vk: clflush all state for non-LLC GPUs
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_meta.h"
31 #include "anv_meta_clear.h"
32 #include "anv_private.h"
33 #include "anv_nir_builder.h"
34
35 struct anv_render_pass anv_meta_dummy_renderpass = {0};
36
37 static nir_shader *
38 build_nir_vertex_shader(bool attr_flat)
39 {
40 nir_builder b;
41
42 const struct glsl_type *vertex_type = glsl_vec4_type();
43
44 nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX);
45
46 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
47 vertex_type, "a_pos");
48 pos_in->data.location = VERT_ATTRIB_GENERIC0;
49 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
50 vertex_type, "gl_Position");
51 pos_in->data.location = VARYING_SLOT_POS;
52 nir_copy_var(&b, pos_out, pos_in);
53
54 /* Add one more pass-through attribute. For clear shaders, this is used
55 * to store the color and for blit shaders it's the texture coordinate.
56 */
57 const struct glsl_type *attr_type = glsl_vec4_type();
58 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
59 attr_type, "a_attr");
60 attr_in->data.location = VERT_ATTRIB_GENERIC1;
61 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
62 attr_type, "v_attr");
63 attr_out->data.location = VARYING_SLOT_VAR0;
64 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
65 INTERP_QUALIFIER_SMOOTH;
66 nir_copy_var(&b, attr_out, attr_in);
67
68 return b.shader;
69 }
70
71 static nir_shader *
72 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
73 {
74 nir_builder b;
75
76 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
77
78 const struct glsl_type *color_type = glsl_vec4_type();
79
80 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
81 glsl_vec4_type(), "v_attr");
82 tex_pos_in->data.location = VARYING_SLOT_VAR0;
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
86 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
87 sampler_type, "s_tex");
88 sampler->data.descriptor_set = 0;
89 sampler->data.binding = 0;
90
91 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
92 tex->sampler_dim = tex_dim;
93 tex->op = nir_texop_tex;
94 tex->src[0].src_type = nir_tex_src_coord;
95 tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
96 tex->dest_type = nir_type_float; /* TODO */
97
98 if (tex_dim == GLSL_SAMPLER_DIM_2D)
99 tex->is_array = true;
100 tex->coord_components = 3;
101
102 tex->sampler = nir_deref_var_create(tex, sampler);
103
104 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
105 nir_builder_instr_insert(&b, &tex->instr);
106
107 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
108 color_type, "f_color");
109 color_out->data.location = FRAG_RESULT_DATA0;
110 nir_store_var(&b, color_out, &tex->dest.ssa);
111
112 return b.shader;
113 }
114
115 void
116 anv_meta_save(struct anv_meta_saved_state *state,
117 const struct anv_cmd_buffer *cmd_buffer,
118 uint32_t dynamic_mask)
119 {
120 state->old_pipeline = cmd_buffer->state.pipeline;
121 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
122 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
123 sizeof(state->old_vertex_bindings));
124
125 state->dynamic_mask = dynamic_mask;
126 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
127 dynamic_mask);
128 }
129
130 void
131 anv_meta_restore(const struct anv_meta_saved_state *state,
132 struct anv_cmd_buffer *cmd_buffer)
133 {
134 cmd_buffer->state.pipeline = state->old_pipeline;
135 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
136 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
137 sizeof(state->old_vertex_bindings));
138
139 cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
140 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
141 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
142
143 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
144 state->dynamic_mask);
145 cmd_buffer->state.dirty |= state->dynamic_mask;
146 }
147
148 static VkImageViewType
149 meta_blit_get_src_image_view_type(const struct anv_image *src_image)
150 {
151 switch (src_image->type) {
152 case VK_IMAGE_TYPE_1D:
153 return VK_IMAGE_VIEW_TYPE_1D;
154 case VK_IMAGE_TYPE_2D:
155 return VK_IMAGE_VIEW_TYPE_2D;
156 case VK_IMAGE_TYPE_3D:
157 return VK_IMAGE_VIEW_TYPE_3D;
158 default:
159 assert(!"bad VkImageType");
160 return 0;
161 }
162 }
163
164 static uint32_t
165 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
166 const VkImageSubresourceLayers *dest_subresource,
167 const VkOffset3D *dest_offset)
168 {
169 switch (dest_image->type) {
170 case VK_IMAGE_TYPE_1D:
171 case VK_IMAGE_TYPE_2D:
172 return dest_subresource->baseArrayLayer;
173 case VK_IMAGE_TYPE_3D:
174 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
175 * but meta does it anyway. When doing so, we translate the
176 * destination's z offset into an array offset.
177 */
178 return dest_offset->z;
179 default:
180 assert(!"bad VkImageType");
181 return 0;
182 }
183 }
184
185 static void
186 anv_device_init_meta_blit_state(struct anv_device *device)
187 {
188 anv_CreateRenderPass(anv_device_to_handle(device),
189 &(VkRenderPassCreateInfo) {
190 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
191 .attachmentCount = 1,
192 .pAttachments = &(VkAttachmentDescription) {
193 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
194 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
195 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
196 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
197 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
198 },
199 .subpassCount = 1,
200 .pSubpasses = &(VkSubpassDescription) {
201 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
202 .inputAttachmentCount = 0,
203 .colorAttachmentCount = 1,
204 .pColorAttachments = &(VkAttachmentReference) {
205 .attachment = 0,
206 .layout = VK_IMAGE_LAYOUT_GENERAL,
207 },
208 .pResolveAttachments = NULL,
209 .pDepthStencilAttachment = &(VkAttachmentReference) {
210 .attachment = VK_ATTACHMENT_UNUSED,
211 .layout = VK_IMAGE_LAYOUT_GENERAL,
212 },
213 .preserveAttachmentCount = 1,
214 .pPreserveAttachments = &(VkAttachmentReference) {
215 .attachment = 0,
216 .layout = VK_IMAGE_LAYOUT_GENERAL,
217 },
218 },
219 .dependencyCount = 0,
220 }, NULL, &device->meta_state.blit.render_pass);
221
222 /* We don't use a vertex shader for clearing, but instead build and pass
223 * the VUEs directly to the rasterization backend. However, we do need
224 * to provide GLSL source for the vertex shader so that the compiler
225 * does not dead-code our inputs.
226 */
227 struct anv_shader_module vs = {
228 .nir = build_nir_vertex_shader(false),
229 };
230
231 struct anv_shader_module fs_2d = {
232 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
233 };
234
235 struct anv_shader_module fs_3d = {
236 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
237 };
238
239 VkPipelineVertexInputStateCreateInfo vi_create_info = {
240 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
241 .vertexBindingDescriptionCount = 2,
242 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
243 {
244 .binding = 0,
245 .stride = 0,
246 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
247 },
248 {
249 .binding = 1,
250 .stride = 5 * sizeof(float),
251 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
252 },
253 },
254 .vertexAttributeDescriptionCount = 3,
255 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
256 {
257 /* VUE Header */
258 .location = 0,
259 .binding = 0,
260 .format = VK_FORMAT_R32G32B32A32_UINT,
261 .offset = 0
262 },
263 {
264 /* Position */
265 .location = 1,
266 .binding = 1,
267 .format = VK_FORMAT_R32G32_SFLOAT,
268 .offset = 0
269 },
270 {
271 /* Texture Coordinate */
272 .location = 2,
273 .binding = 1,
274 .format = VK_FORMAT_R32G32B32_SFLOAT,
275 .offset = 8
276 }
277 }
278 };
279
280 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
281 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
282 .bindingCount = 1,
283 .pBinding = (VkDescriptorSetLayoutBinding[]) {
284 {
285 .binding = 0,
286 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
287 .descriptorCount = 1,
288 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
289 .pImmutableSamplers = NULL
290 },
291 }
292 };
293 anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info,
294 NULL, &device->meta_state.blit.ds_layout);
295
296 anv_CreatePipelineLayout(anv_device_to_handle(device),
297 &(VkPipelineLayoutCreateInfo) {
298 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
299 .setLayoutCount = 1,
300 .pSetLayouts = &device->meta_state.blit.ds_layout,
301 },
302 NULL, &device->meta_state.blit.pipeline_layout);
303
304 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
305 {
306 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
307 .stage = VK_SHADER_STAGE_VERTEX_BIT,
308 .module = anv_shader_module_to_handle(&vs),
309 .pName = "main",
310 .pSpecializationInfo = NULL
311 }, {
312 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
313 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
314 .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
315 .pName = "main",
316 .pSpecializationInfo = NULL
317 },
318 };
319
320 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
321 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
322 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
323 .pStages = pipeline_shader_stages,
324 .pVertexInputState = &vi_create_info,
325 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
326 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
327 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
328 .primitiveRestartEnable = false,
329 },
330 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
331 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
332 .viewportCount = 1,
333 .scissorCount = 1,
334 },
335 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
336 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
337 .rasterizerDiscardEnable = false,
338 .polygonMode = VK_POLYGON_MODE_FILL,
339 .cullMode = VK_CULL_MODE_NONE,
340 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
341 },
342 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
343 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
344 .rasterizationSamples = 1,
345 .sampleShadingEnable = false,
346 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
347 },
348 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
349 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
350 .attachmentCount = 1,
351 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
352 { .colorWriteMask =
353 VK_COLOR_COMPONENT_A_BIT |
354 VK_COLOR_COMPONENT_R_BIT |
355 VK_COLOR_COMPONENT_G_BIT |
356 VK_COLOR_COMPONENT_B_BIT },
357 }
358 },
359 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
360 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
361 .dynamicStateCount = 9,
362 .pDynamicStates = (VkDynamicState[]) {
363 VK_DYNAMIC_STATE_VIEWPORT,
364 VK_DYNAMIC_STATE_SCISSOR,
365 VK_DYNAMIC_STATE_LINE_WIDTH,
366 VK_DYNAMIC_STATE_DEPTH_BIAS,
367 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
368 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
369 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
370 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
371 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
372 },
373 },
374 .flags = 0,
375 .layout = device->meta_state.blit.pipeline_layout,
376 .renderPass = device->meta_state.blit.render_pass,
377 .subpass = 0,
378 };
379
380 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
381 .use_repclear = false,
382 .disable_viewport = true,
383 .disable_scissor = true,
384 .disable_vs = true,
385 .use_rectlist = true
386 };
387
388 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
389 anv_graphics_pipeline_create(anv_device_to_handle(device),
390 &vk_pipeline_info, &anv_pipeline_info,
391 NULL, &device->meta_state.blit.pipeline_2d_src);
392
393 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
394 anv_graphics_pipeline_create(anv_device_to_handle(device),
395 &vk_pipeline_info, &anv_pipeline_info,
396 NULL, &device->meta_state.blit.pipeline_3d_src);
397
398 ralloc_free(vs.nir);
399 ralloc_free(fs_2d.nir);
400 ralloc_free(fs_3d.nir);
401 }
402
403 static void
404 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
405 struct anv_meta_saved_state *saved_state)
406 {
407 anv_meta_save(saved_state, cmd_buffer,
408 (1 << VK_DYNAMIC_STATE_VIEWPORT));
409 }
410
411 struct blit_region {
412 VkOffset3D src_offset;
413 VkExtent3D src_extent;
414 VkOffset3D dest_offset;
415 VkExtent3D dest_extent;
416 };
417
418 static void
419 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
420 struct anv_image *src_image,
421 struct anv_image_view *src_iview,
422 VkOffset3D src_offset,
423 VkExtent3D src_extent,
424 struct anv_image *dest_image,
425 struct anv_image_view *dest_iview,
426 VkOffset3D dest_offset,
427 VkExtent3D dest_extent,
428 VkFilter blit_filter)
429 {
430 struct anv_device *device = cmd_buffer->device;
431 VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1;
432
433 struct blit_vb_data {
434 float pos[2];
435 float tex_coord[3];
436 } *vb_data;
437
438 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
439
440 struct anv_state vb_state =
441 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
442 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
443 vb_data = vb_state.map + sizeof(struct anv_vue_header);
444
445 vb_data[0] = (struct blit_vb_data) {
446 .pos = {
447 dest_offset.x + dest_extent.width,
448 dest_offset.y + dest_extent.height,
449 },
450 .tex_coord = {
451 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
452 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
453 (float)src_offset.z / (float)src_iview->extent.depth,
454 },
455 };
456
457 vb_data[1] = (struct blit_vb_data) {
458 .pos = {
459 dest_offset.x,
460 dest_offset.y + dest_extent.height,
461 },
462 .tex_coord = {
463 (float)src_offset.x / (float)src_iview->extent.width,
464 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
465 (float)src_offset.z / (float)src_iview->extent.depth,
466 },
467 };
468
469 vb_data[2] = (struct blit_vb_data) {
470 .pos = {
471 dest_offset.x,
472 dest_offset.y,
473 },
474 .tex_coord = {
475 (float)src_offset.x / (float)src_iview->extent.width,
476 (float)src_offset.y / (float)src_iview->extent.height,
477 (float)src_offset.z / (float)src_iview->extent.depth,
478 },
479 };
480
481 anv_state_clflush(vb_state);
482
483 struct anv_buffer vertex_buffer = {
484 .device = device,
485 .size = vb_size,
486 .bo = &device->dynamic_state_block_pool.bo,
487 .offset = vb_state.offset,
488 };
489
490 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
491 (VkBuffer[]) {
492 anv_buffer_to_handle(&vertex_buffer),
493 anv_buffer_to_handle(&vertex_buffer)
494 },
495 (VkDeviceSize[]) {
496 0,
497 sizeof(struct anv_vue_header),
498 });
499
500 VkSampler sampler;
501 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
502 &(VkSamplerCreateInfo) {
503 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
504 .magFilter = blit_filter,
505 .minFilter = blit_filter,
506 }, &cmd_buffer->pool->alloc, &sampler);
507
508 VkDescriptorSet set;
509 anv_AllocateDescriptorSets(anv_device_to_handle(device),
510 &(VkDescriptorSetAllocateInfo) {
511 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
512 .descriptorPool = dummy_desc_pool,
513 .setLayoutCount = 1,
514 .pSetLayouts = &device->meta_state.blit.ds_layout
515 }, &set);
516 anv_UpdateDescriptorSets(anv_device_to_handle(device),
517 1, /* writeCount */
518 (VkWriteDescriptorSet[]) {
519 {
520 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
521 .dstSet = set,
522 .dstBinding = 0,
523 .dstArrayElement = 0,
524 .descriptorCount = 1,
525 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
526 .pImageInfo = (VkDescriptorImageInfo[]) {
527 {
528 .sampler = sampler,
529 .imageView = anv_image_view_to_handle(src_iview),
530 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
531 },
532 }
533 }
534 }, 0, NULL);
535
536 VkFramebuffer fb;
537 anv_CreateFramebuffer(anv_device_to_handle(device),
538 &(VkFramebufferCreateInfo) {
539 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
540 .attachmentCount = 1,
541 .pAttachments = (VkImageView[]) {
542 anv_image_view_to_handle(dest_iview),
543 },
544 .width = dest_iview->extent.width,
545 .height = dest_iview->extent.height,
546 .layers = 1
547 }, &cmd_buffer->pool->alloc, &fb);
548
549 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
550 &(VkRenderPassBeginInfo) {
551 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
552 .renderPass = device->meta_state.blit.render_pass,
553 .framebuffer = fb,
554 .renderArea = {
555 .offset = { dest_offset.x, dest_offset.y },
556 .extent = { dest_extent.width, dest_extent.height },
557 },
558 .clearValueCount = 0,
559 .pClearValues = NULL,
560 }, VK_SUBPASS_CONTENTS_INLINE);
561
562 VkPipeline pipeline;
563
564 switch (src_image->type) {
565 case VK_IMAGE_TYPE_1D:
566 anv_finishme("VK_IMAGE_TYPE_1D");
567 pipeline = device->meta_state.blit.pipeline_2d_src;
568 break;
569 case VK_IMAGE_TYPE_2D:
570 pipeline = device->meta_state.blit.pipeline_2d_src;
571 break;
572 case VK_IMAGE_TYPE_3D:
573 pipeline = device->meta_state.blit.pipeline_3d_src;
574 break;
575 default:
576 unreachable(!"bad VkImageType");
577 }
578
579 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
580 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
581 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
582 }
583
584 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1,
585 &(VkViewport) {
586 .x = 0.0f,
587 .y = 0.0f,
588 .width = dest_iview->extent.width,
589 .height = dest_iview->extent.height,
590 .minDepth = 0.0f,
591 .maxDepth = 1.0f,
592 });
593
594 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
595 VK_PIPELINE_BIND_POINT_GRAPHICS,
596 device->meta_state.blit.pipeline_layout, 0, 1,
597 &set, 0, NULL);
598
599 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
600
601 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
602
603 /* At the point where we emit the draw call, all data from the
604 * descriptor sets, etc. has been used. We are free to delete it.
605 */
606 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
607 anv_DestroySampler(anv_device_to_handle(device), sampler,
608 &cmd_buffer->pool->alloc);
609 anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
610 &cmd_buffer->pool->alloc);
611 }
612
613 static void
614 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
615 const struct anv_meta_saved_state *saved_state)
616 {
617 anv_meta_restore(saved_state, cmd_buffer);
618 }
619
620 static VkFormat
621 vk_format_for_size(int bs)
622 {
623 switch (bs) {
624 case 1: return VK_FORMAT_R8_UINT;
625 case 2: return VK_FORMAT_R8G8_UINT;
626 case 3: return VK_FORMAT_R8G8B8_UINT;
627 case 4: return VK_FORMAT_R8G8B8A8_UINT;
628 case 6: return VK_FORMAT_R16G16B16_UINT;
629 case 8: return VK_FORMAT_R16G16B16A16_UINT;
630 case 12: return VK_FORMAT_R32G32B32_UINT;
631 case 16: return VK_FORMAT_R32G32B32A32_UINT;
632 default:
633 unreachable("Invalid format block size");
634 }
635 }
636
637 static void
638 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
639 struct anv_bo *src, uint64_t src_offset,
640 struct anv_bo *dest, uint64_t dest_offset,
641 int width, int height, VkFormat copy_format)
642 {
643 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
644
645 VkImageCreateInfo image_info = {
646 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
647 .imageType = VK_IMAGE_TYPE_2D,
648 .format = copy_format,
649 .extent = {
650 .width = width,
651 .height = height,
652 .depth = 1,
653 },
654 .mipLevels = 1,
655 .arrayLayers = 1,
656 .samples = 1,
657 .tiling = VK_IMAGE_TILING_LINEAR,
658 .usage = 0,
659 .flags = 0,
660 };
661
662 VkImage src_image;
663 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
664 anv_CreateImage(vk_device, &image_info,
665 &cmd_buffer->pool->alloc, &src_image);
666
667 VkImage dest_image;
668 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
669 anv_CreateImage(vk_device, &image_info,
670 &cmd_buffer->pool->alloc, &dest_image);
671
672 /* We could use a vk call to bind memory, but that would require
673 * creating a dummy memory object etc. so there's really no point.
674 */
675 anv_image_from_handle(src_image)->bo = src;
676 anv_image_from_handle(src_image)->offset = src_offset;
677 anv_image_from_handle(dest_image)->bo = dest;
678 anv_image_from_handle(dest_image)->offset = dest_offset;
679
680 struct anv_image_view src_iview;
681 anv_image_view_init(&src_iview, cmd_buffer->device,
682 &(VkImageViewCreateInfo) {
683 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
684 .image = src_image,
685 .viewType = VK_IMAGE_VIEW_TYPE_2D,
686 .format = copy_format,
687 .subresourceRange = {
688 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
689 .baseMipLevel = 0,
690 .levelCount = 1,
691 .baseArrayLayer = 0,
692 .layerCount = 1
693 },
694 },
695 cmd_buffer);
696
697 struct anv_image_view dest_iview;
698 anv_image_view_init(&dest_iview, cmd_buffer->device,
699 &(VkImageViewCreateInfo) {
700 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
701 .image = dest_image,
702 .viewType = VK_IMAGE_VIEW_TYPE_2D,
703 .format = copy_format,
704 .subresourceRange = {
705 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
706 .baseMipLevel = 0,
707 .levelCount = 1,
708 .baseArrayLayer = 0,
709 .layerCount = 1,
710 },
711 },
712 cmd_buffer);
713
714 meta_emit_blit(cmd_buffer,
715 anv_image_from_handle(src_image),
716 &src_iview,
717 (VkOffset3D) { 0, 0, 0 },
718 (VkExtent3D) { width, height, 1 },
719 anv_image_from_handle(dest_image),
720 &dest_iview,
721 (VkOffset3D) { 0, 0, 0 },
722 (VkExtent3D) { width, height, 1 },
723 VK_FILTER_NEAREST);
724
725 anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
726 anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc);
727 }
728
729 void anv_CmdCopyBuffer(
730 VkCommandBuffer commandBuffer,
731 VkBuffer srcBuffer,
732 VkBuffer destBuffer,
733 uint32_t regionCount,
734 const VkBufferCopy* pRegions)
735 {
736 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
737 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
738 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
739
740 struct anv_meta_saved_state saved_state;
741
742 meta_prepare_blit(cmd_buffer, &saved_state);
743
744 for (unsigned r = 0; r < regionCount; r++) {
745 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
746 uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
747 uint64_t copy_size = pRegions[r].size;
748
749 /* First, we compute the biggest format that can be used with the
750 * given offsets and size.
751 */
752 int bs = 16;
753
754 int fs = ffs(src_offset) - 1;
755 if (fs != -1)
756 bs = MIN2(bs, 1 << fs);
757 assert(src_offset % bs == 0);
758
759 fs = ffs(dest_offset) - 1;
760 if (fs != -1)
761 bs = MIN2(bs, 1 << fs);
762 assert(dest_offset % bs == 0);
763
764 fs = ffs(pRegions[r].size) - 1;
765 if (fs != -1)
766 bs = MIN2(bs, 1 << fs);
767 assert(pRegions[r].size % bs == 0);
768
769 VkFormat copy_format = vk_format_for_size(bs);
770
771 /* This is maximum possible width/height our HW can handle */
772 uint64_t max_surface_dim = 1 << 14;
773
774 /* First, we make a bunch of max-sized copies */
775 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
776 while (copy_size > max_copy_size) {
777 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
778 dest_buffer->bo, dest_offset,
779 max_surface_dim, max_surface_dim, copy_format);
780 copy_size -= max_copy_size;
781 src_offset += max_copy_size;
782 dest_offset += max_copy_size;
783 }
784
785 uint64_t height = copy_size / (max_surface_dim * bs);
786 assert(height < max_surface_dim);
787 if (height != 0) {
788 uint64_t rect_copy_size = height * max_surface_dim * bs;
789 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
790 dest_buffer->bo, dest_offset,
791 max_surface_dim, height, copy_format);
792 copy_size -= rect_copy_size;
793 src_offset += rect_copy_size;
794 dest_offset += rect_copy_size;
795 }
796
797 if (copy_size != 0) {
798 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
799 dest_buffer->bo, dest_offset,
800 copy_size / bs, 1, copy_format);
801 }
802 }
803
804 meta_finish_blit(cmd_buffer, &saved_state);
805 }
806
807 void anv_CmdCopyImage(
808 VkCommandBuffer commandBuffer,
809 VkImage srcImage,
810 VkImageLayout srcImageLayout,
811 VkImage destImage,
812 VkImageLayout destImageLayout,
813 uint32_t regionCount,
814 const VkImageCopy* pRegions)
815 {
816 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
817 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
818 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
819
820 const VkImageViewType src_iview_type =
821 meta_blit_get_src_image_view_type(src_image);
822
823 struct anv_meta_saved_state saved_state;
824
825 meta_prepare_blit(cmd_buffer, &saved_state);
826
827 for (unsigned r = 0; r < regionCount; r++) {
828 struct anv_image_view src_iview;
829 anv_image_view_init(&src_iview, cmd_buffer->device,
830 &(VkImageViewCreateInfo) {
831 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
832 .image = srcImage,
833 .viewType = src_iview_type,
834 .format = src_image->format->vk_format,
835 .subresourceRange = {
836 .aspectMask = pRegions[r].srcSubresource.aspectMask,
837 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
838 .levelCount = 1,
839 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
840 .layerCount = pRegions[r].dstSubresource.layerCount,
841 },
842 },
843 cmd_buffer);
844
845 const VkOffset3D dest_offset = {
846 .x = pRegions[r].dstOffset.x,
847 .y = pRegions[r].dstOffset.y,
848 .z = 0,
849 };
850
851 unsigned num_slices;
852 if (src_image->type == VK_IMAGE_TYPE_3D) {
853 assert(pRegions[r].srcSubresource.layerCount == 1 &&
854 pRegions[r].dstSubresource.layerCount == 1);
855 num_slices = pRegions[r].extent.depth;
856 } else {
857 assert(pRegions[r].srcSubresource.layerCount ==
858 pRegions[r].dstSubresource.layerCount);
859 assert(pRegions[r].extent.depth == 1);
860 num_slices = pRegions[r].dstSubresource.layerCount;
861 }
862
863 const uint32_t dest_base_array_slice =
864 meta_blit_get_dest_view_base_array_slice(dest_image,
865 &pRegions[r].dstSubresource,
866 &pRegions[r].dstOffset);
867
868 for (unsigned slice = 0; slice < num_slices; slice++) {
869 VkOffset3D src_offset = pRegions[r].srcOffset;
870 src_offset.z += slice;
871
872 struct anv_image_view dest_iview;
873 anv_image_view_init(&dest_iview, cmd_buffer->device,
874 &(VkImageViewCreateInfo) {
875 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
876 .image = destImage,
877 .viewType = VK_IMAGE_VIEW_TYPE_2D,
878 .format = dest_image->format->vk_format,
879 .subresourceRange = {
880 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
881 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
882 .levelCount = 1,
883 .baseArrayLayer = dest_base_array_slice + slice,
884 .layerCount = 1
885 },
886 },
887 cmd_buffer);
888
889 meta_emit_blit(cmd_buffer,
890 src_image, &src_iview,
891 src_offset,
892 pRegions[r].extent,
893 dest_image, &dest_iview,
894 dest_offset,
895 pRegions[r].extent,
896 VK_FILTER_NEAREST);
897 }
898 }
899
900 meta_finish_blit(cmd_buffer, &saved_state);
901 }
902
903 void anv_CmdBlitImage(
904 VkCommandBuffer commandBuffer,
905 VkImage srcImage,
906 VkImageLayout srcImageLayout,
907 VkImage destImage,
908 VkImageLayout destImageLayout,
909 uint32_t regionCount,
910 const VkImageBlit* pRegions,
911 VkFilter filter)
912
913 {
914 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
915 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
916 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
917
918 const VkImageViewType src_iview_type =
919 meta_blit_get_src_image_view_type(src_image);
920
921 struct anv_meta_saved_state saved_state;
922
923 anv_finishme("respect VkFilter");
924
925 meta_prepare_blit(cmd_buffer, &saved_state);
926
927 for (unsigned r = 0; r < regionCount; r++) {
928 struct anv_image_view src_iview;
929 anv_image_view_init(&src_iview, cmd_buffer->device,
930 &(VkImageViewCreateInfo) {
931 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
932 .image = srcImage,
933 .viewType = src_iview_type,
934 .format = src_image->format->vk_format,
935 .subresourceRange = {
936 .aspectMask = pRegions[r].srcSubresource.aspectMask,
937 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
938 .levelCount = 1,
939 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
940 .layerCount = 1
941 },
942 },
943 cmd_buffer);
944
945 const VkOffset3D dest_offset = {
946 .x = pRegions[r].dstOffset.x,
947 .y = pRegions[r].dstOffset.y,
948 .z = 0,
949 };
950
951 const uint32_t dest_array_slice =
952 meta_blit_get_dest_view_base_array_slice(dest_image,
953 &pRegions[r].dstSubresource,
954 &pRegions[r].dstOffset);
955
956 if (pRegions[r].srcSubresource.layerCount > 1)
957 anv_finishme("FINISHME: copy multiple array layers");
958
959 if (pRegions[r].dstExtent.depth > 1)
960 anv_finishme("FINISHME: copy multiple depth layers");
961
962 struct anv_image_view dest_iview;
963 anv_image_view_init(&dest_iview, cmd_buffer->device,
964 &(VkImageViewCreateInfo) {
965 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
966 .image = destImage,
967 .viewType = VK_IMAGE_VIEW_TYPE_2D,
968 .format = dest_image->format->vk_format,
969 .subresourceRange = {
970 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
971 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
972 .levelCount = 1,
973 .baseArrayLayer = dest_array_slice,
974 .layerCount = 1
975 },
976 },
977 cmd_buffer);
978
979 meta_emit_blit(cmd_buffer,
980 src_image, &src_iview,
981 pRegions[r].srcOffset,
982 pRegions[r].srcExtent,
983 dest_image, &dest_iview,
984 dest_offset,
985 pRegions[r].dstExtent,
986 filter);
987 }
988
989 meta_finish_blit(cmd_buffer, &saved_state);
990 }
991
992 static struct anv_image *
993 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
994 VkImageUsageFlags usage,
995 VkImageType image_type,
996 const VkAllocationCallbacks *alloc,
997 const VkBufferImageCopy *copy)
998 {
999 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
1000
1001 VkExtent3D extent = copy->imageExtent;
1002 if (copy->bufferRowLength)
1003 extent.width = copy->bufferRowLength;
1004 if (copy->bufferImageHeight)
1005 extent.height = copy->bufferImageHeight;
1006 extent.depth = 1;
1007
1008 VkImage vk_image;
1009 VkResult result = anv_CreateImage(vk_device,
1010 &(VkImageCreateInfo) {
1011 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1012 .imageType = VK_IMAGE_TYPE_2D,
1013 .format = format,
1014 .extent = extent,
1015 .mipLevels = 1,
1016 .arrayLayers = 1,
1017 .samples = 1,
1018 .tiling = VK_IMAGE_TILING_LINEAR,
1019 .usage = usage,
1020 .flags = 0,
1021 }, alloc, &vk_image);
1022 assert(result == VK_SUCCESS);
1023
1024 ANV_FROM_HANDLE(anv_image, image, vk_image);
1025
1026 /* We could use a vk call to bind memory, but that would require
1027 * creating a dummy memory object etc. so there's really no point.
1028 */
1029 image->bo = buffer->bo;
1030 image->offset = buffer->offset + copy->bufferOffset;
1031
1032 return image;
1033 }
1034
1035 void anv_CmdCopyBufferToImage(
1036 VkCommandBuffer commandBuffer,
1037 VkBuffer srcBuffer,
1038 VkImage destImage,
1039 VkImageLayout destImageLayout,
1040 uint32_t regionCount,
1041 const VkBufferImageCopy* pRegions)
1042 {
1043 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1044 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1045 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1046 const VkFormat orig_format = dest_image->format->vk_format;
1047 struct anv_meta_saved_state saved_state;
1048
1049 meta_prepare_blit(cmd_buffer, &saved_state);
1050
1051 for (unsigned r = 0; r < regionCount; r++) {
1052 VkFormat proxy_format = orig_format;
1053 VkImageAspectFlags proxy_aspect = pRegions[r].imageSubresource.aspectMask;
1054
1055 if (orig_format == VK_FORMAT_S8_UINT) {
1056 proxy_format = VK_FORMAT_R8_UINT;
1057 proxy_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
1058 }
1059
1060 struct anv_image *src_image =
1061 make_image_for_buffer(vk_device, srcBuffer, proxy_format,
1062 VK_IMAGE_USAGE_SAMPLED_BIT,
1063 dest_image->type, &cmd_buffer->pool->alloc,
1064 &pRegions[r]);
1065
1066 const uint32_t dest_base_array_slice =
1067 meta_blit_get_dest_view_base_array_slice(dest_image,
1068 &pRegions[r].imageSubresource,
1069 &pRegions[r].imageOffset);
1070
1071 unsigned num_slices;
1072 if (dest_image->type == VK_IMAGE_TYPE_3D) {
1073 assert(pRegions[r].imageSubresource.layerCount == 1);
1074 num_slices = pRegions[r].imageExtent.depth;
1075 } else {
1076 assert(pRegions[r].imageExtent.depth == 1);
1077 num_slices = pRegions[r].imageSubresource.layerCount;
1078 }
1079
1080 for (unsigned slice = 0; slice < num_slices; slice++) {
1081 struct anv_image_view src_iview;
1082 anv_image_view_init(&src_iview, cmd_buffer->device,
1083 &(VkImageViewCreateInfo) {
1084 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1085 .image = anv_image_to_handle(src_image),
1086 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1087 .format = proxy_format,
1088 .subresourceRange = {
1089 .aspectMask = proxy_aspect,
1090 .baseMipLevel = 0,
1091 .levelCount = 1,
1092 .baseArrayLayer = 0,
1093 .layerCount = 1,
1094 },
1095 },
1096 cmd_buffer);
1097
1098 struct anv_image_view dest_iview;
1099 anv_image_view_init(&dest_iview, cmd_buffer->device,
1100 &(VkImageViewCreateInfo) {
1101 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1102 .image = anv_image_to_handle(dest_image),
1103 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1104 .format = proxy_format,
1105 .subresourceRange = {
1106 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1107 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1108 .levelCount = 1,
1109 .baseArrayLayer = dest_base_array_slice + slice,
1110 .layerCount = 1
1111 },
1112 },
1113 cmd_buffer);
1114
1115 VkOffset3D src_offset = { 0, 0, slice };
1116
1117 const VkOffset3D dest_offset = {
1118 .x = pRegions[r].imageOffset.x,
1119 .y = pRegions[r].imageOffset.y,
1120 .z = 0,
1121 };
1122
1123 meta_emit_blit(cmd_buffer,
1124 src_image,
1125 &src_iview,
1126 src_offset,
1127 pRegions[r].imageExtent,
1128 dest_image,
1129 &dest_iview,
1130 dest_offset,
1131 pRegions[r].imageExtent,
1132 VK_FILTER_NEAREST);
1133
1134 /* Once we've done the blit, all of the actual information about
1135 * the image is embedded in the command buffer so we can just
1136 * increment the offset directly in the image effectively
1137 * re-binding it to different backing memory.
1138 */
1139 /* XXX: Insert a real CPP */
1140 src_image->offset += src_image->extent.width *
1141 src_image->extent.height * 4;
1142 }
1143
1144 anv_DestroyImage(vk_device, anv_image_to_handle(src_image),
1145 &cmd_buffer->pool->alloc);
1146 }
1147
1148 meta_finish_blit(cmd_buffer, &saved_state);
1149 }
1150
1151 void anv_CmdCopyImageToBuffer(
1152 VkCommandBuffer commandBuffer,
1153 VkImage srcImage,
1154 VkImageLayout srcImageLayout,
1155 VkBuffer destBuffer,
1156 uint32_t regionCount,
1157 const VkBufferImageCopy* pRegions)
1158 {
1159 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1160 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1161 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1162 struct anv_meta_saved_state saved_state;
1163
1164 const VkImageViewType src_iview_type =
1165 meta_blit_get_src_image_view_type(src_image);
1166
1167 meta_prepare_blit(cmd_buffer, &saved_state);
1168
1169 for (unsigned r = 0; r < regionCount; r++) {
1170 struct anv_image_view src_iview;
1171 anv_image_view_init(&src_iview, cmd_buffer->device,
1172 &(VkImageViewCreateInfo) {
1173 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1174 .image = srcImage,
1175 .viewType = src_iview_type,
1176 .format = src_image->format->vk_format,
1177 .subresourceRange = {
1178 .aspectMask = pRegions[r].imageSubresource.aspectMask,
1179 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1180 .levelCount = 1,
1181 .baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer,
1182 .layerCount = pRegions[r].imageSubresource.layerCount,
1183 },
1184 },
1185 cmd_buffer);
1186
1187 VkFormat dest_format = src_image->format->vk_format;
1188 if (dest_format == VK_FORMAT_S8_UINT) {
1189 dest_format = VK_FORMAT_R8_UINT;
1190 }
1191
1192 struct anv_image *dest_image =
1193 make_image_for_buffer(vk_device, destBuffer, dest_format,
1194 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
1195 src_image->type, &cmd_buffer->pool->alloc,
1196 &pRegions[r]);
1197
1198 unsigned num_slices;
1199 if (src_image->type == VK_IMAGE_TYPE_3D) {
1200 assert(pRegions[r].imageSubresource.layerCount == 1);
1201 num_slices = pRegions[r].imageExtent.depth;
1202 } else {
1203 assert(pRegions[r].imageExtent.depth == 1);
1204 num_slices = pRegions[r].imageSubresource.layerCount;
1205 }
1206
1207 for (unsigned slice = 0; slice < num_slices; slice++) {
1208 VkOffset3D src_offset = pRegions[r].imageOffset;
1209 src_offset.z += slice;
1210
1211 struct anv_image_view dest_iview;
1212 anv_image_view_init(&dest_iview, cmd_buffer->device,
1213 &(VkImageViewCreateInfo) {
1214 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1215 .image = anv_image_to_handle(dest_image),
1216 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1217 .format = dest_format,
1218 .subresourceRange = {
1219 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1220 .baseMipLevel = 0,
1221 .levelCount = 1,
1222 .baseArrayLayer = 0,
1223 .layerCount = 1
1224 },
1225 },
1226 cmd_buffer);
1227
1228 meta_emit_blit(cmd_buffer,
1229 anv_image_from_handle(srcImage),
1230 &src_iview,
1231 src_offset,
1232 pRegions[r].imageExtent,
1233 dest_image,
1234 &dest_iview,
1235 (VkOffset3D) { 0, 0, 0 },
1236 pRegions[r].imageExtent,
1237 VK_FILTER_NEAREST);
1238
1239 /* Once we've done the blit, all of the actual information about
1240 * the image is embedded in the command buffer so we can just
1241 * increment the offset directly in the image effectively
1242 * re-binding it to different backing memory.
1243 */
1244 /* XXX: Insert a real CPP */
1245 dest_image->offset += dest_image->extent.width *
1246 dest_image->extent.height * 4;
1247 }
1248
1249 anv_DestroyImage(vk_device, anv_image_to_handle(dest_image),
1250 &cmd_buffer->pool->alloc);
1251 }
1252
1253 meta_finish_blit(cmd_buffer, &saved_state);
1254 }
1255
1256 void anv_CmdUpdateBuffer(
1257 VkCommandBuffer commandBuffer,
1258 VkBuffer destBuffer,
1259 VkDeviceSize destOffset,
1260 VkDeviceSize dataSize,
1261 const uint32_t* pData)
1262 {
1263 stub();
1264 }
1265
1266 void anv_CmdFillBuffer(
1267 VkCommandBuffer commandBuffer,
1268 VkBuffer destBuffer,
1269 VkDeviceSize destOffset,
1270 VkDeviceSize fillSize,
1271 uint32_t data)
1272 {
1273 stub();
1274 }
1275
1276 void anv_CmdResolveImage(
1277 VkCommandBuffer commandBuffer,
1278 VkImage srcImage,
1279 VkImageLayout srcImageLayout,
1280 VkImage destImage,
1281 VkImageLayout destImageLayout,
1282 uint32_t regionCount,
1283 const VkImageResolve* pRegions)
1284 {
1285 stub();
1286 }
1287
1288 void
1289 anv_device_init_meta(struct anv_device *device)
1290 {
1291 anv_device_init_meta_clear_state(device);
1292 anv_device_init_meta_blit_state(device);
1293 }
1294
1295 void
1296 anv_device_finish_meta(struct anv_device *device)
1297 {
1298 anv_device_finish_meta_clear_state(device);
1299
1300 /* Blit */
1301 anv_DestroyRenderPass(anv_device_to_handle(device),
1302 device->meta_state.blit.render_pass, NULL);
1303 anv_DestroyPipeline(anv_device_to_handle(device),
1304 device->meta_state.blit.pipeline_2d_src, NULL);
1305 anv_DestroyPipeline(anv_device_to_handle(device),
1306 device->meta_state.blit.pipeline_3d_src, NULL);
1307 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1308 device->meta_state.blit.pipeline_layout, NULL);
1309 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1310 device->meta_state.blit.ds_layout, NULL);
1311 }