034 VkCommandBuffer commandBuffer,
1035 VkBuffer srcBuffer,
1036 VkImage destImage,
1037 VkImageLayout destImageLayout,
1038 uint32_t regionCount,
1039 const VkBufferImageCopy* pRegions)
1040 {
1041 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1042 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1043 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1044 const VkFormat orig_format = dest_image->format->vk_format;
1045 struct anv_meta_saved_state saved_state;
1046
1047 meta_prepare_blit(cmd_buffer, &saved_state);
1048
1049 for (unsigned r = 0; r < regionCount; r++) {
1050 VkFormat proxy_format = orig_format;
1051 VkImageAspectFlags proxy_aspect = pRegions[r].imageSubresource.aspectMask;
1052
1053 if (orig_format == VK_FORMAT_S8_UINT) {
1054 proxy_format = VK_FORMAT_R8_UINT;
1055 proxy_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
1056 }
1057
1058 struct anv_image *src_image =
1059 make_image_for_buffer(vk_device, srcBuffer, proxy_format,
1060 VK_IMAGE_USAGE_SAMPLED_BIT,
1061 dest_image->type, &cmd_buffer->pool->alloc,
1062 &pRegions[r]);
1063
1064 const uint32_t dest_base_array_slice =
1065 meta_blit_get_dest_view_base_array_slice(dest_image,
1066 &pRegions[r].imageSubresource,
1067 &pRegions[r].imageOffset);
1068
1069 unsigned num_slices;
1070 if (dest_image->type == VK_IMAGE_TYPE_3D) {
1071 assert(pRegions[r].imageSubresource.layerCount == 1);
1072 num_slices = pRegions[r].imageExtent.depth;
1073 } else {
1074 assert(pRegions[r].imageExtent.depth == 1);
1075 num_slices = pRegions[r].imageSubresource.layerCount;
1076 }
1077
1078 for (unsigned slice = 0; slice < num_slices; slice++) {
1079 struct anv_image_view src_iview;
1080 anv_image_view_init(&src_iview, cmd_buffer->device,
1081 &(VkImageViewCreateInfo) {
1082 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1083 .image = anv_image_to_handle(src_image),
1084 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1085 .format = proxy_format,
1086 .subresourceRange = {
1087 .aspectMask = proxy_aspect,
1088 .baseMipLevel = 0,
1089 .levelCount = 1,
1090 .baseArrayLayer = 0,
1091 .layerCount = 1,
1092 },
1093 },
1094 cmd_buffer);
1095
1096 struct anv_image_view dest_iview;
1097 anv_image_view_init(&dest_iview, cmd_buffer->device,
1098 &(VkImageViewCreateInfo) {
1099 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1100 .image = anv_image_to_handle(dest_image),
1101 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1102 .format = proxy_format,
1103 .subresourceRange = {
1104 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1105 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1106 .levelCount = 1,
1107 .baseArrayLayer = dest_base_array_slice + slice,
1108 .layerCount = 1
1109 },
1110 },
1111 cmd_buffer);
1112
1113 VkOffset3D src_offset = { 0, 0, slice };
1114
1115 const VkOffset3D dest_offset = {
1116 .x = pRegions[r].imageOffset.x,
1117 .y = pRegions[r].imageOffset.y,
1118 .z = 0,
1119 };
1120
1121 meta_emit_blit(cmd_buffer,
1122 src_image,
1123 &src_iview,
1124 src_offset,
1125 pRegions[r].imageExtent,
1126 dest_image,
1127 &dest_iview,
1128 dest_offset,
1129 pRegions[r].imageExtent,
1130 VK_FILTER_NEAREST);
1131
1132 /* Once we've done the blit, all of the actual information about
1133 * the image is embedded in the command buffer so we can just
1134 * increment the offset directly in the image effectively
1135 * re-binding it to different backing memory.
1136 */
1137 /* XXX: Insert a real CPP */
1138 src_image->offset += src_image->extent.width *
1139 src_image->extent.height * 4;
1140 }
1141
1142 anv_DestroyImage(vk_device, anv_image_to_handle(src_image),
1143 &cmd_buffer->pool->alloc);
1144 }
1145
1146 meta_finish_blit(cmd_buffer, &saved_state);
1147 }
1148
1149 void anv_CmdCopyImageToBuffer(
1150 VkCommandBuffer commandBuffer,
1151 VkImage srcImage,
1152 VkImageLayout srcImageLayout,
1153 VkBuffer destBuffer,
1154 uint32_t regionCount,
1155 const VkBufferImageCopy* pRegions)
1156 {
1157 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1158 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1159 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1160 struct anv_meta_saved_state saved_state;
1161
1162 const VkImageViewType src_iview_type =
1163 meta_blit_get_src_image_view_type(src_image);
1164
1165 meta_prepare_blit(cmd_buffer, &saved_state);
1166
1167 for (unsigned r = 0; r < regionCount; r++) {
1168 struct anv_image_view src_iview;
1169 anv_image_view_init(&src_iview, cmd_buffer->device,
1170 &(VkImageViewCreateInfo) {
1171 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1172 .image = srcImage,
1173 .viewType = src_iview_type,
1174 .format = src_image->format->vk_format,
1175 .subresourceRange = {
1176 .aspectMask = pRegions[r].imageSubresource.aspectMask,
1177 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1178 .levelCount = 1,
1179 .baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer,
1180 .layerCount = pRegions[r].imageSubresource.layerCount,
1181 },
1182 },
1183 cmd_buffer);
1184
1185 VkFormat dest_format = src_image->format->vk_format;
1186 if (dest_format == VK_FORMAT_S8_UINT) {
1187 dest_format = VK_FORMAT_R8_UINT;
1188 }
1189
1190 struct anv_image *dest_image =
1191 make_image_for_buffer(vk_device, destBuffer, dest_format,
1192 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
1193 src_image->type, &cmd_buffer->pool->alloc,
1194 &pRegions[r]);
1195
1196 unsigned num_slices;
1197 if (src_image->type == VK_IMAGE_TYPE_3D) {
1198 assert(pRegions[r].imageSubresource.layerCount == 1);
1199 num_slices = pRegions[r].imageExtent.depth;
1200 } else {
1201 assert(pRegions[r].imageExtent.depth == 1);
1202 num_slices = pRegions[r].imageSubresource.layerCount;
1203 }
1204
1205 for (unsigned slice = 0; slice < num_slices; slice++) {
1206 VkOffset3D src_offset = pRegions[r].imageOffset;
1207 src_offset.z += slice;
1208
1209 struct anv_image_view dest_iview;
1210 anv_image_view_init(&dest_iview, cmd_buffer->device,
1211 &(VkImageViewCreateInfo) {
1212 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1213 .image = anv_image_to_handle(dest_image),
1214 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1215 .format = dest_format,
1216 .subresourceRange = {
1217 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1218 .baseMipLevel = 0,
1219 .levelCount = 1,
1220 .baseArrayLayer = 0,
1221 .layerCount = 1
1222 },
1223 },
1224 cmd_buffer);
1225
1226 meta_emit_blit(cmd_buffer,
1227 anv_image_from_handle(srcImage),
1228 &src_iview,
1229 src_offset,
1230 pRegions[r].imageExtent,
1231 dest_image,
1232 &dest_iview,
1233 (VkOffset3D) { 0, 0, 0 },
1234 pRegions[r].imageExtent,
1235 VK_FILTER_NEAREST);
1236
1237 /* Once we've done the blit, all of the actual information about
1238 * the image is embedded in the command buffer so we can just
1239 * increment the offset directly in the image effectively
1240 * re-binding it to different backing memory.
1241 */
1242 /* XXX: Insert a real CPP */
1243 dest_image->offset += dest_image->extent.width *
1244 dest_image->extent.height * 4;
1245 }
1246
1247 anv_DestroyImage(vk_device, anv_image_to_handle(dest_image),
1248 &cmd_buffer->pool->alloc);
1249 }
1250
1251 meta_finish_blit(cmd_buffer, &saved_state);
1252 }
1253
1254 void anv_CmdUpdateBuffer(
1255 VkCommandBuffer commandBuffer,
1256 VkBuffer destBuffer,
1257 VkDeviceSize destOffset,
1258 VkDeviceSize dataSize,
1259 const uint32_t* pData)
1260 {
1261 stub();
1262 }
1263
1264 void anv_CmdFillBuffer(
1265 VkCommandBuffer commandBuffer,
1266 VkBuffer destBuffer,
1267 VkDeviceSize destOffset,
1268 VkDeviceSize fillSize,
1269 uint32_t data)
1270 {
1271 stub();
1272 }
1273
1274 void anv_CmdResolveImage(
1275 VkCommandBuffer commandBuffer,
1276 VkImage srcImage,
1277 VkImageLayout srcImageLayout,
1278 VkImage destImage,
1279 VkImageLayout destImageLayout,
1280 uint32_t regionCount,
1281 const VkImageResolve* pRegions)
1282 {
1283 stub();
1284 }
1285
1286 void
1287 anv_device_init_meta(struct anv_device *device)
1288 {
1289 anv_device_init_meta_clear_state(device);
1290 anv_device_init_meta_blit_state(device);
1291 }
1292
1293 void
1294 anv_device_finish_meta(struct anv_device *device)
1295 {
1296 anv_device_finish_meta_clear_state(device);
1297
1298 /* Blit */
1299 anv_DestroyRenderPass(anv_device_to_handle(device),
1300 device->meta_state.blit.render_pass, NULL);
1301 anv_DestroyPipeline(anv_device_to_handle(device),
1302 device->meta_state.blit.pipeline_2d_src, NULL);
1303 anv_DestroyPipeline(anv_device_to_handle(device),
1304 device->meta_state.blit.pipeline_3d_src, NULL);
1305 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1306 device->meta_state.blit.pipeline_layout, NULL);
1307 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1308 device->meta_state.blit.ds_layout, NULL);
1309 }