anv/meta: Use the actual render pass for creating blit pipelines
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31 #include "anv_nir_builder.h"
32
33 struct anv_render_pass anv_meta_dummy_renderpass = {0};
34
35 static nir_shader *
36 build_nir_vertex_shader(bool attr_flat)
37 {
38 nir_builder b;
39
40 const struct glsl_type *vertex_type = glsl_vec4_type();
41
42 nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX);
43
44 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
45 vertex_type, "a_pos");
46 pos_in->data.location = VERT_ATTRIB_GENERIC0;
47 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
48 vertex_type, "gl_Position");
49 pos_in->data.location = VARYING_SLOT_POS;
50 nir_copy_var(&b, pos_out, pos_in);
51
52 /* Add one more pass-through attribute. For clear shaders, this is used
53 * to store the color and for blit shaders it's the texture coordinate.
54 */
55 const struct glsl_type *attr_type = glsl_vec4_type();
56 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
57 attr_type, "a_attr");
58 attr_in->data.location = VERT_ATTRIB_GENERIC1;
59 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
60 attr_type, "v_attr");
61 attr_out->data.location = VARYING_SLOT_VAR0;
62 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
63 INTERP_QUALIFIER_SMOOTH;
64 nir_copy_var(&b, attr_out, attr_in);
65
66 return b.shader;
67 }
68
69 static nir_shader *
70 build_nir_clear_fragment_shader(void)
71 {
72 nir_builder b;
73
74 const struct glsl_type *color_type = glsl_vec4_type();
75
76 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
77
78 nir_variable *color_in = nir_variable_create(b.shader, nir_var_shader_in,
79 color_type, "v_attr");
80 color_in->data.location = VARYING_SLOT_VAR0;
81 color_in->data.interpolation = INTERP_QUALIFIER_FLAT;
82 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
83 color_type, "f_color");
84 color_out->data.location = FRAG_RESULT_DATA0;
85 nir_copy_var(&b, color_out, color_in);
86
87 return b.shader;
88 }
89
90 static nir_shader *
91 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
92 {
93 nir_builder b;
94
95 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
96
97 const struct glsl_type *color_type = glsl_vec4_type();
98
99 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
100 glsl_vec4_type(), "v_attr");
101 tex_pos_in->data.location = VARYING_SLOT_VAR0;
102
103 const struct glsl_type *sampler_type =
104 glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
105 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
106 sampler_type, "s_tex");
107 sampler->data.descriptor_set = 0;
108 sampler->data.binding = 0;
109
110 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
111 tex->sampler_dim = tex_dim;
112 tex->op = nir_texop_tex;
113 tex->src[0].src_type = nir_tex_src_coord;
114 tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
115 tex->dest_type = nir_type_float; /* TODO */
116
117 switch (tex_dim) {
118 case GLSL_SAMPLER_DIM_2D:
119 tex->coord_components = 2;
120 break;
121 case GLSL_SAMPLER_DIM_3D:
122 tex->coord_components = 3;
123 break;
124 default:
125 assert(!"Unsupported texture dimension");
126 }
127
128 tex->sampler = nir_deref_var_create(tex, sampler);
129
130 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
131 nir_builder_instr_insert(&b, &tex->instr);
132
133 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
134 color_type, "f_color");
135 color_out->data.location = FRAG_RESULT_DATA0;
136 nir_store_var(&b, color_out, &tex->dest.ssa);
137
138 return b.shader;
139 }
140
141 static void
142 anv_device_init_meta_clear_state(struct anv_device *device)
143 {
144 struct anv_shader_module vsm = {
145 .nir = build_nir_vertex_shader(true),
146 };
147
148 struct anv_shader_module fsm = {
149 .nir = build_nir_clear_fragment_shader(),
150 };
151
152 VkShader vs;
153 anv_CreateShader(anv_device_to_handle(device),
154 &(VkShaderCreateInfo) {
155 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
156 .module = anv_shader_module_to_handle(&vsm),
157 .pName = "main",
158 }, &vs);
159
160 VkShader fs;
161 anv_CreateShader(anv_device_to_handle(device),
162 &(VkShaderCreateInfo) {
163 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
164 .module = anv_shader_module_to_handle(&fsm),
165 .pName = "main",
166 }, &fs);
167
168 /* We use instanced rendering to clear multiple render targets. We have two
169 * vertex buffers: the first vertex buffer holds per-vertex data and
170 * provides the vertices for the clear rectangle. The second one holds
171 * per-instance data, which consists of the VUE header (which selects the
172 * layer) and the color (Vulkan supports per-RT clear colors).
173 */
174 VkPipelineVertexInputStateCreateInfo vi_create_info = {
175 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
176 .bindingCount = 2,
177 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
178 {
179 .binding = 0,
180 .strideInBytes = 12,
181 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
182 },
183 {
184 .binding = 1,
185 .strideInBytes = 32,
186 .stepRate = VK_VERTEX_INPUT_STEP_RATE_INSTANCE
187 },
188 },
189 .attributeCount = 3,
190 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
191 {
192 /* VUE Header */
193 .location = 0,
194 .binding = 1,
195 .format = VK_FORMAT_R32G32B32A32_UINT,
196 .offsetInBytes = 0
197 },
198 {
199 /* Position */
200 .location = 1,
201 .binding = 0,
202 .format = VK_FORMAT_R32G32B32_SFLOAT,
203 .offsetInBytes = 0
204 },
205 {
206 /* Color */
207 .location = 2,
208 .binding = 1,
209 .format = VK_FORMAT_R32G32B32A32_SFLOAT,
210 .offsetInBytes = 16
211 }
212 }
213 };
214
215 anv_graphics_pipeline_create(anv_device_to_handle(device),
216 &(VkGraphicsPipelineCreateInfo) {
217 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
218
219 .stageCount = 2,
220 .pStages = (VkPipelineShaderStageCreateInfo[]) {
221 {
222 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
223 .stage = VK_SHADER_STAGE_VERTEX,
224 .shader = vs,
225 .pSpecializationInfo = NULL
226 }, {
227 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
228 .stage = VK_SHADER_STAGE_FRAGMENT,
229 .shader = fs,
230 .pSpecializationInfo = NULL,
231 }
232 },
233 .pVertexInputState = &vi_create_info,
234 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
235 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
236 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
237 .primitiveRestartEnable = false,
238 },
239 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
240 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
241 .viewportCount = 1,
242 .scissorCount = 1,
243 },
244 .pRasterState = &(VkPipelineRasterStateCreateInfo) {
245 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTER_STATE_CREATE_INFO,
246 .depthClipEnable = true,
247 .rasterizerDiscardEnable = false,
248 .fillMode = VK_FILL_MODE_SOLID,
249 .cullMode = VK_CULL_MODE_NONE,
250 .frontFace = VK_FRONT_FACE_CCW
251 },
252 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
253 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
254 .rasterSamples = 1,
255 .sampleShadingEnable = false,
256 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
257 },
258 .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) {
259 .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
260 .depthTestEnable = true,
261 .depthWriteEnable = true,
262 .depthCompareOp = VK_COMPARE_OP_ALWAYS,
263 .depthBoundsTestEnable = false,
264 .stencilTestEnable = true,
265 .front = (VkStencilOpState) {
266 .stencilPassOp = VK_STENCIL_OP_REPLACE,
267 .stencilCompareOp = VK_COMPARE_OP_ALWAYS,
268 },
269 .back = (VkStencilOpState) {
270 .stencilPassOp = VK_STENCIL_OP_REPLACE,
271 .stencilCompareOp = VK_COMPARE_OP_ALWAYS,
272 },
273 },
274 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
275 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
276 .attachmentCount = 1,
277 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
278 { .channelWriteMask = VK_CHANNEL_A_BIT |
279 VK_CHANNEL_R_BIT | VK_CHANNEL_G_BIT | VK_CHANNEL_B_BIT },
280 }
281 },
282 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
283 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
284 .dynamicStateCount = 9,
285 .pDynamicStates = (VkDynamicState[]) {
286 VK_DYNAMIC_STATE_VIEWPORT,
287 VK_DYNAMIC_STATE_SCISSOR,
288 VK_DYNAMIC_STATE_LINE_WIDTH,
289 VK_DYNAMIC_STATE_DEPTH_BIAS,
290 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
291 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
292 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
293 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
294 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
295 },
296 },
297 .flags = 0,
298 .renderPass = anv_render_pass_to_handle(&anv_meta_dummy_renderpass),
299 .subpass = 0,
300 },
301 &(struct anv_graphics_pipeline_create_info) {
302 .use_repclear = true,
303 .disable_viewport = true,
304 .disable_vs = true,
305 .use_rectlist = true
306 },
307 &device->meta_state.clear.pipeline);
308
309 anv_DestroyShader(anv_device_to_handle(device), vs);
310 anv_DestroyShader(anv_device_to_handle(device), fs);
311 ralloc_free(vsm.nir);
312 ralloc_free(fsm.nir);
313 }
314
315 #define NUM_VB_USED 2
316 struct anv_saved_state {
317 struct anv_vertex_binding old_vertex_bindings[NUM_VB_USED];
318 struct anv_descriptor_set *old_descriptor_set0;
319 struct anv_pipeline *old_pipeline;
320 uint32_t dynamic_flags;
321 struct anv_dynamic_state dynamic;
322 };
323
324 static void
325 anv_cmd_buffer_save(struct anv_cmd_buffer *cmd_buffer,
326 struct anv_saved_state *state,
327 uint32_t dynamic_state)
328 {
329 state->old_pipeline = cmd_buffer->state.pipeline;
330 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
331 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
332 sizeof(state->old_vertex_bindings));
333 state->dynamic_flags = dynamic_state;
334 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
335 dynamic_state);
336 }
337
338 static void
339 anv_cmd_buffer_restore(struct anv_cmd_buffer *cmd_buffer,
340 const struct anv_saved_state *state)
341 {
342 cmd_buffer->state.pipeline = state->old_pipeline;
343 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
344 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
345 sizeof(state->old_vertex_bindings));
346
347 cmd_buffer->state.vb_dirty |= (1 << NUM_VB_USED) - 1;
348 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
349 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
350
351 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
352 state->dynamic_flags);
353 cmd_buffer->state.dirty |= state->dynamic_flags;
354 }
355
356 struct vue_header {
357 uint32_t Reserved;
358 uint32_t RTAIndex;
359 uint32_t ViewportIndex;
360 float PointWidth;
361 };
362
363 struct clear_instance_data {
364 struct vue_header vue_header;
365 VkClearColorValue color;
366 };
367
368 static void
369 meta_emit_clear(struct anv_cmd_buffer *cmd_buffer,
370 int num_instances,
371 struct clear_instance_data *instance_data,
372 VkClearDepthStencilValue ds_clear_value)
373 {
374 struct anv_device *device = cmd_buffer->device;
375 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
376 struct anv_state state;
377 uint32_t size;
378
379 const float vertex_data[] = {
380 /* Rect-list coordinates */
381 0.0, 0.0, ds_clear_value.depth,
382 fb->width, 0.0, ds_clear_value.depth,
383 fb->width, fb->height, ds_clear_value.depth,
384
385 /* Align to 16 bytes */
386 0.0, 0.0, 0.0,
387 };
388
389 size = sizeof(vertex_data) + num_instances * sizeof(*instance_data);
390 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 16);
391
392 /* Copy in the vertex and instance data */
393 memcpy(state.map, vertex_data, sizeof(vertex_data));
394 memcpy(state.map + sizeof(vertex_data), instance_data,
395 num_instances * sizeof(*instance_data));
396
397 struct anv_buffer vertex_buffer = {
398 .device = cmd_buffer->device,
399 .size = size,
400 .bo = &device->dynamic_state_block_pool.bo,
401 .offset = state.offset
402 };
403
404 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
405 (VkBuffer[]) {
406 anv_buffer_to_handle(&vertex_buffer),
407 anv_buffer_to_handle(&vertex_buffer)
408 },
409 (VkDeviceSize[]) {
410 0,
411 sizeof(vertex_data)
412 });
413
414 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(device->meta_state.clear.pipeline))
415 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
416 VK_PIPELINE_BIND_POINT_GRAPHICS,
417 device->meta_state.clear.pipeline);
418
419 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer),
420 3, num_instances, 0, 0);
421 }
422
423 void
424 anv_cmd_buffer_clear_attachments(struct anv_cmd_buffer *cmd_buffer,
425 struct anv_render_pass *pass,
426 const VkClearValue *clear_values)
427 {
428 struct anv_saved_state saved_state;
429
430 if (pass->has_stencil_clear_attachment)
431 anv_finishme("stencil clear");
432
433 /* FINISHME: Rethink how we count clear attachments in light of
434 * 0.138.2 -> 0.170.2 diff.
435 */
436 if (pass->num_color_clear_attachments == 0 &&
437 !pass->has_depth_clear_attachment)
438 return;
439
440 struct clear_instance_data instance_data[pass->num_color_clear_attachments];
441 uint32_t color_attachments[pass->num_color_clear_attachments];
442 uint32_t ds_attachment = VK_ATTACHMENT_UNUSED;
443 VkClearDepthStencilValue ds_clear_value = {0};
444
445 int layer = 0;
446 for (uint32_t i = 0; i < pass->attachment_count; i++) {
447 const struct anv_render_pass_attachment *att = &pass->attachments[i];
448
449 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
450 if (anv_format_is_color(att->format)) {
451 instance_data[layer] = (struct clear_instance_data) {
452 .vue_header = {
453 .RTAIndex = i,
454 .ViewportIndex = 0,
455 .PointWidth = 0.0
456 },
457 .color = clear_values[i].color,
458 };
459 color_attachments[layer] = i;
460 layer++;
461 } else if (att->format->depth_format) {
462 assert(ds_attachment == VK_ATTACHMENT_UNUSED);
463 ds_attachment = i;
464 ds_clear_value = clear_values[ds_attachment].depthStencil;
465 }
466 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
467 assert(att->format->has_stencil);
468 anv_finishme("stencil clear");
469 }
470 }
471
472 anv_cmd_buffer_save(cmd_buffer, &saved_state,
473 (1 << VK_DYNAMIC_STATE_VIEWPORT));
474 cmd_buffer->state.dynamic.viewport.count = 0;
475
476 struct anv_subpass subpass = {
477 .input_count = 0,
478 .color_count = pass->num_color_clear_attachments,
479 .color_attachments = color_attachments,
480 .depth_stencil_attachment = ds_attachment,
481 };
482
483 anv_cmd_buffer_begin_subpass(cmd_buffer, &subpass);
484
485 meta_emit_clear(cmd_buffer, pass->num_color_clear_attachments,
486 instance_data, ds_clear_value);
487
488 /* Restore API state */
489 anv_cmd_buffer_restore(cmd_buffer, &saved_state);
490 }
491
492 static VkImageViewType
493 meta_blit_get_src_image_view_type(const struct anv_image *src_image)
494 {
495 switch (src_image->type) {
496 case VK_IMAGE_TYPE_1D:
497 return VK_IMAGE_VIEW_TYPE_1D;
498 case VK_IMAGE_TYPE_2D:
499 return VK_IMAGE_VIEW_TYPE_2D;
500 case VK_IMAGE_TYPE_3D:
501 return VK_IMAGE_VIEW_TYPE_3D;
502 default:
503 assert(!"bad VkImageType");
504 return 0;
505 }
506 }
507
508 static uint32_t
509 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
510 const VkImageSubresourceCopy *dest_subresource,
511 const VkOffset3D *dest_offset)
512 {
513 switch (dest_image->type) {
514 case VK_IMAGE_TYPE_1D:
515 case VK_IMAGE_TYPE_2D:
516 return dest_subresource->arrayLayer;
517 case VK_IMAGE_TYPE_3D:
518 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
519 * but meta does it anyway. When doing so, we translate the
520 * destination's z offset into an array offset.
521 */
522 return dest_offset->z;
523 default:
524 assert(!"bad VkImageType");
525 return 0;
526 }
527 }
528
529 static void
530 anv_device_init_meta_blit_state(struct anv_device *device)
531 {
532 anv_CreateRenderPass(anv_device_to_handle(device),
533 &(VkRenderPassCreateInfo) {
534 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
535 .attachmentCount = 1,
536 .pAttachments = &(VkAttachmentDescription) {
537 .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
538 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
539 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
540 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
541 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
542 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
543 },
544 .subpassCount = 1,
545 .pSubpasses = &(VkSubpassDescription) {
546 .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION,
547 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
548 .inputCount = 0,
549 .colorCount = 1,
550 .pColorAttachments = &(VkAttachmentReference) {
551 .attachment = 0,
552 .layout = VK_IMAGE_LAYOUT_GENERAL,
553 },
554 .pResolveAttachments = NULL,
555 .depthStencilAttachment = (VkAttachmentReference) {
556 .attachment = VK_ATTACHMENT_UNUSED,
557 .layout = VK_IMAGE_LAYOUT_GENERAL,
558 },
559 .preserveCount = 1,
560 .pPreserveAttachments = &(VkAttachmentReference) {
561 .attachment = 0,
562 .layout = VK_IMAGE_LAYOUT_GENERAL,
563 },
564 },
565 .dependencyCount = 0,
566 }, &device->meta_state.blit.render_pass);
567
568 /* We don't use a vertex shader for clearing, but instead build and pass
569 * the VUEs directly to the rasterization backend. However, we do need
570 * to provide GLSL source for the vertex shader so that the compiler
571 * does not dead-code our inputs.
572 */
573 struct anv_shader_module vsm = {
574 .nir = build_nir_vertex_shader(false),
575 };
576
577 struct anv_shader_module fsm_2d = {
578 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
579 };
580
581 struct anv_shader_module fsm_3d = {
582 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
583 };
584
585 VkShader vs;
586 anv_CreateShader(anv_device_to_handle(device),
587 &(VkShaderCreateInfo) {
588 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
589 .module = anv_shader_module_to_handle(&vsm),
590 .pName = "main",
591 }, &vs);
592
593 VkShader fs_2d;
594 anv_CreateShader(anv_device_to_handle(device),
595 &(VkShaderCreateInfo) {
596 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
597 .module = anv_shader_module_to_handle(&fsm_2d),
598 .pName = "main",
599 }, &fs_2d);
600
601 VkShader fs_3d;
602 anv_CreateShader(anv_device_to_handle(device),
603 &(VkShaderCreateInfo) {
604 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
605 .module = anv_shader_module_to_handle(&fsm_3d),
606 .pName = "main",
607 }, &fs_3d);
608
609 VkPipelineVertexInputStateCreateInfo vi_create_info = {
610 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
611 .bindingCount = 2,
612 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
613 {
614 .binding = 0,
615 .strideInBytes = 0,
616 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
617 },
618 {
619 .binding = 1,
620 .strideInBytes = 5 * sizeof(float),
621 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
622 },
623 },
624 .attributeCount = 3,
625 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
626 {
627 /* VUE Header */
628 .location = 0,
629 .binding = 0,
630 .format = VK_FORMAT_R32G32B32A32_UINT,
631 .offsetInBytes = 0
632 },
633 {
634 /* Position */
635 .location = 1,
636 .binding = 1,
637 .format = VK_FORMAT_R32G32_SFLOAT,
638 .offsetInBytes = 0
639 },
640 {
641 /* Texture Coordinate */
642 .location = 2,
643 .binding = 1,
644 .format = VK_FORMAT_R32G32B32_SFLOAT,
645 .offsetInBytes = 8
646 }
647 }
648 };
649
650 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
651 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
652 .count = 1,
653 .pBinding = (VkDescriptorSetLayoutBinding[]) {
654 {
655 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
656 .arraySize = 1,
657 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
658 .pImmutableSamplers = NULL
659 },
660 }
661 };
662 anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info,
663 &device->meta_state.blit.ds_layout);
664
665 anv_CreatePipelineLayout(anv_device_to_handle(device),
666 &(VkPipelineLayoutCreateInfo) {
667 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
668 .descriptorSetCount = 1,
669 .pSetLayouts = &device->meta_state.blit.ds_layout,
670 },
671 &device->meta_state.blit.pipeline_layout);
672
673 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
674 {
675 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
676 .stage = VK_SHADER_STAGE_VERTEX,
677 .shader = vs,
678 .pSpecializationInfo = NULL
679 }, {
680 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
681 .stage = VK_SHADER_STAGE_FRAGMENT,
682 .shader = {0}, /* TEMPLATE VALUE! FILL ME IN! */
683 .pSpecializationInfo = NULL
684 },
685 };
686
687 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
688 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
689 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
690 .pStages = pipeline_shader_stages,
691 .pVertexInputState = &vi_create_info,
692 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
693 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
694 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
695 .primitiveRestartEnable = false,
696 },
697 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
698 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
699 .viewportCount = 1,
700 .scissorCount = 1,
701 },
702 .pRasterState = &(VkPipelineRasterStateCreateInfo) {
703 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTER_STATE_CREATE_INFO,
704 .depthClipEnable = true,
705 .rasterizerDiscardEnable = false,
706 .fillMode = VK_FILL_MODE_SOLID,
707 .cullMode = VK_CULL_MODE_NONE,
708 .frontFace = VK_FRONT_FACE_CCW
709 },
710 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
711 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
712 .rasterSamples = 1,
713 .sampleShadingEnable = false,
714 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
715 },
716 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
717 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
718 .attachmentCount = 1,
719 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
720 { .channelWriteMask = VK_CHANNEL_A_BIT |
721 VK_CHANNEL_R_BIT | VK_CHANNEL_G_BIT | VK_CHANNEL_B_BIT },
722 }
723 },
724 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
725 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
726 .dynamicStateCount = 9,
727 .pDynamicStates = (VkDynamicState[]) {
728 VK_DYNAMIC_STATE_VIEWPORT,
729 VK_DYNAMIC_STATE_SCISSOR,
730 VK_DYNAMIC_STATE_LINE_WIDTH,
731 VK_DYNAMIC_STATE_DEPTH_BIAS,
732 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
733 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
734 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
735 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
736 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
737 },
738 },
739 .flags = 0,
740 .layout = device->meta_state.blit.pipeline_layout,
741 .renderPass = device->meta_state.blit.render_pass,
742 .subpass = 0,
743 };
744
745 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
746 .use_repclear = false,
747 .disable_viewport = true,
748 .disable_scissor = true,
749 .disable_vs = true,
750 .use_rectlist = true
751 };
752
753 pipeline_shader_stages[1].shader = fs_2d;
754 anv_graphics_pipeline_create(anv_device_to_handle(device),
755 &vk_pipeline_info, &anv_pipeline_info,
756 &device->meta_state.blit.pipeline_2d_src);
757
758 pipeline_shader_stages[1].shader = fs_3d;
759 anv_graphics_pipeline_create(anv_device_to_handle(device),
760 &vk_pipeline_info, &anv_pipeline_info,
761 &device->meta_state.blit.pipeline_3d_src);
762
763 anv_DestroyShader(anv_device_to_handle(device), vs);
764 anv_DestroyShader(anv_device_to_handle(device), fs_2d);
765 anv_DestroyShader(anv_device_to_handle(device), fs_3d);
766 ralloc_free(vsm.nir);
767 ralloc_free(fsm_2d.nir);
768 ralloc_free(fsm_3d.nir);
769 }
770
771 static void
772 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
773 struct anv_saved_state *saved_state)
774 {
775 anv_cmd_buffer_save(cmd_buffer, saved_state,
776 (1 << VK_DYNAMIC_STATE_VIEWPORT));
777 }
778
779 struct blit_region {
780 VkOffset3D src_offset;
781 VkExtent3D src_extent;
782 VkOffset3D dest_offset;
783 VkExtent3D dest_extent;
784 };
785
786 static void
787 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
788 struct anv_image *src_image,
789 struct anv_image_view *src_iview,
790 VkOffset3D src_offset,
791 VkExtent3D src_extent,
792 struct anv_image *dest_image,
793 struct anv_image_view *dest_iview,
794 VkOffset3D dest_offset,
795 VkExtent3D dest_extent)
796 {
797 struct anv_device *device = cmd_buffer->device;
798 VkDescriptorPool dummy_desc_pool = { .handle = 1 };
799
800 struct blit_vb_data {
801 float pos[2];
802 float tex_coord[3];
803 } *vb_data;
804
805 unsigned vb_size = sizeof(struct vue_header) + 3 * sizeof(*vb_data);
806
807 struct anv_state vb_state =
808 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
809 memset(vb_state.map, 0, sizeof(struct vue_header));
810 vb_data = vb_state.map + sizeof(struct vue_header);
811
812 vb_data[0] = (struct blit_vb_data) {
813 .pos = {
814 dest_offset.x + dest_extent.width,
815 dest_offset.y + dest_extent.height,
816 },
817 .tex_coord = {
818 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
819 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
820 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
821 },
822 };
823
824 vb_data[1] = (struct blit_vb_data) {
825 .pos = {
826 dest_offset.x,
827 dest_offset.y + dest_extent.height,
828 },
829 .tex_coord = {
830 (float)src_offset.x / (float)src_iview->extent.width,
831 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
832 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
833 },
834 };
835
836 vb_data[2] = (struct blit_vb_data) {
837 .pos = {
838 dest_offset.x,
839 dest_offset.y,
840 },
841 .tex_coord = {
842 (float)src_offset.x / (float)src_iview->extent.width,
843 (float)src_offset.y / (float)src_iview->extent.height,
844 (float)src_offset.z / (float)src_iview->extent.depth,
845 },
846 };
847
848 struct anv_buffer vertex_buffer = {
849 .device = device,
850 .size = vb_size,
851 .bo = &device->dynamic_state_block_pool.bo,
852 .offset = vb_state.offset,
853 };
854
855 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
856 (VkBuffer[]) {
857 anv_buffer_to_handle(&vertex_buffer),
858 anv_buffer_to_handle(&vertex_buffer)
859 },
860 (VkDeviceSize[]) {
861 0,
862 sizeof(struct vue_header),
863 });
864
865 VkDescriptorSet set;
866 anv_AllocDescriptorSets(anv_device_to_handle(device), dummy_desc_pool,
867 VK_DESCRIPTOR_SET_USAGE_ONE_SHOT,
868 1, &device->meta_state.blit.ds_layout, &set);
869 anv_UpdateDescriptorSets(anv_device_to_handle(device),
870 1, /* writeCount */
871 (VkWriteDescriptorSet[]) {
872 {
873 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
874 .destSet = set,
875 .destBinding = 0,
876 .destArrayElement = 0,
877 .count = 1,
878 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
879 .pDescriptors = (VkDescriptorInfo[]) {
880 {
881 .imageView = anv_image_view_to_handle(src_iview),
882 .imageLayout = VK_IMAGE_LAYOUT_GENERAL
883 },
884 }
885 }
886 }, 0, NULL);
887
888 VkFramebuffer fb;
889 anv_CreateFramebuffer(anv_device_to_handle(device),
890 &(VkFramebufferCreateInfo) {
891 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
892 .attachmentCount = 1,
893 .pAttachments = (VkImageView[]) {
894 anv_image_view_to_handle(dest_iview),
895 },
896 .width = dest_iview->extent.width,
897 .height = dest_iview->extent.height,
898 .layers = 1
899 }, &fb);
900
901 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
902 &(VkRenderPassBeginInfo) {
903 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
904 .renderPass = device->meta_state.blit.render_pass,
905 .framebuffer = fb,
906 .renderArea = {
907 .offset = { dest_offset.x, dest_offset.y },
908 .extent = { dest_extent.width, dest_extent.height },
909 },
910 .clearValueCount = 0,
911 .pClearValues = NULL,
912 }, VK_RENDER_PASS_CONTENTS_INLINE);
913
914 VkPipeline pipeline;
915
916 switch (src_image->type) {
917 case VK_IMAGE_TYPE_1D:
918 anv_finishme("VK_IMAGE_TYPE_1D");
919 pipeline = device->meta_state.blit.pipeline_2d_src;
920 break;
921 case VK_IMAGE_TYPE_2D:
922 pipeline = device->meta_state.blit.pipeline_2d_src;
923 break;
924 case VK_IMAGE_TYPE_3D:
925 pipeline = device->meta_state.blit.pipeline_3d_src;
926 break;
927 default:
928 unreachable(!"bad VkImageType");
929 }
930
931 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
932 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
933 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
934 }
935
936 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1,
937 &(VkViewport) {
938 .originX = 0.0f,
939 .originY = 0.0f,
940 .width = dest_iview->extent.width,
941 .height = dest_iview->extent.height,
942 .minDepth = 0.0f,
943 .maxDepth = 1.0f,
944 });
945
946 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
947 VK_PIPELINE_BIND_POINT_GRAPHICS,
948 device->meta_state.blit.pipeline_layout, 0, 1,
949 &set, 0, NULL);
950
951 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
952
953 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
954
955 /* At the point where we emit the draw call, all data from the
956 * descriptor sets, etc. has been used. We are free to delete it.
957 */
958 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
959 anv_DestroyFramebuffer(anv_device_to_handle(device), fb);
960 }
961
962 static void
963 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
964 const struct anv_saved_state *saved_state)
965 {
966 anv_cmd_buffer_restore(cmd_buffer, saved_state);
967 }
968
969 static VkFormat
970 vk_format_for_cpp(int cpp)
971 {
972 switch (cpp) {
973 case 1: return VK_FORMAT_R8_UINT;
974 case 2: return VK_FORMAT_R8G8_UINT;
975 case 3: return VK_FORMAT_R8G8B8_UINT;
976 case 4: return VK_FORMAT_R8G8B8A8_UINT;
977 case 6: return VK_FORMAT_R16G16B16_UINT;
978 case 8: return VK_FORMAT_R16G16B16A16_UINT;
979 case 12: return VK_FORMAT_R32G32B32_UINT;
980 case 16: return VK_FORMAT_R32G32B32A32_UINT;
981 default:
982 unreachable("Invalid format cpp");
983 }
984 }
985
986 static void
987 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
988 struct anv_bo *src, uint64_t src_offset,
989 struct anv_bo *dest, uint64_t dest_offset,
990 int width, int height, VkFormat copy_format)
991 {
992 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
993
994 VkImageCreateInfo image_info = {
995 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
996 .imageType = VK_IMAGE_TYPE_2D,
997 .format = copy_format,
998 .extent = {
999 .width = width,
1000 .height = height,
1001 .depth = 1,
1002 },
1003 .mipLevels = 1,
1004 .arraySize = 1,
1005 .samples = 1,
1006 .tiling = VK_IMAGE_TILING_LINEAR,
1007 .usage = 0,
1008 .flags = 0,
1009 };
1010
1011 VkImage src_image;
1012 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
1013 anv_CreateImage(vk_device, &image_info, &src_image);
1014
1015 VkImage dest_image;
1016 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1017 anv_CreateImage(vk_device, &image_info, &dest_image);
1018
1019 /* We could use a vk call to bind memory, but that would require
1020 * creating a dummy memory object etc. so there's really no point.
1021 */
1022 anv_image_from_handle(src_image)->bo = src;
1023 anv_image_from_handle(src_image)->offset = src_offset;
1024 anv_image_from_handle(dest_image)->bo = dest;
1025 anv_image_from_handle(dest_image)->offset = dest_offset;
1026
1027 struct anv_image_view src_iview;
1028 anv_image_view_init(&src_iview, cmd_buffer->device,
1029 &(VkImageViewCreateInfo) {
1030 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1031 .image = src_image,
1032 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1033 .format = copy_format,
1034 .channels = {
1035 VK_CHANNEL_SWIZZLE_R,
1036 VK_CHANNEL_SWIZZLE_G,
1037 VK_CHANNEL_SWIZZLE_B,
1038 VK_CHANNEL_SWIZZLE_A
1039 },
1040 .subresourceRange = {
1041 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1042 .baseMipLevel = 0,
1043 .mipLevels = 1,
1044 .baseArrayLayer = 0,
1045 .arraySize = 1
1046 },
1047 },
1048 cmd_buffer);
1049
1050 struct anv_image_view dest_iview;
1051 anv_image_view_init(&dest_iview, cmd_buffer->device,
1052 &(VkImageViewCreateInfo) {
1053 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1054 .image = dest_image,
1055 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1056 .format = copy_format,
1057 .channels = {
1058 .r = VK_CHANNEL_SWIZZLE_R,
1059 .g = VK_CHANNEL_SWIZZLE_G,
1060 .b = VK_CHANNEL_SWIZZLE_B,
1061 .a = VK_CHANNEL_SWIZZLE_A,
1062 },
1063 .subresourceRange = {
1064 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1065 .baseMipLevel = 0,
1066 .mipLevels = 1,
1067 .baseArrayLayer = 0,
1068 .arraySize = 1,
1069 },
1070 },
1071 cmd_buffer);
1072
1073 meta_emit_blit(cmd_buffer,
1074 anv_image_from_handle(src_image),
1075 &src_iview,
1076 (VkOffset3D) { 0, 0, 0 },
1077 (VkExtent3D) { width, height, 1 },
1078 anv_image_from_handle(dest_image),
1079 &dest_iview,
1080 (VkOffset3D) { 0, 0, 0 },
1081 (VkExtent3D) { width, height, 1 });
1082
1083 anv_DestroyImage(vk_device, src_image);
1084 anv_DestroyImage(vk_device, dest_image);
1085 }
1086
1087 void anv_CmdCopyBuffer(
1088 VkCmdBuffer cmdBuffer,
1089 VkBuffer srcBuffer,
1090 VkBuffer destBuffer,
1091 uint32_t regionCount,
1092 const VkBufferCopy* pRegions)
1093 {
1094 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1095 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
1096 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
1097
1098 struct anv_saved_state saved_state;
1099
1100 meta_prepare_blit(cmd_buffer, &saved_state);
1101
1102 for (unsigned r = 0; r < regionCount; r++) {
1103 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
1104 uint64_t dest_offset = dest_buffer->offset + pRegions[r].destOffset;
1105 uint64_t copy_size = pRegions[r].copySize;
1106
1107 /* First, we compute the biggest format that can be used with the
1108 * given offsets and size.
1109 */
1110 int cpp = 16;
1111
1112 int fs = ffs(src_offset) - 1;
1113 if (fs != -1)
1114 cpp = MIN2(cpp, 1 << fs);
1115 assert(src_offset % cpp == 0);
1116
1117 fs = ffs(dest_offset) - 1;
1118 if (fs != -1)
1119 cpp = MIN2(cpp, 1 << fs);
1120 assert(dest_offset % cpp == 0);
1121
1122 fs = ffs(pRegions[r].copySize) - 1;
1123 if (fs != -1)
1124 cpp = MIN2(cpp, 1 << fs);
1125 assert(pRegions[r].copySize % cpp == 0);
1126
1127 VkFormat copy_format = vk_format_for_cpp(cpp);
1128
1129 /* This is maximum possible width/height our HW can handle */
1130 uint64_t max_surface_dim = 1 << 14;
1131
1132 /* First, we make a bunch of max-sized copies */
1133 uint64_t max_copy_size = max_surface_dim * max_surface_dim * cpp;
1134 while (copy_size > max_copy_size) {
1135 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
1136 dest_buffer->bo, dest_offset,
1137 max_surface_dim, max_surface_dim, copy_format);
1138 copy_size -= max_copy_size;
1139 src_offset += max_copy_size;
1140 dest_offset += max_copy_size;
1141 }
1142
1143 uint64_t height = copy_size / (max_surface_dim * cpp);
1144 assert(height < max_surface_dim);
1145 if (height != 0) {
1146 uint64_t rect_copy_size = height * max_surface_dim * cpp;
1147 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
1148 dest_buffer->bo, dest_offset,
1149 max_surface_dim, height, copy_format);
1150 copy_size -= rect_copy_size;
1151 src_offset += rect_copy_size;
1152 dest_offset += rect_copy_size;
1153 }
1154
1155 if (copy_size != 0) {
1156 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
1157 dest_buffer->bo, dest_offset,
1158 copy_size / cpp, 1, copy_format);
1159 }
1160 }
1161
1162 meta_finish_blit(cmd_buffer, &saved_state);
1163 }
1164
1165 void anv_CmdCopyImage(
1166 VkCmdBuffer cmdBuffer,
1167 VkImage srcImage,
1168 VkImageLayout srcImageLayout,
1169 VkImage destImage,
1170 VkImageLayout destImageLayout,
1171 uint32_t regionCount,
1172 const VkImageCopy* pRegions)
1173 {
1174 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1175 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1176 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1177
1178 const VkImageViewType src_iview_type =
1179 meta_blit_get_src_image_view_type(src_image);
1180
1181 struct anv_saved_state saved_state;
1182
1183 meta_prepare_blit(cmd_buffer, &saved_state);
1184
1185 for (unsigned r = 0; r < regionCount; r++) {
1186 struct anv_image_view src_iview;
1187 anv_image_view_init(&src_iview, cmd_buffer->device,
1188 &(VkImageViewCreateInfo) {
1189 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1190 .image = srcImage,
1191 .viewType = src_iview_type,
1192 .format = src_image->format->vk_format,
1193 .channels = {
1194 VK_CHANNEL_SWIZZLE_R,
1195 VK_CHANNEL_SWIZZLE_G,
1196 VK_CHANNEL_SWIZZLE_B,
1197 VK_CHANNEL_SWIZZLE_A
1198 },
1199 .subresourceRange = {
1200 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
1201 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
1202 .mipLevels = 1,
1203 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
1204 .arraySize = 1
1205 },
1206 },
1207 cmd_buffer);
1208
1209 const VkOffset3D dest_offset = {
1210 .x = pRegions[r].destOffset.x,
1211 .y = pRegions[r].destOffset.y,
1212 .z = 0,
1213 };
1214
1215 const uint32_t dest_array_slice =
1216 meta_blit_get_dest_view_base_array_slice(dest_image,
1217 &pRegions[r].destSubresource,
1218 &pRegions[r].destOffset);
1219
1220 if (pRegions[r].srcSubresource.arraySize > 1)
1221 anv_finishme("FINISHME: copy multiple array layers");
1222
1223 if (pRegions[r].extent.depth > 1)
1224 anv_finishme("FINISHME: copy multiple depth layers");
1225
1226 struct anv_image_view dest_iview;
1227 anv_image_view_init(&dest_iview, cmd_buffer->device,
1228 &(VkImageViewCreateInfo) {
1229 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1230 .image = destImage,
1231 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1232 .format = dest_image->format->vk_format,
1233 .channels = {
1234 VK_CHANNEL_SWIZZLE_R,
1235 VK_CHANNEL_SWIZZLE_G,
1236 VK_CHANNEL_SWIZZLE_B,
1237 VK_CHANNEL_SWIZZLE_A
1238 },
1239 .subresourceRange = {
1240 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1241 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
1242 .mipLevels = 1,
1243 .baseArrayLayer = dest_array_slice,
1244 .arraySize = 1
1245 },
1246 },
1247 cmd_buffer);
1248
1249 meta_emit_blit(cmd_buffer,
1250 src_image, &src_iview,
1251 pRegions[r].srcOffset,
1252 pRegions[r].extent,
1253 dest_image, &dest_iview,
1254 dest_offset,
1255 pRegions[r].extent);
1256 }
1257
1258 meta_finish_blit(cmd_buffer, &saved_state);
1259 }
1260
1261 void anv_CmdBlitImage(
1262 VkCmdBuffer cmdBuffer,
1263 VkImage srcImage,
1264 VkImageLayout srcImageLayout,
1265 VkImage destImage,
1266 VkImageLayout destImageLayout,
1267 uint32_t regionCount,
1268 const VkImageBlit* pRegions,
1269 VkTexFilter filter)
1270
1271 {
1272 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1273 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1274 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1275
1276 const VkImageViewType src_iview_type =
1277 meta_blit_get_src_image_view_type(src_image);
1278
1279 struct anv_saved_state saved_state;
1280
1281 anv_finishme("respect VkTexFilter");
1282
1283 meta_prepare_blit(cmd_buffer, &saved_state);
1284
1285 for (unsigned r = 0; r < regionCount; r++) {
1286 struct anv_image_view src_iview;
1287 anv_image_view_init(&src_iview, cmd_buffer->device,
1288 &(VkImageViewCreateInfo) {
1289 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1290 .image = srcImage,
1291 .viewType = src_iview_type,
1292 .format = src_image->format->vk_format,
1293 .channels = {
1294 VK_CHANNEL_SWIZZLE_R,
1295 VK_CHANNEL_SWIZZLE_G,
1296 VK_CHANNEL_SWIZZLE_B,
1297 VK_CHANNEL_SWIZZLE_A
1298 },
1299 .subresourceRange = {
1300 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
1301 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
1302 .mipLevels = 1,
1303 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
1304 .arraySize = 1
1305 },
1306 },
1307 cmd_buffer);
1308
1309 const VkOffset3D dest_offset = {
1310 .x = pRegions[r].destOffset.x,
1311 .y = pRegions[r].destOffset.y,
1312 .z = 0,
1313 };
1314
1315 const uint32_t dest_array_slice =
1316 meta_blit_get_dest_view_base_array_slice(dest_image,
1317 &pRegions[r].destSubresource,
1318 &pRegions[r].destOffset);
1319
1320 if (pRegions[r].srcSubresource.arraySize > 1)
1321 anv_finishme("FINISHME: copy multiple array layers");
1322
1323 if (pRegions[r].destExtent.depth > 1)
1324 anv_finishme("FINISHME: copy multiple depth layers");
1325
1326 struct anv_image_view dest_iview;
1327 anv_image_view_init(&dest_iview, cmd_buffer->device,
1328 &(VkImageViewCreateInfo) {
1329 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1330 .image = destImage,
1331 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1332 .format = dest_image->format->vk_format,
1333 .channels = {
1334 VK_CHANNEL_SWIZZLE_R,
1335 VK_CHANNEL_SWIZZLE_G,
1336 VK_CHANNEL_SWIZZLE_B,
1337 VK_CHANNEL_SWIZZLE_A
1338 },
1339 .subresourceRange = {
1340 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1341 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
1342 .mipLevels = 1,
1343 .baseArrayLayer = dest_array_slice,
1344 .arraySize = 1
1345 },
1346 },
1347 cmd_buffer);
1348
1349 meta_emit_blit(cmd_buffer,
1350 src_image, &src_iview,
1351 pRegions[r].srcOffset,
1352 pRegions[r].srcExtent,
1353 dest_image, &dest_iview,
1354 dest_offset,
1355 pRegions[r].destExtent);
1356 }
1357
1358 meta_finish_blit(cmd_buffer, &saved_state);
1359 }
1360
1361 static VkImage
1362 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
1363 VkImageUsageFlags usage,
1364 const VkBufferImageCopy *copy)
1365 {
1366 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
1367
1368 VkExtent3D extent = copy->imageExtent;
1369 if (copy->bufferRowLength)
1370 extent.width = copy->bufferRowLength;
1371 if (copy->bufferImageHeight)
1372 extent.height = copy->bufferImageHeight;
1373 extent.depth = 1;
1374
1375 VkImage vk_image;
1376 VkResult result = anv_CreateImage(vk_device,
1377 &(VkImageCreateInfo) {
1378 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1379 .imageType = VK_IMAGE_TYPE_2D,
1380 .format = format,
1381 .extent = extent,
1382 .mipLevels = 1,
1383 .arraySize = 1,
1384 .samples = 1,
1385 .tiling = VK_IMAGE_TILING_LINEAR,
1386 .usage = usage,
1387 .flags = 0,
1388 }, &vk_image);
1389 assert(result == VK_SUCCESS);
1390
1391 ANV_FROM_HANDLE(anv_image, image, vk_image);
1392
1393 /* We could use a vk call to bind memory, but that would require
1394 * creating a dummy memory object etc. so there's really no point.
1395 */
1396 image->bo = buffer->bo;
1397 image->offset = buffer->offset + copy->bufferOffset;
1398
1399 return anv_image_to_handle(image);
1400 }
1401
1402 void anv_CmdCopyBufferToImage(
1403 VkCmdBuffer cmdBuffer,
1404 VkBuffer srcBuffer,
1405 VkImage destImage,
1406 VkImageLayout destImageLayout,
1407 uint32_t regionCount,
1408 const VkBufferImageCopy* pRegions)
1409 {
1410 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1411 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1412 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1413 const VkFormat orig_format = dest_image->format->vk_format;
1414 struct anv_saved_state saved_state;
1415
1416 meta_prepare_blit(cmd_buffer, &saved_state);
1417
1418 for (unsigned r = 0; r < regionCount; r++) {
1419 VkFormat proxy_format = orig_format;
1420 VkImageAspect proxy_aspect = pRegions[r].imageSubresource.aspect;
1421
1422 if (orig_format == VK_FORMAT_S8_UINT) {
1423 proxy_format = VK_FORMAT_R8_UINT;
1424 proxy_aspect = VK_IMAGE_ASPECT_COLOR;
1425 }
1426
1427 VkImage srcImage = make_image_for_buffer(vk_device, srcBuffer,
1428 proxy_format, VK_IMAGE_USAGE_SAMPLED_BIT, &pRegions[r]);
1429
1430 struct anv_image_view src_iview;
1431 anv_image_view_init(&src_iview, cmd_buffer->device,
1432 &(VkImageViewCreateInfo) {
1433 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1434 .image = srcImage,
1435 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1436 .format = proxy_format,
1437 .channels = {
1438 VK_CHANNEL_SWIZZLE_R,
1439 VK_CHANNEL_SWIZZLE_G,
1440 VK_CHANNEL_SWIZZLE_B,
1441 VK_CHANNEL_SWIZZLE_A
1442 },
1443 .subresourceRange = {
1444 .aspectMask = 1 << proxy_aspect,
1445 .baseMipLevel = 0,
1446 .mipLevels = 1,
1447 .baseArrayLayer = 0,
1448 .arraySize = 1
1449 },
1450 },
1451 cmd_buffer);
1452
1453 const VkOffset3D dest_offset = {
1454 .x = pRegions[r].imageOffset.x,
1455 .y = pRegions[r].imageOffset.y,
1456 .z = 0,
1457 };
1458
1459 const uint32_t dest_array_slice =
1460 meta_blit_get_dest_view_base_array_slice(dest_image,
1461 &pRegions[r].imageSubresource,
1462 &pRegions[r].imageOffset);
1463
1464 if (pRegions[r].imageExtent.depth > 1)
1465 anv_finishme("FINISHME: copy multiple depth layers");
1466
1467 struct anv_image_view dest_iview;
1468 anv_image_view_init(&dest_iview, cmd_buffer->device,
1469 &(VkImageViewCreateInfo) {
1470 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1471 .image = anv_image_to_handle(dest_image),
1472 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1473 .format = proxy_format,
1474 .channels = {
1475 VK_CHANNEL_SWIZZLE_R,
1476 VK_CHANNEL_SWIZZLE_G,
1477 VK_CHANNEL_SWIZZLE_B,
1478 VK_CHANNEL_SWIZZLE_A
1479 },
1480 .subresourceRange = {
1481 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1482 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1483 .mipLevels = 1,
1484 .baseArrayLayer = dest_array_slice,
1485 .arraySize = 1
1486 },
1487 },
1488 cmd_buffer);
1489
1490 meta_emit_blit(cmd_buffer,
1491 anv_image_from_handle(srcImage),
1492 &src_iview,
1493 (VkOffset3D) { 0, 0, 0 },
1494 pRegions[r].imageExtent,
1495 dest_image,
1496 &dest_iview,
1497 dest_offset,
1498 pRegions[r].imageExtent);
1499
1500 anv_DestroyImage(vk_device, srcImage);
1501 }
1502
1503 meta_finish_blit(cmd_buffer, &saved_state);
1504 }
1505
1506 void anv_CmdCopyImageToBuffer(
1507 VkCmdBuffer cmdBuffer,
1508 VkImage srcImage,
1509 VkImageLayout srcImageLayout,
1510 VkBuffer destBuffer,
1511 uint32_t regionCount,
1512 const VkBufferImageCopy* pRegions)
1513 {
1514 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1515 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1516 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1517 struct anv_saved_state saved_state;
1518
1519 const VkImageViewType src_iview_type =
1520 meta_blit_get_src_image_view_type(src_image);
1521
1522 meta_prepare_blit(cmd_buffer, &saved_state);
1523
1524 for (unsigned r = 0; r < regionCount; r++) {
1525 if (pRegions[r].imageSubresource.arraySize > 1)
1526 anv_finishme("FINISHME: copy multiple array layers");
1527
1528 if (pRegions[r].imageExtent.depth > 1)
1529 anv_finishme("FINISHME: copy multiple depth layers");
1530
1531 struct anv_image_view src_iview;
1532 anv_image_view_init(&src_iview, cmd_buffer->device,
1533 &(VkImageViewCreateInfo) {
1534 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1535 .image = srcImage,
1536 .viewType = src_iview_type,
1537 .format = src_image->format->vk_format,
1538 .channels = {
1539 VK_CHANNEL_SWIZZLE_R,
1540 VK_CHANNEL_SWIZZLE_G,
1541 VK_CHANNEL_SWIZZLE_B,
1542 VK_CHANNEL_SWIZZLE_A
1543 },
1544 .subresourceRange = {
1545 .aspectMask = 1 << pRegions[r].imageSubresource.aspect,
1546 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1547 .mipLevels = 1,
1548 .baseArrayLayer = pRegions[r].imageSubresource.arrayLayer,
1549 .arraySize = 1
1550 },
1551 },
1552 cmd_buffer);
1553
1554 VkFormat dest_format = src_image->format->vk_format;
1555 if (dest_format == VK_FORMAT_S8_UINT) {
1556 dest_format = VK_FORMAT_R8_UINT;
1557 }
1558
1559 VkImage destImage = make_image_for_buffer(vk_device, destBuffer,
1560 dest_format, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pRegions[r]);
1561
1562 struct anv_image_view dest_iview;
1563 anv_image_view_init(&dest_iview, cmd_buffer->device,
1564 &(VkImageViewCreateInfo) {
1565 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1566 .image = destImage,
1567 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1568 .format = dest_format,
1569 .channels = {
1570 VK_CHANNEL_SWIZZLE_R,
1571 VK_CHANNEL_SWIZZLE_G,
1572 VK_CHANNEL_SWIZZLE_B,
1573 VK_CHANNEL_SWIZZLE_A
1574 },
1575 .subresourceRange = {
1576 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1577 .baseMipLevel = 0,
1578 .mipLevels = 1,
1579 .baseArrayLayer = 0,
1580 .arraySize = 1
1581 },
1582 },
1583 cmd_buffer);
1584
1585 meta_emit_blit(cmd_buffer,
1586 anv_image_from_handle(srcImage),
1587 &src_iview,
1588 pRegions[r].imageOffset,
1589 pRegions[r].imageExtent,
1590 anv_image_from_handle(destImage),
1591 &dest_iview,
1592 (VkOffset3D) { 0, 0, 0 },
1593 pRegions[r].imageExtent);
1594
1595 anv_DestroyImage(vk_device, destImage);
1596 }
1597
1598 meta_finish_blit(cmd_buffer, &saved_state);
1599 }
1600
1601 void anv_CmdUpdateBuffer(
1602 VkCmdBuffer cmdBuffer,
1603 VkBuffer destBuffer,
1604 VkDeviceSize destOffset,
1605 VkDeviceSize dataSize,
1606 const uint32_t* pData)
1607 {
1608 stub();
1609 }
1610
1611 void anv_CmdFillBuffer(
1612 VkCmdBuffer cmdBuffer,
1613 VkBuffer destBuffer,
1614 VkDeviceSize destOffset,
1615 VkDeviceSize fillSize,
1616 uint32_t data)
1617 {
1618 stub();
1619 }
1620
1621 void anv_CmdClearColorImage(
1622 VkCmdBuffer cmdBuffer,
1623 VkImage _image,
1624 VkImageLayout imageLayout,
1625 const VkClearColorValue* pColor,
1626 uint32_t rangeCount,
1627 const VkImageSubresourceRange* pRanges)
1628 {
1629 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1630 ANV_FROM_HANDLE(anv_image, image, _image);
1631 struct anv_saved_state saved_state;
1632
1633 anv_cmd_buffer_save(cmd_buffer, &saved_state,
1634 (1 << VK_DYNAMIC_STATE_VIEWPORT));
1635 cmd_buffer->state.dynamic.viewport.count = 0;
1636
1637 for (uint32_t r = 0; r < rangeCount; r++) {
1638 for (uint32_t l = 0; l < pRanges[r].mipLevels; l++) {
1639 for (uint32_t s = 0; s < pRanges[r].arraySize; s++) {
1640 struct anv_image_view iview;
1641 anv_image_view_init(&iview, cmd_buffer->device,
1642 &(VkImageViewCreateInfo) {
1643 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1644 .image = _image,
1645 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1646 .format = image->format->vk_format,
1647 .channels = {
1648 VK_CHANNEL_SWIZZLE_R,
1649 VK_CHANNEL_SWIZZLE_G,
1650 VK_CHANNEL_SWIZZLE_B,
1651 VK_CHANNEL_SWIZZLE_A
1652 },
1653 .subresourceRange = {
1654 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1655 .baseMipLevel = pRanges[r].baseMipLevel + l,
1656 .mipLevels = 1,
1657 .baseArrayLayer = pRanges[r].baseArrayLayer + s,
1658 .arraySize = 1
1659 },
1660 },
1661 cmd_buffer);
1662
1663 VkFramebuffer fb;
1664 anv_CreateFramebuffer(anv_device_to_handle(cmd_buffer->device),
1665 &(VkFramebufferCreateInfo) {
1666 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
1667 .attachmentCount = 1,
1668 .pAttachments = (VkImageView[]) {
1669 anv_image_view_to_handle(&iview),
1670 },
1671 .width = iview.extent.width,
1672 .height = iview.extent.height,
1673 .layers = 1
1674 }, &fb);
1675
1676 VkRenderPass pass;
1677 anv_CreateRenderPass(anv_device_to_handle(cmd_buffer->device),
1678 &(VkRenderPassCreateInfo) {
1679 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
1680 .attachmentCount = 1,
1681 .pAttachments = &(VkAttachmentDescription) {
1682 .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
1683 .format = iview.format->vk_format,
1684 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
1685 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
1686 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
1687 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
1688 },
1689 .subpassCount = 1,
1690 .pSubpasses = &(VkSubpassDescription) {
1691 .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION,
1692 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
1693 .inputCount = 0,
1694 .colorCount = 1,
1695 .pColorAttachments = &(VkAttachmentReference) {
1696 .attachment = 0,
1697 .layout = VK_IMAGE_LAYOUT_GENERAL,
1698 },
1699 .pResolveAttachments = NULL,
1700 .depthStencilAttachment = (VkAttachmentReference) {
1701 .attachment = VK_ATTACHMENT_UNUSED,
1702 .layout = VK_IMAGE_LAYOUT_GENERAL,
1703 },
1704 .preserveCount = 1,
1705 .pPreserveAttachments = &(VkAttachmentReference) {
1706 .attachment = 0,
1707 .layout = VK_IMAGE_LAYOUT_GENERAL,
1708 },
1709 },
1710 .dependencyCount = 0,
1711 }, &pass);
1712
1713 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
1714 &(VkRenderPassBeginInfo) {
1715 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
1716 .renderArea = {
1717 .offset = { 0, 0, },
1718 .extent = {
1719 .width = iview.extent.width,
1720 .height = iview.extent.height,
1721 },
1722 },
1723 .renderPass = pass,
1724 .framebuffer = fb,
1725 .clearValueCount = 1,
1726 .pClearValues = NULL,
1727 }, VK_RENDER_PASS_CONTENTS_INLINE);
1728
1729 struct clear_instance_data instance_data = {
1730 .vue_header = {
1731 .RTAIndex = 0,
1732 .ViewportIndex = 0,
1733 .PointWidth = 0.0
1734 },
1735 .color = *pColor,
1736 };
1737
1738 meta_emit_clear(cmd_buffer, 1, &instance_data,
1739 (VkClearDepthStencilValue) {0});
1740
1741 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
1742 }
1743 }
1744 }
1745
1746 /* Restore API state */
1747 anv_cmd_buffer_restore(cmd_buffer, &saved_state);
1748 }
1749
1750 void anv_CmdClearDepthStencilImage(
1751 VkCmdBuffer cmdBuffer,
1752 VkImage image,
1753 VkImageLayout imageLayout,
1754 const VkClearDepthStencilValue* pDepthStencil,
1755 uint32_t rangeCount,
1756 const VkImageSubresourceRange* pRanges)
1757 {
1758 stub();
1759 }
1760
1761 void anv_CmdClearColorAttachment(
1762 VkCmdBuffer cmdBuffer,
1763 uint32_t colorAttachment,
1764 VkImageLayout imageLayout,
1765 const VkClearColorValue* pColor,
1766 uint32_t rectCount,
1767 const VkRect3D* pRects)
1768 {
1769 stub();
1770 }
1771
1772 void anv_CmdClearDepthStencilAttachment(
1773 VkCmdBuffer cmdBuffer,
1774 VkImageAspectFlags aspectMask,
1775 VkImageLayout imageLayout,
1776 const VkClearDepthStencilValue* pDepthStencil,
1777 uint32_t rectCount,
1778 const VkRect3D* pRects)
1779 {
1780 stub();
1781 }
1782
1783 void anv_CmdResolveImage(
1784 VkCmdBuffer cmdBuffer,
1785 VkImage srcImage,
1786 VkImageLayout srcImageLayout,
1787 VkImage destImage,
1788 VkImageLayout destImageLayout,
1789 uint32_t regionCount,
1790 const VkImageResolve* pRegions)
1791 {
1792 stub();
1793 }
1794
1795 void
1796 anv_device_init_meta(struct anv_device *device)
1797 {
1798 anv_device_init_meta_clear_state(device);
1799 anv_device_init_meta_blit_state(device);
1800 }
1801
1802 void
1803 anv_device_finish_meta(struct anv_device *device)
1804 {
1805 /* Clear */
1806 anv_DestroyPipeline(anv_device_to_handle(device),
1807 device->meta_state.clear.pipeline);
1808
1809 /* Blit */
1810 anv_DestroyRenderPass(anv_device_to_handle(device),
1811 device->meta_state.blit.render_pass);
1812 anv_DestroyPipeline(anv_device_to_handle(device),
1813 device->meta_state.blit.pipeline_2d_src);
1814 anv_DestroyPipeline(anv_device_to_handle(device),
1815 device->meta_state.blit.pipeline_3d_src);
1816 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1817 device->meta_state.blit.pipeline_layout);
1818 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1819 device->meta_state.blit.ds_layout);
1820 }