anv/meta: Use consistent naming for dynamic state mask
[mesa.git] / src / vulkan / anv_meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_meta.h"
31 #include "anv_meta_clear.h"
32 #include "anv_private.h"
33 #include "anv_nir_builder.h"
34
35 struct anv_render_pass anv_meta_dummy_renderpass = {0};
36
37 static nir_shader *
38 build_nir_vertex_shader(bool attr_flat)
39 {
40 nir_builder b;
41
42 const struct glsl_type *vertex_type = glsl_vec4_type();
43
44 nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX);
45
46 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
47 vertex_type, "a_pos");
48 pos_in->data.location = VERT_ATTRIB_GENERIC0;
49 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
50 vertex_type, "gl_Position");
51 pos_in->data.location = VARYING_SLOT_POS;
52 nir_copy_var(&b, pos_out, pos_in);
53
54 /* Add one more pass-through attribute. For clear shaders, this is used
55 * to store the color and for blit shaders it's the texture coordinate.
56 */
57 const struct glsl_type *attr_type = glsl_vec4_type();
58 nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in,
59 attr_type, "a_attr");
60 attr_in->data.location = VERT_ATTRIB_GENERIC1;
61 nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out,
62 attr_type, "v_attr");
63 attr_out->data.location = VARYING_SLOT_VAR0;
64 attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT :
65 INTERP_QUALIFIER_SMOOTH;
66 nir_copy_var(&b, attr_out, attr_in);
67
68 return b.shader;
69 }
70
71 static nir_shader *
72 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
73 {
74 nir_builder b;
75
76 nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT);
77
78 const struct glsl_type *color_type = glsl_vec4_type();
79
80 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
81 glsl_vec4_type(), "v_attr");
82 tex_pos_in->data.location = VARYING_SLOT_VAR0;
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type));
86 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
87 sampler_type, "s_tex");
88 sampler->data.descriptor_set = 0;
89 sampler->data.binding = 0;
90
91 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
92 tex->sampler_dim = tex_dim;
93 tex->op = nir_texop_tex;
94 tex->src[0].src_type = nir_tex_src_coord;
95 tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in));
96 tex->dest_type = nir_type_float; /* TODO */
97
98 switch (tex_dim) {
99 case GLSL_SAMPLER_DIM_2D:
100 tex->coord_components = 2;
101 break;
102 case GLSL_SAMPLER_DIM_3D:
103 tex->coord_components = 3;
104 break;
105 default:
106 assert(!"Unsupported texture dimension");
107 }
108
109 tex->sampler = nir_deref_var_create(tex, sampler);
110
111 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
112 nir_builder_instr_insert(&b, &tex->instr);
113
114 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
115 color_type, "f_color");
116 color_out->data.location = FRAG_RESULT_DATA0;
117 nir_store_var(&b, color_out, &tex->dest.ssa);
118
119 return b.shader;
120 }
121
122 void
123 anv_meta_save(struct anv_meta_saved_state *state,
124 const struct anv_cmd_buffer *cmd_buffer,
125 uint32_t dynamic_mask)
126 {
127 state->old_pipeline = cmd_buffer->state.pipeline;
128 state->old_descriptor_set0 = cmd_buffer->state.descriptors[0];
129 memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings,
130 sizeof(state->old_vertex_bindings));
131
132 state->dynamic_mask = dynamic_mask;
133 anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic,
134 dynamic_mask);
135 }
136
137 void
138 anv_meta_restore(const struct anv_meta_saved_state *state,
139 struct anv_cmd_buffer *cmd_buffer)
140 {
141 cmd_buffer->state.pipeline = state->old_pipeline;
142 cmd_buffer->state.descriptors[0] = state->old_descriptor_set0;
143 memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings,
144 sizeof(state->old_vertex_bindings));
145
146 cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1;
147 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
148 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT;
149
150 anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic,
151 state->dynamic_mask);
152 cmd_buffer->state.dirty |= state->dynamic_mask;
153 }
154
155 static VkImageViewType
156 meta_blit_get_src_image_view_type(const struct anv_image *src_image)
157 {
158 switch (src_image->type) {
159 case VK_IMAGE_TYPE_1D:
160 return VK_IMAGE_VIEW_TYPE_1D;
161 case VK_IMAGE_TYPE_2D:
162 return VK_IMAGE_VIEW_TYPE_2D;
163 case VK_IMAGE_TYPE_3D:
164 return VK_IMAGE_VIEW_TYPE_3D;
165 default:
166 assert(!"bad VkImageType");
167 return 0;
168 }
169 }
170
171 static uint32_t
172 meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image,
173 const VkImageSubresourceCopy *dest_subresource,
174 const VkOffset3D *dest_offset)
175 {
176 switch (dest_image->type) {
177 case VK_IMAGE_TYPE_1D:
178 case VK_IMAGE_TYPE_2D:
179 return dest_subresource->arrayLayer;
180 case VK_IMAGE_TYPE_3D:
181 /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer,
182 * but meta does it anyway. When doing so, we translate the
183 * destination's z offset into an array offset.
184 */
185 return dest_offset->z;
186 default:
187 assert(!"bad VkImageType");
188 return 0;
189 }
190 }
191
192 static void
193 anv_device_init_meta_blit_state(struct anv_device *device)
194 {
195 anv_CreateRenderPass(anv_device_to_handle(device),
196 &(VkRenderPassCreateInfo) {
197 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
198 .attachmentCount = 1,
199 .pAttachments = &(VkAttachmentDescription) {
200 .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
201 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
202 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
203 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
204 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
205 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
206 },
207 .subpassCount = 1,
208 .pSubpasses = &(VkSubpassDescription) {
209 .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION,
210 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
211 .inputCount = 0,
212 .colorCount = 1,
213 .pColorAttachments = &(VkAttachmentReference) {
214 .attachment = 0,
215 .layout = VK_IMAGE_LAYOUT_GENERAL,
216 },
217 .pResolveAttachments = NULL,
218 .depthStencilAttachment = (VkAttachmentReference) {
219 .attachment = VK_ATTACHMENT_UNUSED,
220 .layout = VK_IMAGE_LAYOUT_GENERAL,
221 },
222 .preserveCount = 1,
223 .pPreserveAttachments = &(VkAttachmentReference) {
224 .attachment = 0,
225 .layout = VK_IMAGE_LAYOUT_GENERAL,
226 },
227 },
228 .dependencyCount = 0,
229 }, &device->meta_state.blit.render_pass);
230
231 /* We don't use a vertex shader for clearing, but instead build and pass
232 * the VUEs directly to the rasterization backend. However, we do need
233 * to provide GLSL source for the vertex shader so that the compiler
234 * does not dead-code our inputs.
235 */
236 struct anv_shader_module vsm = {
237 .nir = build_nir_vertex_shader(false),
238 };
239
240 struct anv_shader_module fsm_2d = {
241 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
242 };
243
244 struct anv_shader_module fsm_3d = {
245 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
246 };
247
248 VkShader vs;
249 anv_CreateShader(anv_device_to_handle(device),
250 &(VkShaderCreateInfo) {
251 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
252 .module = anv_shader_module_to_handle(&vsm),
253 .pName = "main",
254 }, &vs);
255
256 VkShader fs_2d;
257 anv_CreateShader(anv_device_to_handle(device),
258 &(VkShaderCreateInfo) {
259 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
260 .module = anv_shader_module_to_handle(&fsm_2d),
261 .pName = "main",
262 }, &fs_2d);
263
264 VkShader fs_3d;
265 anv_CreateShader(anv_device_to_handle(device),
266 &(VkShaderCreateInfo) {
267 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
268 .module = anv_shader_module_to_handle(&fsm_3d),
269 .pName = "main",
270 }, &fs_3d);
271
272 VkPipelineVertexInputStateCreateInfo vi_create_info = {
273 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
274 .bindingCount = 2,
275 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
276 {
277 .binding = 0,
278 .strideInBytes = 0,
279 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
280 },
281 {
282 .binding = 1,
283 .strideInBytes = 5 * sizeof(float),
284 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
285 },
286 },
287 .attributeCount = 3,
288 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
289 {
290 /* VUE Header */
291 .location = 0,
292 .binding = 0,
293 .format = VK_FORMAT_R32G32B32A32_UINT,
294 .offsetInBytes = 0
295 },
296 {
297 /* Position */
298 .location = 1,
299 .binding = 1,
300 .format = VK_FORMAT_R32G32_SFLOAT,
301 .offsetInBytes = 0
302 },
303 {
304 /* Texture Coordinate */
305 .location = 2,
306 .binding = 1,
307 .format = VK_FORMAT_R32G32B32_SFLOAT,
308 .offsetInBytes = 8
309 }
310 }
311 };
312
313 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
314 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
315 .count = 1,
316 .pBinding = (VkDescriptorSetLayoutBinding[]) {
317 {
318 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
319 .arraySize = 1,
320 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
321 .pImmutableSamplers = NULL
322 },
323 }
324 };
325 anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info,
326 &device->meta_state.blit.ds_layout);
327
328 anv_CreatePipelineLayout(anv_device_to_handle(device),
329 &(VkPipelineLayoutCreateInfo) {
330 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
331 .descriptorSetCount = 1,
332 .pSetLayouts = &device->meta_state.blit.ds_layout,
333 },
334 &device->meta_state.blit.pipeline_layout);
335
336 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
337 {
338 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
339 .stage = VK_SHADER_STAGE_VERTEX,
340 .shader = vs,
341 .pSpecializationInfo = NULL
342 }, {
343 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
344 .stage = VK_SHADER_STAGE_FRAGMENT,
345 .shader = {0}, /* TEMPLATE VALUE! FILL ME IN! */
346 .pSpecializationInfo = NULL
347 },
348 };
349
350 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
351 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
352 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
353 .pStages = pipeline_shader_stages,
354 .pVertexInputState = &vi_create_info,
355 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
356 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
357 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
358 .primitiveRestartEnable = false,
359 },
360 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
361 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
362 .viewportCount = 1,
363 .scissorCount = 1,
364 },
365 .pRasterState = &(VkPipelineRasterStateCreateInfo) {
366 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTER_STATE_CREATE_INFO,
367 .depthClipEnable = true,
368 .rasterizerDiscardEnable = false,
369 .fillMode = VK_FILL_MODE_SOLID,
370 .cullMode = VK_CULL_MODE_NONE,
371 .frontFace = VK_FRONT_FACE_CCW
372 },
373 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
374 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
375 .rasterSamples = 1,
376 .sampleShadingEnable = false,
377 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
378 },
379 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
380 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
381 .attachmentCount = 1,
382 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
383 { .channelWriteMask = VK_CHANNEL_A_BIT |
384 VK_CHANNEL_R_BIT | VK_CHANNEL_G_BIT | VK_CHANNEL_B_BIT },
385 }
386 },
387 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
388 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
389 .dynamicStateCount = 9,
390 .pDynamicStates = (VkDynamicState[]) {
391 VK_DYNAMIC_STATE_VIEWPORT,
392 VK_DYNAMIC_STATE_SCISSOR,
393 VK_DYNAMIC_STATE_LINE_WIDTH,
394 VK_DYNAMIC_STATE_DEPTH_BIAS,
395 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
396 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
397 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
398 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
399 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
400 },
401 },
402 .flags = 0,
403 .layout = device->meta_state.blit.pipeline_layout,
404 .renderPass = device->meta_state.blit.render_pass,
405 .subpass = 0,
406 };
407
408 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
409 .use_repclear = false,
410 .disable_viewport = true,
411 .disable_scissor = true,
412 .disable_vs = true,
413 .use_rectlist = true
414 };
415
416 pipeline_shader_stages[1].shader = fs_2d;
417 anv_graphics_pipeline_create(anv_device_to_handle(device),
418 &vk_pipeline_info, &anv_pipeline_info,
419 &device->meta_state.blit.pipeline_2d_src);
420
421 pipeline_shader_stages[1].shader = fs_3d;
422 anv_graphics_pipeline_create(anv_device_to_handle(device),
423 &vk_pipeline_info, &anv_pipeline_info,
424 &device->meta_state.blit.pipeline_3d_src);
425
426 anv_DestroyShader(anv_device_to_handle(device), vs);
427 anv_DestroyShader(anv_device_to_handle(device), fs_2d);
428 anv_DestroyShader(anv_device_to_handle(device), fs_3d);
429 ralloc_free(vsm.nir);
430 ralloc_free(fsm_2d.nir);
431 ralloc_free(fsm_3d.nir);
432 }
433
434 static void
435 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
436 struct anv_meta_saved_state *saved_state)
437 {
438 anv_meta_save(saved_state, cmd_buffer,
439 (1 << VK_DYNAMIC_STATE_VIEWPORT));
440 }
441
442 struct blit_region {
443 VkOffset3D src_offset;
444 VkExtent3D src_extent;
445 VkOffset3D dest_offset;
446 VkExtent3D dest_extent;
447 };
448
449 static void
450 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
451 struct anv_image *src_image,
452 struct anv_image_view *src_iview,
453 VkOffset3D src_offset,
454 VkExtent3D src_extent,
455 struct anv_image *dest_image,
456 struct anv_image_view *dest_iview,
457 VkOffset3D dest_offset,
458 VkExtent3D dest_extent)
459 {
460 struct anv_device *device = cmd_buffer->device;
461 VkDescriptorPool dummy_desc_pool = { .handle = 1 };
462
463 struct blit_vb_data {
464 float pos[2];
465 float tex_coord[3];
466 } *vb_data;
467
468 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
469
470 struct anv_state vb_state =
471 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
472 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
473 vb_data = vb_state.map + sizeof(struct anv_vue_header);
474
475 vb_data[0] = (struct blit_vb_data) {
476 .pos = {
477 dest_offset.x + dest_extent.width,
478 dest_offset.y + dest_extent.height,
479 },
480 .tex_coord = {
481 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
482 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
483 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
484 },
485 };
486
487 vb_data[1] = (struct blit_vb_data) {
488 .pos = {
489 dest_offset.x,
490 dest_offset.y + dest_extent.height,
491 },
492 .tex_coord = {
493 (float)src_offset.x / (float)src_iview->extent.width,
494 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
495 (float)(src_offset.z + src_extent.depth) / (float)src_iview->extent.depth,
496 },
497 };
498
499 vb_data[2] = (struct blit_vb_data) {
500 .pos = {
501 dest_offset.x,
502 dest_offset.y,
503 },
504 .tex_coord = {
505 (float)src_offset.x / (float)src_iview->extent.width,
506 (float)src_offset.y / (float)src_iview->extent.height,
507 (float)src_offset.z / (float)src_iview->extent.depth,
508 },
509 };
510
511 struct anv_buffer vertex_buffer = {
512 .device = device,
513 .size = vb_size,
514 .bo = &device->dynamic_state_block_pool.bo,
515 .offset = vb_state.offset,
516 };
517
518 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
519 (VkBuffer[]) {
520 anv_buffer_to_handle(&vertex_buffer),
521 anv_buffer_to_handle(&vertex_buffer)
522 },
523 (VkDeviceSize[]) {
524 0,
525 sizeof(struct anv_vue_header),
526 });
527
528 VkDescriptorSet set;
529 anv_AllocDescriptorSets(anv_device_to_handle(device), dummy_desc_pool,
530 VK_DESCRIPTOR_SET_USAGE_ONE_SHOT,
531 1, &device->meta_state.blit.ds_layout, &set);
532 anv_UpdateDescriptorSets(anv_device_to_handle(device),
533 1, /* writeCount */
534 (VkWriteDescriptorSet[]) {
535 {
536 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
537 .destSet = set,
538 .destBinding = 0,
539 .destArrayElement = 0,
540 .count = 1,
541 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
542 .pDescriptors = (VkDescriptorInfo[]) {
543 {
544 .imageView = anv_image_view_to_handle(src_iview),
545 .imageLayout = VK_IMAGE_LAYOUT_GENERAL
546 },
547 }
548 }
549 }, 0, NULL);
550
551 VkFramebuffer fb;
552 anv_CreateFramebuffer(anv_device_to_handle(device),
553 &(VkFramebufferCreateInfo) {
554 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
555 .attachmentCount = 1,
556 .pAttachments = (VkImageView[]) {
557 anv_image_view_to_handle(dest_iview),
558 },
559 .width = dest_iview->extent.width,
560 .height = dest_iview->extent.height,
561 .layers = 1
562 }, &fb);
563
564 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
565 &(VkRenderPassBeginInfo) {
566 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
567 .renderPass = device->meta_state.blit.render_pass,
568 .framebuffer = fb,
569 .renderArea = {
570 .offset = { dest_offset.x, dest_offset.y },
571 .extent = { dest_extent.width, dest_extent.height },
572 },
573 .clearValueCount = 0,
574 .pClearValues = NULL,
575 }, VK_RENDER_PASS_CONTENTS_INLINE);
576
577 VkPipeline pipeline;
578
579 switch (src_image->type) {
580 case VK_IMAGE_TYPE_1D:
581 anv_finishme("VK_IMAGE_TYPE_1D");
582 pipeline = device->meta_state.blit.pipeline_2d_src;
583 break;
584 case VK_IMAGE_TYPE_2D:
585 pipeline = device->meta_state.blit.pipeline_2d_src;
586 break;
587 case VK_IMAGE_TYPE_3D:
588 pipeline = device->meta_state.blit.pipeline_3d_src;
589 break;
590 default:
591 unreachable(!"bad VkImageType");
592 }
593
594 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
595 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
596 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
597 }
598
599 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1,
600 &(VkViewport) {
601 .originX = 0.0f,
602 .originY = 0.0f,
603 .width = dest_iview->extent.width,
604 .height = dest_iview->extent.height,
605 .minDepth = 0.0f,
606 .maxDepth = 1.0f,
607 });
608
609 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
610 VK_PIPELINE_BIND_POINT_GRAPHICS,
611 device->meta_state.blit.pipeline_layout, 0, 1,
612 &set, 0, NULL);
613
614 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
615
616 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
617
618 /* At the point where we emit the draw call, all data from the
619 * descriptor sets, etc. has been used. We are free to delete it.
620 */
621 anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
622 anv_DestroyFramebuffer(anv_device_to_handle(device), fb);
623 }
624
625 static void
626 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
627 const struct anv_meta_saved_state *saved_state)
628 {
629 anv_meta_restore(saved_state, cmd_buffer);
630 }
631
632 static VkFormat
633 vk_format_for_cpp(int cpp)
634 {
635 switch (cpp) {
636 case 1: return VK_FORMAT_R8_UINT;
637 case 2: return VK_FORMAT_R8G8_UINT;
638 case 3: return VK_FORMAT_R8G8B8_UINT;
639 case 4: return VK_FORMAT_R8G8B8A8_UINT;
640 case 6: return VK_FORMAT_R16G16B16_UINT;
641 case 8: return VK_FORMAT_R16G16B16A16_UINT;
642 case 12: return VK_FORMAT_R32G32B32_UINT;
643 case 16: return VK_FORMAT_R32G32B32A32_UINT;
644 default:
645 unreachable("Invalid format cpp");
646 }
647 }
648
649 static void
650 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
651 struct anv_bo *src, uint64_t src_offset,
652 struct anv_bo *dest, uint64_t dest_offset,
653 int width, int height, VkFormat copy_format)
654 {
655 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
656
657 VkImageCreateInfo image_info = {
658 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
659 .imageType = VK_IMAGE_TYPE_2D,
660 .format = copy_format,
661 .extent = {
662 .width = width,
663 .height = height,
664 .depth = 1,
665 },
666 .mipLevels = 1,
667 .arraySize = 1,
668 .samples = 1,
669 .tiling = VK_IMAGE_TILING_LINEAR,
670 .usage = 0,
671 .flags = 0,
672 };
673
674 VkImage src_image;
675 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
676 anv_CreateImage(vk_device, &image_info, &src_image);
677
678 VkImage dest_image;
679 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
680 anv_CreateImage(vk_device, &image_info, &dest_image);
681
682 /* We could use a vk call to bind memory, but that would require
683 * creating a dummy memory object etc. so there's really no point.
684 */
685 anv_image_from_handle(src_image)->bo = src;
686 anv_image_from_handle(src_image)->offset = src_offset;
687 anv_image_from_handle(dest_image)->bo = dest;
688 anv_image_from_handle(dest_image)->offset = dest_offset;
689
690 struct anv_image_view src_iview;
691 anv_image_view_init(&src_iview, cmd_buffer->device,
692 &(VkImageViewCreateInfo) {
693 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
694 .image = src_image,
695 .viewType = VK_IMAGE_VIEW_TYPE_2D,
696 .format = copy_format,
697 .channels = {
698 VK_CHANNEL_SWIZZLE_R,
699 VK_CHANNEL_SWIZZLE_G,
700 VK_CHANNEL_SWIZZLE_B,
701 VK_CHANNEL_SWIZZLE_A
702 },
703 .subresourceRange = {
704 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
705 .baseMipLevel = 0,
706 .mipLevels = 1,
707 .baseArrayLayer = 0,
708 .arraySize = 1
709 },
710 },
711 cmd_buffer);
712
713 struct anv_image_view dest_iview;
714 anv_image_view_init(&dest_iview, cmd_buffer->device,
715 &(VkImageViewCreateInfo) {
716 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
717 .image = dest_image,
718 .viewType = VK_IMAGE_VIEW_TYPE_2D,
719 .format = copy_format,
720 .channels = {
721 .r = VK_CHANNEL_SWIZZLE_R,
722 .g = VK_CHANNEL_SWIZZLE_G,
723 .b = VK_CHANNEL_SWIZZLE_B,
724 .a = VK_CHANNEL_SWIZZLE_A,
725 },
726 .subresourceRange = {
727 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
728 .baseMipLevel = 0,
729 .mipLevels = 1,
730 .baseArrayLayer = 0,
731 .arraySize = 1,
732 },
733 },
734 cmd_buffer);
735
736 meta_emit_blit(cmd_buffer,
737 anv_image_from_handle(src_image),
738 &src_iview,
739 (VkOffset3D) { 0, 0, 0 },
740 (VkExtent3D) { width, height, 1 },
741 anv_image_from_handle(dest_image),
742 &dest_iview,
743 (VkOffset3D) { 0, 0, 0 },
744 (VkExtent3D) { width, height, 1 });
745
746 anv_DestroyImage(vk_device, src_image);
747 anv_DestroyImage(vk_device, dest_image);
748 }
749
750 void anv_CmdCopyBuffer(
751 VkCmdBuffer cmdBuffer,
752 VkBuffer srcBuffer,
753 VkBuffer destBuffer,
754 uint32_t regionCount,
755 const VkBufferCopy* pRegions)
756 {
757 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
758 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
759 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
760
761 struct anv_meta_saved_state saved_state;
762
763 meta_prepare_blit(cmd_buffer, &saved_state);
764
765 for (unsigned r = 0; r < regionCount; r++) {
766 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
767 uint64_t dest_offset = dest_buffer->offset + pRegions[r].destOffset;
768 uint64_t copy_size = pRegions[r].copySize;
769
770 /* First, we compute the biggest format that can be used with the
771 * given offsets and size.
772 */
773 int cpp = 16;
774
775 int fs = ffs(src_offset) - 1;
776 if (fs != -1)
777 cpp = MIN2(cpp, 1 << fs);
778 assert(src_offset % cpp == 0);
779
780 fs = ffs(dest_offset) - 1;
781 if (fs != -1)
782 cpp = MIN2(cpp, 1 << fs);
783 assert(dest_offset % cpp == 0);
784
785 fs = ffs(pRegions[r].copySize) - 1;
786 if (fs != -1)
787 cpp = MIN2(cpp, 1 << fs);
788 assert(pRegions[r].copySize % cpp == 0);
789
790 VkFormat copy_format = vk_format_for_cpp(cpp);
791
792 /* This is maximum possible width/height our HW can handle */
793 uint64_t max_surface_dim = 1 << 14;
794
795 /* First, we make a bunch of max-sized copies */
796 uint64_t max_copy_size = max_surface_dim * max_surface_dim * cpp;
797 while (copy_size > max_copy_size) {
798 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
799 dest_buffer->bo, dest_offset,
800 max_surface_dim, max_surface_dim, copy_format);
801 copy_size -= max_copy_size;
802 src_offset += max_copy_size;
803 dest_offset += max_copy_size;
804 }
805
806 uint64_t height = copy_size / (max_surface_dim * cpp);
807 assert(height < max_surface_dim);
808 if (height != 0) {
809 uint64_t rect_copy_size = height * max_surface_dim * cpp;
810 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
811 dest_buffer->bo, dest_offset,
812 max_surface_dim, height, copy_format);
813 copy_size -= rect_copy_size;
814 src_offset += rect_copy_size;
815 dest_offset += rect_copy_size;
816 }
817
818 if (copy_size != 0) {
819 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
820 dest_buffer->bo, dest_offset,
821 copy_size / cpp, 1, copy_format);
822 }
823 }
824
825 meta_finish_blit(cmd_buffer, &saved_state);
826 }
827
828 void anv_CmdCopyImage(
829 VkCmdBuffer cmdBuffer,
830 VkImage srcImage,
831 VkImageLayout srcImageLayout,
832 VkImage destImage,
833 VkImageLayout destImageLayout,
834 uint32_t regionCount,
835 const VkImageCopy* pRegions)
836 {
837 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
838 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
839 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
840
841 const VkImageViewType src_iview_type =
842 meta_blit_get_src_image_view_type(src_image);
843
844 struct anv_meta_saved_state saved_state;
845
846 meta_prepare_blit(cmd_buffer, &saved_state);
847
848 for (unsigned r = 0; r < regionCount; r++) {
849 struct anv_image_view src_iview;
850 anv_image_view_init(&src_iview, cmd_buffer->device,
851 &(VkImageViewCreateInfo) {
852 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
853 .image = srcImage,
854 .viewType = src_iview_type,
855 .format = src_image->format->vk_format,
856 .channels = {
857 VK_CHANNEL_SWIZZLE_R,
858 VK_CHANNEL_SWIZZLE_G,
859 VK_CHANNEL_SWIZZLE_B,
860 VK_CHANNEL_SWIZZLE_A
861 },
862 .subresourceRange = {
863 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
864 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
865 .mipLevels = 1,
866 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
867 .arraySize = 1
868 },
869 },
870 cmd_buffer);
871
872 const VkOffset3D dest_offset = {
873 .x = pRegions[r].destOffset.x,
874 .y = pRegions[r].destOffset.y,
875 .z = 0,
876 };
877
878 const uint32_t dest_array_slice =
879 meta_blit_get_dest_view_base_array_slice(dest_image,
880 &pRegions[r].destSubresource,
881 &pRegions[r].destOffset);
882
883 if (pRegions[r].srcSubresource.arraySize > 1)
884 anv_finishme("FINISHME: copy multiple array layers");
885
886 if (pRegions[r].extent.depth > 1)
887 anv_finishme("FINISHME: copy multiple depth layers");
888
889 struct anv_image_view dest_iview;
890 anv_image_view_init(&dest_iview, cmd_buffer->device,
891 &(VkImageViewCreateInfo) {
892 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
893 .image = destImage,
894 .viewType = VK_IMAGE_VIEW_TYPE_2D,
895 .format = dest_image->format->vk_format,
896 .channels = {
897 VK_CHANNEL_SWIZZLE_R,
898 VK_CHANNEL_SWIZZLE_G,
899 VK_CHANNEL_SWIZZLE_B,
900 VK_CHANNEL_SWIZZLE_A
901 },
902 .subresourceRange = {
903 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
904 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
905 .mipLevels = 1,
906 .baseArrayLayer = dest_array_slice,
907 .arraySize = 1
908 },
909 },
910 cmd_buffer);
911
912 meta_emit_blit(cmd_buffer,
913 src_image, &src_iview,
914 pRegions[r].srcOffset,
915 pRegions[r].extent,
916 dest_image, &dest_iview,
917 dest_offset,
918 pRegions[r].extent);
919 }
920
921 meta_finish_blit(cmd_buffer, &saved_state);
922 }
923
924 void anv_CmdBlitImage(
925 VkCmdBuffer cmdBuffer,
926 VkImage srcImage,
927 VkImageLayout srcImageLayout,
928 VkImage destImage,
929 VkImageLayout destImageLayout,
930 uint32_t regionCount,
931 const VkImageBlit* pRegions,
932 VkTexFilter filter)
933
934 {
935 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
936 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
937 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
938
939 const VkImageViewType src_iview_type =
940 meta_blit_get_src_image_view_type(src_image);
941
942 struct anv_meta_saved_state saved_state;
943
944 anv_finishme("respect VkTexFilter");
945
946 meta_prepare_blit(cmd_buffer, &saved_state);
947
948 for (unsigned r = 0; r < regionCount; r++) {
949 struct anv_image_view src_iview;
950 anv_image_view_init(&src_iview, cmd_buffer->device,
951 &(VkImageViewCreateInfo) {
952 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
953 .image = srcImage,
954 .viewType = src_iview_type,
955 .format = src_image->format->vk_format,
956 .channels = {
957 VK_CHANNEL_SWIZZLE_R,
958 VK_CHANNEL_SWIZZLE_G,
959 VK_CHANNEL_SWIZZLE_B,
960 VK_CHANNEL_SWIZZLE_A
961 },
962 .subresourceRange = {
963 .aspectMask = 1 << pRegions[r].srcSubresource.aspect,
964 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
965 .mipLevels = 1,
966 .baseArrayLayer = pRegions[r].srcSubresource.arrayLayer,
967 .arraySize = 1
968 },
969 },
970 cmd_buffer);
971
972 const VkOffset3D dest_offset = {
973 .x = pRegions[r].destOffset.x,
974 .y = pRegions[r].destOffset.y,
975 .z = 0,
976 };
977
978 const uint32_t dest_array_slice =
979 meta_blit_get_dest_view_base_array_slice(dest_image,
980 &pRegions[r].destSubresource,
981 &pRegions[r].destOffset);
982
983 if (pRegions[r].srcSubresource.arraySize > 1)
984 anv_finishme("FINISHME: copy multiple array layers");
985
986 if (pRegions[r].destExtent.depth > 1)
987 anv_finishme("FINISHME: copy multiple depth layers");
988
989 struct anv_image_view dest_iview;
990 anv_image_view_init(&dest_iview, cmd_buffer->device,
991 &(VkImageViewCreateInfo) {
992 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
993 .image = destImage,
994 .viewType = VK_IMAGE_VIEW_TYPE_2D,
995 .format = dest_image->format->vk_format,
996 .channels = {
997 VK_CHANNEL_SWIZZLE_R,
998 VK_CHANNEL_SWIZZLE_G,
999 VK_CHANNEL_SWIZZLE_B,
1000 VK_CHANNEL_SWIZZLE_A
1001 },
1002 .subresourceRange = {
1003 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1004 .baseMipLevel = pRegions[r].destSubresource.mipLevel,
1005 .mipLevels = 1,
1006 .baseArrayLayer = dest_array_slice,
1007 .arraySize = 1
1008 },
1009 },
1010 cmd_buffer);
1011
1012 meta_emit_blit(cmd_buffer,
1013 src_image, &src_iview,
1014 pRegions[r].srcOffset,
1015 pRegions[r].srcExtent,
1016 dest_image, &dest_iview,
1017 dest_offset,
1018 pRegions[r].destExtent);
1019 }
1020
1021 meta_finish_blit(cmd_buffer, &saved_state);
1022 }
1023
1024 static VkImage
1025 make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
1026 VkImageUsageFlags usage,
1027 const VkBufferImageCopy *copy)
1028 {
1029 ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
1030
1031 VkExtent3D extent = copy->imageExtent;
1032 if (copy->bufferRowLength)
1033 extent.width = copy->bufferRowLength;
1034 if (copy->bufferImageHeight)
1035 extent.height = copy->bufferImageHeight;
1036 extent.depth = 1;
1037
1038 VkImage vk_image;
1039 VkResult result = anv_CreateImage(vk_device,
1040 &(VkImageCreateInfo) {
1041 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
1042 .imageType = VK_IMAGE_TYPE_2D,
1043 .format = format,
1044 .extent = extent,
1045 .mipLevels = 1,
1046 .arraySize = 1,
1047 .samples = 1,
1048 .tiling = VK_IMAGE_TILING_LINEAR,
1049 .usage = usage,
1050 .flags = 0,
1051 }, &vk_image);
1052 assert(result == VK_SUCCESS);
1053
1054 ANV_FROM_HANDLE(anv_image, image, vk_image);
1055
1056 /* We could use a vk call to bind memory, but that would require
1057 * creating a dummy memory object etc. so there's really no point.
1058 */
1059 image->bo = buffer->bo;
1060 image->offset = buffer->offset + copy->bufferOffset;
1061
1062 return anv_image_to_handle(image);
1063 }
1064
1065 void anv_CmdCopyBufferToImage(
1066 VkCmdBuffer cmdBuffer,
1067 VkBuffer srcBuffer,
1068 VkImage destImage,
1069 VkImageLayout destImageLayout,
1070 uint32_t regionCount,
1071 const VkBufferImageCopy* pRegions)
1072 {
1073 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1074 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1075 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1076 const VkFormat orig_format = dest_image->format->vk_format;
1077 struct anv_meta_saved_state saved_state;
1078
1079 meta_prepare_blit(cmd_buffer, &saved_state);
1080
1081 for (unsigned r = 0; r < regionCount; r++) {
1082 VkFormat proxy_format = orig_format;
1083 VkImageAspect proxy_aspect = pRegions[r].imageSubresource.aspect;
1084
1085 if (orig_format == VK_FORMAT_S8_UINT) {
1086 proxy_format = VK_FORMAT_R8_UINT;
1087 proxy_aspect = VK_IMAGE_ASPECT_COLOR;
1088 }
1089
1090 VkImage srcImage = make_image_for_buffer(vk_device, srcBuffer,
1091 proxy_format, VK_IMAGE_USAGE_SAMPLED_BIT, &pRegions[r]);
1092
1093 struct anv_image_view src_iview;
1094 anv_image_view_init(&src_iview, cmd_buffer->device,
1095 &(VkImageViewCreateInfo) {
1096 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1097 .image = srcImage,
1098 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1099 .format = proxy_format,
1100 .channels = {
1101 VK_CHANNEL_SWIZZLE_R,
1102 VK_CHANNEL_SWIZZLE_G,
1103 VK_CHANNEL_SWIZZLE_B,
1104 VK_CHANNEL_SWIZZLE_A
1105 },
1106 .subresourceRange = {
1107 .aspectMask = 1 << proxy_aspect,
1108 .baseMipLevel = 0,
1109 .mipLevels = 1,
1110 .baseArrayLayer = 0,
1111 .arraySize = 1
1112 },
1113 },
1114 cmd_buffer);
1115
1116 const VkOffset3D dest_offset = {
1117 .x = pRegions[r].imageOffset.x,
1118 .y = pRegions[r].imageOffset.y,
1119 .z = 0,
1120 };
1121
1122 const uint32_t dest_array_slice =
1123 meta_blit_get_dest_view_base_array_slice(dest_image,
1124 &pRegions[r].imageSubresource,
1125 &pRegions[r].imageOffset);
1126
1127 if (pRegions[r].imageExtent.depth > 1)
1128 anv_finishme("FINISHME: copy multiple depth layers");
1129
1130 struct anv_image_view dest_iview;
1131 anv_image_view_init(&dest_iview, cmd_buffer->device,
1132 &(VkImageViewCreateInfo) {
1133 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1134 .image = anv_image_to_handle(dest_image),
1135 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1136 .format = proxy_format,
1137 .channels = {
1138 VK_CHANNEL_SWIZZLE_R,
1139 VK_CHANNEL_SWIZZLE_G,
1140 VK_CHANNEL_SWIZZLE_B,
1141 VK_CHANNEL_SWIZZLE_A
1142 },
1143 .subresourceRange = {
1144 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1145 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1146 .mipLevels = 1,
1147 .baseArrayLayer = dest_array_slice,
1148 .arraySize = 1
1149 },
1150 },
1151 cmd_buffer);
1152
1153 meta_emit_blit(cmd_buffer,
1154 anv_image_from_handle(srcImage),
1155 &src_iview,
1156 (VkOffset3D) { 0, 0, 0 },
1157 pRegions[r].imageExtent,
1158 dest_image,
1159 &dest_iview,
1160 dest_offset,
1161 pRegions[r].imageExtent);
1162
1163 anv_DestroyImage(vk_device, srcImage);
1164 }
1165
1166 meta_finish_blit(cmd_buffer, &saved_state);
1167 }
1168
1169 void anv_CmdCopyImageToBuffer(
1170 VkCmdBuffer cmdBuffer,
1171 VkImage srcImage,
1172 VkImageLayout srcImageLayout,
1173 VkBuffer destBuffer,
1174 uint32_t regionCount,
1175 const VkBufferImageCopy* pRegions)
1176 {
1177 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
1178 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1179 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
1180 struct anv_meta_saved_state saved_state;
1181
1182 const VkImageViewType src_iview_type =
1183 meta_blit_get_src_image_view_type(src_image);
1184
1185 meta_prepare_blit(cmd_buffer, &saved_state);
1186
1187 for (unsigned r = 0; r < regionCount; r++) {
1188 if (pRegions[r].imageSubresource.arraySize > 1)
1189 anv_finishme("FINISHME: copy multiple array layers");
1190
1191 if (pRegions[r].imageExtent.depth > 1)
1192 anv_finishme("FINISHME: copy multiple depth layers");
1193
1194 struct anv_image_view src_iview;
1195 anv_image_view_init(&src_iview, cmd_buffer->device,
1196 &(VkImageViewCreateInfo) {
1197 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1198 .image = srcImage,
1199 .viewType = src_iview_type,
1200 .format = src_image->format->vk_format,
1201 .channels = {
1202 VK_CHANNEL_SWIZZLE_R,
1203 VK_CHANNEL_SWIZZLE_G,
1204 VK_CHANNEL_SWIZZLE_B,
1205 VK_CHANNEL_SWIZZLE_A
1206 },
1207 .subresourceRange = {
1208 .aspectMask = 1 << pRegions[r].imageSubresource.aspect,
1209 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
1210 .mipLevels = 1,
1211 .baseArrayLayer = pRegions[r].imageSubresource.arrayLayer,
1212 .arraySize = 1
1213 },
1214 },
1215 cmd_buffer);
1216
1217 VkFormat dest_format = src_image->format->vk_format;
1218 if (dest_format == VK_FORMAT_S8_UINT) {
1219 dest_format = VK_FORMAT_R8_UINT;
1220 }
1221
1222 VkImage destImage = make_image_for_buffer(vk_device, destBuffer,
1223 dest_format, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pRegions[r]);
1224
1225 struct anv_image_view dest_iview;
1226 anv_image_view_init(&dest_iview, cmd_buffer->device,
1227 &(VkImageViewCreateInfo) {
1228 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1229 .image = destImage,
1230 .viewType = VK_IMAGE_VIEW_TYPE_2D,
1231 .format = dest_format,
1232 .channels = {
1233 VK_CHANNEL_SWIZZLE_R,
1234 VK_CHANNEL_SWIZZLE_G,
1235 VK_CHANNEL_SWIZZLE_B,
1236 VK_CHANNEL_SWIZZLE_A
1237 },
1238 .subresourceRange = {
1239 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1240 .baseMipLevel = 0,
1241 .mipLevels = 1,
1242 .baseArrayLayer = 0,
1243 .arraySize = 1
1244 },
1245 },
1246 cmd_buffer);
1247
1248 meta_emit_blit(cmd_buffer,
1249 anv_image_from_handle(srcImage),
1250 &src_iview,
1251 pRegions[r].imageOffset,
1252 pRegions[r].imageExtent,
1253 anv_image_from_handle(destImage),
1254 &dest_iview,
1255 (VkOffset3D) { 0, 0, 0 },
1256 pRegions[r].imageExtent);
1257
1258 anv_DestroyImage(vk_device, destImage);
1259 }
1260
1261 meta_finish_blit(cmd_buffer, &saved_state);
1262 }
1263
1264 void anv_CmdUpdateBuffer(
1265 VkCmdBuffer cmdBuffer,
1266 VkBuffer destBuffer,
1267 VkDeviceSize destOffset,
1268 VkDeviceSize dataSize,
1269 const uint32_t* pData)
1270 {
1271 stub();
1272 }
1273
1274 void anv_CmdFillBuffer(
1275 VkCmdBuffer cmdBuffer,
1276 VkBuffer destBuffer,
1277 VkDeviceSize destOffset,
1278 VkDeviceSize fillSize,
1279 uint32_t data)
1280 {
1281 stub();
1282 }
1283
1284 void anv_CmdResolveImage(
1285 VkCmdBuffer cmdBuffer,
1286 VkImage srcImage,
1287 VkImageLayout srcImageLayout,
1288 VkImage destImage,
1289 VkImageLayout destImageLayout,
1290 uint32_t regionCount,
1291 const VkImageResolve* pRegions)
1292 {
1293 stub();
1294 }
1295
1296 void
1297 anv_device_init_meta(struct anv_device *device)
1298 {
1299 anv_device_init_meta_clear_state(device);
1300 anv_device_init_meta_blit_state(device);
1301 }
1302
1303 void
1304 anv_device_finish_meta(struct anv_device *device)
1305 {
1306 /* Clear */
1307 anv_DestroyPipeline(anv_device_to_handle(device),
1308 device->meta_state.clear.pipeline);
1309
1310 /* Blit */
1311 anv_DestroyRenderPass(anv_device_to_handle(device),
1312 device->meta_state.blit.render_pass);
1313 anv_DestroyPipeline(anv_device_to_handle(device),
1314 device->meta_state.blit.pipeline_2d_src);
1315 anv_DestroyPipeline(anv_device_to_handle(device),
1316 device->meta_state.blit.pipeline_3d_src);
1317 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1318 device->meta_state.blit.pipeline_layout);
1319 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1320 device->meta_state.blit.ds_layout);
1321 }