isl: Add initial support for storage images
[mesa.git] / src / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "util/macros.h"
45 #include "util/list.h"
46
47 /* Pre-declarations needed for WSI entrypoints */
48 struct wl_surface;
49 struct wl_display;
50 typedef struct xcb_connection_t xcb_connection_t;
51 typedef uint32_t xcb_visualid_t;
52 typedef uint32_t xcb_window_t;
53
54 #define VK_USE_PLATFORM_XCB_KHR
55 #define VK_USE_PLATFORM_WAYLAND_KHR
56
57 #define VK_PROTOTYPES
58 #include <vulkan/vulkan.h>
59 #include <vulkan/vulkan_intel.h>
60
61 #include "anv_entrypoints.h"
62 #include "anv_gen_macros.h"
63 #include "brw_context.h"
64 #include "isl.h"
65
66 #ifdef __cplusplus
67 extern "C" {
68 #endif
69
70 #define ICD_LOADER_MAGIC 0x01CDC0DE
71
72 typedef union _VK_LOADER_DATA {
73 uintptr_t loaderMagic;
74 void *loaderData;
75 } VK_LOADER_DATA;
76
77 #define anv_noreturn __attribute__((__noreturn__))
78 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
79
80 #define MIN(a, b) ((a) < (b) ? (a) : (b))
81 #define MAX(a, b) ((a) > (b) ? (a) : (b))
82
83 static inline uint32_t
84 align_u32(uint32_t v, uint32_t a)
85 {
86 return (v + a - 1) & ~(a - 1);
87 }
88
89 static inline int32_t
90 align_i32(int32_t v, int32_t a)
91 {
92 return (v + a - 1) & ~(a - 1);
93 }
94
95 /** Alignment must be a power of 2. */
96 static inline bool
97 anv_is_aligned(uintmax_t n, uintmax_t a)
98 {
99 assert(a == (a & -a));
100 return (n & (a - 1)) == 0;
101 }
102
103 static inline uint32_t
104 anv_minify(uint32_t n, uint32_t levels)
105 {
106 if (unlikely(n == 0))
107 return 0;
108 else
109 return MAX(n >> levels, 1);
110 }
111
112 static inline float
113 anv_clamp_f(float f, float min, float max)
114 {
115 assert(min < max);
116
117 if (f > max)
118 return max;
119 else if (f < min)
120 return min;
121 else
122 return f;
123 }
124
125 static inline bool
126 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
127 {
128 if (*inout_mask & clear_mask) {
129 *inout_mask &= ~clear_mask;
130 return true;
131 } else {
132 return false;
133 }
134 }
135
136 #define for_each_bit(b, dword) \
137 for (uint32_t __dword = (dword); \
138 (b) = __builtin_ffs(__dword) - 1, __dword; \
139 __dword &= ~(1 << (b)))
140
141 #define typed_memcpy(dest, src, count) ({ \
142 static_assert(sizeof(*src) == sizeof(*dest), ""); \
143 memcpy((dest), (src), (count) * sizeof(*(src))); \
144 })
145
146 /* Define no kernel as 1, since that's an illegal offset for a kernel */
147 #define NO_KERNEL 1
148
149 struct anv_common {
150 VkStructureType sType;
151 const void* pNext;
152 };
153
154 /* Whenever we generate an error, pass it through this function. Useful for
155 * debugging, where we can break on it. Only call at error site, not when
156 * propagating errors. Might be useful to plug in a stack trace here.
157 */
158
159 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
160
161 #ifdef DEBUG
162 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
163 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
164 #else
165 #define vk_error(error) error
166 #define vk_errorf(error, format, ...) error
167 #endif
168
169 void __anv_finishme(const char *file, int line, const char *format, ...)
170 anv_printflike(3, 4);
171 void anv_loge(const char *format, ...) anv_printflike(1, 2);
172 void anv_loge_v(const char *format, va_list va);
173
174 /**
175 * Print a FINISHME message, including its source location.
176 */
177 #define anv_finishme(format, ...) \
178 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
179
180 /* A non-fatal assert. Useful for debugging. */
181 #ifdef DEBUG
182 #define anv_assert(x) ({ \
183 if (unlikely(!(x))) \
184 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
185 })
186 #else
187 #define anv_assert(x)
188 #endif
189
190 /**
191 * If a block of code is annotated with anv_validate, then the block runs only
192 * in debug builds.
193 */
194 #ifdef DEBUG
195 #define anv_validate if (1)
196 #else
197 #define anv_validate if (0)
198 #endif
199
200 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
201 void anv_abortfv(const char *format, va_list va) anv_noreturn;
202
203 #define stub_return(v) \
204 do { \
205 anv_finishme("stub %s", __func__); \
206 return (v); \
207 } while (0)
208
209 #define stub() \
210 do { \
211 anv_finishme("stub %s", __func__); \
212 return; \
213 } while (0)
214
215 /**
216 * A dynamically growable, circular buffer. Elements are added at head and
217 * removed from tail. head and tail are free-running uint32_t indices and we
218 * only compute the modulo with size when accessing the array. This way,
219 * number of bytes in the queue is always head - tail, even in case of
220 * wraparound.
221 */
222
223 struct anv_vector {
224 uint32_t head;
225 uint32_t tail;
226 uint32_t element_size;
227 uint32_t size;
228 void *data;
229 };
230
231 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
232 void *anv_vector_add(struct anv_vector *queue);
233 void *anv_vector_remove(struct anv_vector *queue);
234
235 static inline int
236 anv_vector_length(struct anv_vector *queue)
237 {
238 return (queue->head - queue->tail) / queue->element_size;
239 }
240
241 static inline void *
242 anv_vector_head(struct anv_vector *vector)
243 {
244 assert(vector->tail < vector->head);
245 return (void *)((char *)vector->data +
246 ((vector->head - vector->element_size) &
247 (vector->size - 1)));
248 }
249
250 static inline void *
251 anv_vector_tail(struct anv_vector *vector)
252 {
253 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
254 }
255
256 static inline void
257 anv_vector_finish(struct anv_vector *queue)
258 {
259 free(queue->data);
260 }
261
262 #define anv_vector_foreach(elem, queue) \
263 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
264 for (uint32_t __anv_vector_offset = (queue)->tail; \
265 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
266 __anv_vector_offset += (queue)->element_size)
267
268 struct anv_bo {
269 uint32_t gem_handle;
270
271 /* Index into the current validation list. This is used by the
272 * validation list building alrogithm to track which buffers are already
273 * in the validation list so that we can ensure uniqueness.
274 */
275 uint32_t index;
276
277 /* Last known offset. This value is provided by the kernel when we
278 * execbuf and is used as the presumed offset for the next bunch of
279 * relocations.
280 */
281 uint64_t offset;
282
283 uint64_t size;
284 void *map;
285 };
286
287 /* Represents a lock-free linked list of "free" things. This is used by
288 * both the block pool and the state pools. Unfortunately, in order to
289 * solve the ABA problem, we can't use a single uint32_t head.
290 */
291 union anv_free_list {
292 struct {
293 int32_t offset;
294
295 /* A simple count that is incremented every time the head changes. */
296 uint32_t count;
297 };
298 uint64_t u64;
299 };
300
301 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
302
303 struct anv_block_state {
304 union {
305 struct {
306 uint32_t next;
307 uint32_t end;
308 };
309 uint64_t u64;
310 };
311 };
312
313 struct anv_block_pool {
314 struct anv_device *device;
315
316 struct anv_bo bo;
317
318 /* The offset from the start of the bo to the "center" of the block
319 * pool. Pointers to allocated blocks are given by
320 * bo.map + center_bo_offset + offsets.
321 */
322 uint32_t center_bo_offset;
323
324 /* Current memory map of the block pool. This pointer may or may not
325 * point to the actual beginning of the block pool memory. If
326 * anv_block_pool_alloc_back has ever been called, then this pointer
327 * will point to the "center" position of the buffer and all offsets
328 * (negative or positive) given out by the block pool alloc functions
329 * will be valid relative to this pointer.
330 *
331 * In particular, map == bo.map + center_offset
332 */
333 void *map;
334 int fd;
335
336 /**
337 * Array of mmaps and gem handles owned by the block pool, reclaimed when
338 * the block pool is destroyed.
339 */
340 struct anv_vector mmap_cleanups;
341
342 uint32_t block_size;
343
344 union anv_free_list free_list;
345 struct anv_block_state state;
346
347 union anv_free_list back_free_list;
348 struct anv_block_state back_state;
349 };
350
351 /* Block pools are backed by a fixed-size 2GB memfd */
352 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
353
354 /* The center of the block pool is also the middle of the memfd. This may
355 * change in the future if we decide differently for some reason.
356 */
357 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
358
359 static inline uint32_t
360 anv_block_pool_size(struct anv_block_pool *pool)
361 {
362 return pool->state.end + pool->back_state.end;
363 }
364
365 struct anv_state {
366 int32_t offset;
367 uint32_t alloc_size;
368 void *map;
369 };
370
371 struct anv_fixed_size_state_pool {
372 size_t state_size;
373 union anv_free_list free_list;
374 struct anv_block_state block;
375 };
376
377 #define ANV_MIN_STATE_SIZE_LOG2 6
378 #define ANV_MAX_STATE_SIZE_LOG2 10
379
380 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
381
382 struct anv_state_pool {
383 struct anv_block_pool *block_pool;
384 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
385 };
386
387 struct anv_state_stream {
388 struct anv_block_pool *block_pool;
389 uint32_t next;
390 uint32_t current_block;
391 uint32_t end;
392 };
393
394 #define CACHELINE_SIZE 64
395 #define CACHELINE_MASK 63
396
397 static void inline
398 anv_state_clflush(struct anv_state state)
399 {
400 /* state.map may not be cacheline aligned, so round down the start pointer
401 * to a cacheline boundary so we flush all pages that contain the state.
402 */
403 void *end = state.map + state.alloc_size;
404 void *p = (void *) (((uintptr_t) state.map) & ~CACHELINE_MASK);
405
406 __builtin_ia32_sfence();
407 while (p < end) {
408 __builtin_ia32_clflush(p);
409 p += CACHELINE_SIZE;
410 }
411 }
412
413 void anv_block_pool_init(struct anv_block_pool *pool,
414 struct anv_device *device, uint32_t block_size);
415 void anv_block_pool_finish(struct anv_block_pool *pool);
416 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
417 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
418 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
419 void anv_state_pool_init(struct anv_state_pool *pool,
420 struct anv_block_pool *block_pool);
421 void anv_state_pool_finish(struct anv_state_pool *pool);
422 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
423 size_t state_size, size_t alignment);
424 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
425 void anv_state_stream_init(struct anv_state_stream *stream,
426 struct anv_block_pool *block_pool);
427 void anv_state_stream_finish(struct anv_state_stream *stream);
428 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
429 uint32_t size, uint32_t alignment);
430
431 /**
432 * Implements a pool of re-usable BOs. The interface is identical to that
433 * of block_pool except that each block is its own BO.
434 */
435 struct anv_bo_pool {
436 struct anv_device *device;
437
438 uint32_t bo_size;
439
440 void *free_list;
441 };
442
443 void anv_bo_pool_init(struct anv_bo_pool *pool,
444 struct anv_device *device, uint32_t block_size);
445 void anv_bo_pool_finish(struct anv_bo_pool *pool);
446 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo);
447 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
448
449
450 void *anv_resolve_entrypoint(uint32_t index);
451
452 extern struct anv_dispatch_table dtable;
453
454 #define ANV_CALL(func) ({ \
455 if (dtable.func == NULL) { \
456 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
457 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
458 } \
459 dtable.func; \
460 })
461
462 static inline void *
463 anv_alloc(const VkAllocationCallbacks *alloc,
464 size_t size, size_t align,
465 VkSystemAllocationScope scope)
466 {
467 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
468 }
469
470 static inline void *
471 anv_realloc(const VkAllocationCallbacks *alloc,
472 void *ptr, size_t size, size_t align,
473 VkSystemAllocationScope scope)
474 {
475 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
476 }
477
478 static inline void
479 anv_free(const VkAllocationCallbacks *alloc, void *data)
480 {
481 alloc->pfnFree(alloc->pUserData, data);
482 }
483
484 static inline void *
485 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
486 const VkAllocationCallbacks *alloc,
487 size_t size, size_t align,
488 VkSystemAllocationScope scope)
489 {
490 if (alloc)
491 return anv_alloc(alloc, size, align, scope);
492 else
493 return anv_alloc(parent_alloc, size, align, scope);
494 }
495
496 static inline void
497 anv_free2(const VkAllocationCallbacks *parent_alloc,
498 const VkAllocationCallbacks *alloc,
499 void *data)
500 {
501 if (alloc)
502 anv_free(alloc, data);
503 else
504 anv_free(parent_alloc, data);
505 }
506
507 struct anv_physical_device {
508 VK_LOADER_DATA _loader_data;
509
510 struct anv_instance * instance;
511 uint32_t chipset_id;
512 const char * path;
513 const char * name;
514 const struct brw_device_info * info;
515 uint64_t aperture_size;
516 struct brw_compiler * compiler;
517 struct isl_device isl_dev;
518 };
519
520 struct anv_instance {
521 VK_LOADER_DATA _loader_data;
522
523 VkAllocationCallbacks alloc;
524
525 uint32_t apiVersion;
526 int physicalDeviceCount;
527 struct anv_physical_device physicalDevice;
528
529 void * wayland_wsi;
530 };
531
532 VkResult anv_init_wsi(struct anv_instance *instance);
533 void anv_finish_wsi(struct anv_instance *instance);
534
535 struct anv_meta_state {
536 struct {
537 struct anv_pipeline *color_pipeline;
538 struct anv_pipeline *depth_only_pipeline;
539 struct anv_pipeline *stencil_only_pipeline;
540 struct anv_pipeline *depthstencil_pipeline;
541 } clear;
542
543 struct {
544 VkRenderPass render_pass;
545
546 /** Pipeline that blits from a 2D image. */
547 VkPipeline pipeline_2d_src;
548
549 /** Pipeline that blits from a 3D image. */
550 VkPipeline pipeline_3d_src;
551
552 VkPipelineLayout pipeline_layout;
553 VkDescriptorSetLayout ds_layout;
554 } blit;
555 };
556
557 struct anv_queue {
558 VK_LOADER_DATA _loader_data;
559
560 struct anv_device * device;
561
562 struct anv_state_pool * pool;
563 };
564
565 struct anv_device {
566 VK_LOADER_DATA _loader_data;
567
568 VkAllocationCallbacks alloc;
569
570 struct anv_instance * instance;
571 uint32_t chipset_id;
572 struct brw_device_info info;
573 struct isl_device isl_dev;
574 int context_id;
575 int fd;
576
577 struct anv_bo_pool batch_bo_pool;
578
579 struct anv_block_pool dynamic_state_block_pool;
580 struct anv_state_pool dynamic_state_pool;
581
582 struct anv_block_pool instruction_block_pool;
583 struct anv_block_pool surface_state_block_pool;
584 struct anv_state_pool surface_state_pool;
585
586 struct anv_bo workaround_bo;
587
588 struct anv_meta_state meta_state;
589
590 struct anv_state border_colors;
591
592 struct anv_queue queue;
593
594 struct anv_block_pool scratch_block_pool;
595
596 pthread_mutex_t mutex;
597 };
598
599 void* anv_gem_mmap(struct anv_device *device,
600 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
601 void anv_gem_munmap(void *p, uint64_t size);
602 uint32_t anv_gem_create(struct anv_device *device, size_t size);
603 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
604 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
605 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
606 int anv_gem_execbuffer(struct anv_device *device,
607 struct drm_i915_gem_execbuffer2 *execbuf);
608 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
609 uint32_t stride, uint32_t tiling);
610 int anv_gem_create_context(struct anv_device *device);
611 int anv_gem_destroy_context(struct anv_device *device, int context);
612 int anv_gem_get_param(int fd, uint32_t param);
613 int anv_gem_get_aperture(int fd, uint64_t *size);
614 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
615 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
616 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
617 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
618 uint32_t read_domains, uint32_t write_domain);
619
620 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
621
622 struct anv_reloc_list {
623 size_t num_relocs;
624 size_t array_length;
625 struct drm_i915_gem_relocation_entry * relocs;
626 struct anv_bo ** reloc_bos;
627 };
628
629 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
630 const VkAllocationCallbacks *alloc);
631 void anv_reloc_list_finish(struct anv_reloc_list *list,
632 const VkAllocationCallbacks *alloc);
633
634 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
635 const VkAllocationCallbacks *alloc,
636 uint32_t offset, struct anv_bo *target_bo,
637 uint32_t delta);
638
639 struct anv_batch_bo {
640 /* Link in the anv_cmd_buffer.owned_batch_bos list */
641 struct list_head link;
642
643 struct anv_bo bo;
644
645 /* Bytes actually consumed in this batch BO */
646 size_t length;
647
648 /* Last seen surface state block pool bo offset */
649 uint32_t last_ss_pool_bo_offset;
650
651 struct anv_reloc_list relocs;
652 };
653
654 struct anv_batch {
655 const VkAllocationCallbacks * alloc;
656
657 void * start;
658 void * end;
659 void * next;
660
661 struct anv_reloc_list * relocs;
662
663 /* This callback is called (with the associated user data) in the event
664 * that the batch runs out of space.
665 */
666 VkResult (*extend_cb)(struct anv_batch *, void *);
667 void * user_data;
668 };
669
670 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
671 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
672 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
673 void *location, struct anv_bo *bo, uint32_t offset);
674
675 struct anv_address {
676 struct anv_bo *bo;
677 uint32_t offset;
678 };
679
680 #define __gen_address_type struct anv_address
681 #define __gen_user_data struct anv_batch
682
683 static inline uint64_t
684 __gen_combine_address(struct anv_batch *batch, void *location,
685 const struct anv_address address, uint32_t delta)
686 {
687 if (address.bo == NULL) {
688 return address.offset + delta;
689 } else {
690 assert(batch->start <= location && location < batch->end);
691
692 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
693 }
694 }
695
696 /* Wrapper macros needed to work around preprocessor argument issues. In
697 * particular, arguments don't get pre-evaluated if they are concatenated.
698 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
699 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
700 * We can work around this easily enough with these helpers.
701 */
702 #define __anv_cmd_length(cmd) cmd ## _length
703 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
704 #define __anv_cmd_header(cmd) cmd ## _header
705 #define __anv_cmd_pack(cmd) cmd ## _pack
706
707 #define anv_batch_emit(batch, cmd, ...) do { \
708 void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
709 struct cmd __template = { \
710 __anv_cmd_header(cmd), \
711 __VA_ARGS__ \
712 }; \
713 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
714 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
715 } while (0)
716
717 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
718 void *__dst = anv_batch_emit_dwords(batch, n); \
719 struct cmd __template = { \
720 __anv_cmd_header(cmd), \
721 .DwordLength = n - __anv_cmd_length_bias(cmd), \
722 __VA_ARGS__ \
723 }; \
724 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
725 __dst; \
726 })
727
728 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
729 do { \
730 uint32_t *dw; \
731 \
732 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
733 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
734 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
735 dw[i] = (dwords0)[i] | (dwords1)[i]; \
736 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
737 } while (0)
738
739 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
740 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
741 struct anv_state __state = \
742 anv_state_pool_alloc((pool), __size, align); \
743 struct cmd __template = { \
744 __VA_ARGS__ \
745 }; \
746 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
747 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
748 if (!(pool)->block_pool->device->info.has_llc) \
749 anv_state_clflush(__state); \
750 __state; \
751 })
752
753 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
754 .GraphicsDataTypeGFDT = 0, \
755 .LLCCacheabilityControlLLCCC = 0, \
756 .L3CacheabilityControlL3CC = 1, \
757 }
758
759 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
760 .LLCeLLCCacheabilityControlLLCCC = 0, \
761 .L3CacheabilityControlL3CC = 1, \
762 }
763
764 #define GEN8_MOCS { \
765 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
766 .TargetCache = L3DefertoPATforLLCeLLCselection, \
767 .AgeforQUADLRU = 0 \
768 }
769
770 /* Skylake: MOCS is now an index into an array of 62 different caching
771 * configurations programmed by the kernel.
772 */
773
774 #define GEN9_MOCS { \
775 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
776 .IndextoMOCSTables = 2 \
777 }
778
779 #define GEN9_MOCS_PTE { \
780 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
781 .IndextoMOCSTables = 1 \
782 }
783
784 struct anv_device_memory {
785 struct anv_bo bo;
786 uint32_t type_index;
787 VkDeviceSize map_size;
788 void * map;
789 };
790
791 /**
792 * Header for Vertex URB Entry (VUE)
793 */
794 struct anv_vue_header {
795 uint32_t Reserved;
796 uint32_t RTAIndex; /* RenderTargetArrayIndex */
797 uint32_t ViewportIndex;
798 float PointWidth;
799 };
800
801 struct anv_descriptor_set_binding_layout {
802 /* Number of array elements in this binding */
803 uint16_t array_size;
804
805 /* Index into the flattend descriptor set */
806 uint16_t descriptor_index;
807
808 /* Index into the dynamic state array for a dynamic buffer */
809 int16_t dynamic_offset_index;
810
811 struct {
812 /* Index into the binding table for the associated surface */
813 int16_t surface_index;
814
815 /* Index into the sampler table for the associated sampler */
816 int16_t sampler_index;
817 } stage[MESA_SHADER_STAGES];
818
819 /* Immutable samplers (or NULL if no immutable samplers) */
820 struct anv_sampler **immutable_samplers;
821 };
822
823 struct anv_descriptor_set_layout {
824 /* Number of bindings in this descriptor set */
825 uint16_t binding_count;
826
827 /* Total size of the descriptor set with room for all array entries */
828 uint16_t size;
829
830 /* Shader stages affected by this descriptor set */
831 uint16_t shader_stages;
832
833 /* Number of dynamic offsets used by this descriptor set */
834 uint16_t dynamic_offset_count;
835
836 /* Bindings in this descriptor set */
837 struct anv_descriptor_set_binding_layout binding[0];
838 };
839
840 struct anv_descriptor {
841 VkDescriptorType type;
842
843 union {
844 struct {
845 union {
846 struct anv_image_view *image_view;
847 };
848 struct anv_sampler *sampler;
849 };
850
851 struct {
852 struct anv_buffer *buffer;
853 uint64_t offset;
854 uint64_t range;
855 };
856 };
857 };
858
859 struct anv_descriptor_set {
860 const struct anv_descriptor_set_layout *layout;
861 struct anv_descriptor descriptors[0];
862 };
863
864 VkResult
865 anv_descriptor_set_create(struct anv_device *device,
866 const struct anv_descriptor_set_layout *layout,
867 struct anv_descriptor_set **out_set);
868
869 void
870 anv_descriptor_set_destroy(struct anv_device *device,
871 struct anv_descriptor_set *set);
872
873 #define MAX_VBS 32
874 #define MAX_SETS 8
875 #define MAX_RTS 8
876 #define MAX_VIEWPORTS 16
877 #define MAX_SCISSORS 16
878 #define MAX_PUSH_CONSTANTS_SIZE 128
879 #define MAX_DYNAMIC_BUFFERS 16
880 #define MAX_IMAGES 8
881
882 struct anv_pipeline_binding {
883 /* The descriptor set this surface corresponds to */
884 uint16_t set;
885
886 /* Offset into the descriptor set */
887 uint16_t offset;
888 };
889
890 struct anv_pipeline_layout {
891 struct {
892 struct anv_descriptor_set_layout *layout;
893 uint32_t dynamic_offset_start;
894 struct {
895 uint32_t surface_start;
896 uint32_t sampler_start;
897 } stage[MESA_SHADER_STAGES];
898 } set[MAX_SETS];
899
900 uint32_t num_sets;
901
902 struct {
903 bool has_dynamic_offsets;
904 uint32_t surface_count;
905 struct anv_pipeline_binding *surface_to_descriptor;
906 uint32_t sampler_count;
907 struct anv_pipeline_binding *sampler_to_descriptor;
908 } stage[MESA_SHADER_STAGES];
909
910 struct anv_pipeline_binding entries[0];
911 };
912
913 struct anv_buffer {
914 struct anv_device * device;
915 VkDeviceSize size;
916
917 /* Set when bound */
918 struct anv_bo * bo;
919 VkDeviceSize offset;
920 };
921
922 enum anv_cmd_dirty_bits {
923 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
924 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
925 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
926 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
927 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
928 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
929 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
930 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
931 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
932 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
933 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
934 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
935 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
936 };
937 typedef uint32_t anv_cmd_dirty_mask_t;
938
939 struct anv_vertex_binding {
940 struct anv_buffer * buffer;
941 VkDeviceSize offset;
942 };
943
944 struct anv_push_constants {
945 /* Current allocated size of this push constants data structure.
946 * Because a decent chunk of it may not be used (images on SKL, for
947 * instance), we won't actually allocate the entire structure up-front.
948 */
949 uint32_t size;
950
951 /* Push constant data provided by the client through vkPushConstants */
952 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
953
954 /* Our hardware only provides zero-based vertex and instance id so, in
955 * order to satisfy the vulkan requirements, we may have to push one or
956 * both of these into the shader.
957 */
958 uint32_t base_vertex;
959 uint32_t base_instance;
960
961 /* Offsets and ranges for dynamically bound buffers */
962 struct {
963 uint32_t offset;
964 uint32_t range;
965 } dynamic[MAX_DYNAMIC_BUFFERS];
966
967 /* Image data for image_load_store on pre-SKL */
968 struct brw_image_param images[MAX_IMAGES];
969 };
970
971 struct anv_dynamic_state {
972 struct {
973 uint32_t count;
974 VkViewport viewports[MAX_VIEWPORTS];
975 } viewport;
976
977 struct {
978 uint32_t count;
979 VkRect2D scissors[MAX_SCISSORS];
980 } scissor;
981
982 float line_width;
983
984 struct {
985 float bias;
986 float clamp;
987 float slope;
988 } depth_bias;
989
990 float blend_constants[4];
991
992 struct {
993 float min;
994 float max;
995 } depth_bounds;
996
997 struct {
998 uint32_t front;
999 uint32_t back;
1000 } stencil_compare_mask;
1001
1002 struct {
1003 uint32_t front;
1004 uint32_t back;
1005 } stencil_write_mask;
1006
1007 struct {
1008 uint32_t front;
1009 uint32_t back;
1010 } stencil_reference;
1011 };
1012
1013 extern const struct anv_dynamic_state default_dynamic_state;
1014
1015 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1016 const struct anv_dynamic_state *src,
1017 uint32_t copy_mask);
1018
1019 /** State required while building cmd buffer */
1020 struct anv_cmd_state {
1021 uint32_t current_pipeline;
1022 uint32_t vb_dirty;
1023 anv_cmd_dirty_mask_t dirty;
1024 anv_cmd_dirty_mask_t compute_dirty;
1025 VkShaderStageFlags descriptors_dirty;
1026 VkShaderStageFlags push_constants_dirty;
1027 uint32_t scratch_size;
1028 struct anv_pipeline * pipeline;
1029 struct anv_pipeline * compute_pipeline;
1030 struct anv_framebuffer * framebuffer;
1031 struct anv_render_pass * pass;
1032 struct anv_subpass * subpass;
1033 uint32_t restart_index;
1034 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1035 struct anv_descriptor_set * descriptors[MAX_SETS];
1036 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1037 struct anv_dynamic_state dynamic;
1038
1039 struct {
1040 struct anv_buffer * index_buffer;
1041 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1042 uint32_t index_offset;
1043 } gen7;
1044 };
1045
1046 struct anv_cmd_pool {
1047 VkAllocationCallbacks alloc;
1048 struct list_head cmd_buffers;
1049 };
1050
1051 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1052
1053 enum anv_cmd_buffer_exec_mode {
1054 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1055 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1056 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1057 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1058 };
1059
1060 struct anv_cmd_buffer {
1061 VK_LOADER_DATA _loader_data;
1062
1063 struct anv_device * device;
1064
1065 struct anv_cmd_pool * pool;
1066 struct list_head pool_link;
1067
1068 struct anv_batch batch;
1069
1070 /* Fields required for the actual chain of anv_batch_bo's.
1071 *
1072 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1073 */
1074 struct list_head batch_bos;
1075 enum anv_cmd_buffer_exec_mode exec_mode;
1076
1077 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1078 * referenced by this command buffer
1079 *
1080 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1081 */
1082 struct anv_vector seen_bbos;
1083
1084 /* A vector of int32_t's for every block of binding tables.
1085 *
1086 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1087 */
1088 struct anv_vector bt_blocks;
1089 uint32_t bt_next;
1090 struct anv_reloc_list surface_relocs;
1091
1092 /* Information needed for execbuf
1093 *
1094 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1095 */
1096 struct {
1097 struct drm_i915_gem_execbuffer2 execbuf;
1098
1099 struct drm_i915_gem_exec_object2 * objects;
1100 uint32_t bo_count;
1101 struct anv_bo ** bos;
1102
1103 /* Allocated length of the 'objects' and 'bos' arrays */
1104 uint32_t array_length;
1105
1106 bool need_reloc;
1107 } execbuf2;
1108
1109 /* Serial for tracking buffer completion */
1110 uint32_t serial;
1111
1112 /* Stream objects for storing temporary data */
1113 struct anv_state_stream surface_state_stream;
1114 struct anv_state_stream dynamic_state_stream;
1115
1116 VkCommandBufferUsageFlags usage_flags;
1117 VkCommandBufferLevel level;
1118
1119 struct anv_cmd_state state;
1120 };
1121
1122 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1123 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1124 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1125 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1126 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1127 struct anv_cmd_buffer *secondary);
1128 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1129
1130 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1131 unsigned stage, struct anv_state *bt_state);
1132 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1133 unsigned stage, struct anv_state *state);
1134 void gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1135
1136 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1137 const void *data, uint32_t size, uint32_t alignment);
1138 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1139 uint32_t *a, uint32_t *b,
1140 uint32_t dwords, uint32_t alignment);
1141 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1142 struct anv_subpass *subpass);
1143
1144 struct anv_address
1145 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1146 struct anv_state
1147 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1148 uint32_t entries, uint32_t *state_offset);
1149 struct anv_state
1150 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1151 struct anv_state
1152 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1153 uint32_t size, uint32_t alignment);
1154
1155 VkResult
1156 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1157
1158 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1159 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1160
1161 void gen7_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1162 void gen75_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1163 void gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1164 void gen9_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1165
1166 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1167
1168 void gen7_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1169 struct anv_subpass *subpass);
1170
1171 void gen8_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1172 struct anv_subpass *subpass);
1173 void gen9_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1174 struct anv_subpass *subpass);
1175
1176 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1177 struct anv_subpass *subpass);
1178
1179 struct anv_state
1180 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1181 gl_shader_stage stage);
1182
1183 void anv_cmd_buffer_clear_attachments(struct anv_cmd_buffer *cmd_buffer,
1184 struct anv_render_pass *pass,
1185 const VkClearValue *clear_values);
1186 const struct anv_image_view *
1187 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1188
1189 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1190
1191 struct anv_fence {
1192 struct anv_bo bo;
1193 struct drm_i915_gem_execbuffer2 execbuf;
1194 struct drm_i915_gem_exec_object2 exec2_objects[1];
1195 bool ready;
1196 };
1197
1198 struct nir_shader;
1199
1200 struct anv_shader_module {
1201 struct nir_shader * nir;
1202
1203 uint32_t size;
1204 char data[0];
1205 };
1206
1207 static inline gl_shader_stage
1208 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1209 {
1210 assert(__builtin_popcount(vk_stage) == 1);
1211 return ffs(vk_stage) - 1;
1212 }
1213
1214 static inline VkShaderStageFlagBits
1215 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1216 {
1217 return (1 << mesa_stage);
1218 }
1219
1220 #define anv_foreach_stage(stage, stage_bits) \
1221 for (gl_shader_stage stage, __tmp = (gl_shader_stage)(stage_bits);\
1222 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1223 __tmp &= ~(1 << (stage)))
1224
1225 struct anv_pipeline {
1226 struct anv_device * device;
1227 struct anv_batch batch;
1228 uint32_t batch_data[512];
1229 struct anv_reloc_list batch_relocs;
1230 uint32_t dynamic_state_mask;
1231 struct anv_dynamic_state dynamic_state;
1232
1233 struct anv_pipeline_layout * layout;
1234 bool use_repclear;
1235
1236 struct brw_vs_prog_data vs_prog_data;
1237 struct brw_wm_prog_data wm_prog_data;
1238 struct brw_gs_prog_data gs_prog_data;
1239 struct brw_cs_prog_data cs_prog_data;
1240 bool writes_point_size;
1241 struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1242 uint32_t scratch_start[MESA_SHADER_STAGES];
1243 uint32_t total_scratch;
1244 struct {
1245 uint32_t vs_start;
1246 uint32_t vs_size;
1247 uint32_t nr_vs_entries;
1248 uint32_t gs_start;
1249 uint32_t gs_size;
1250 uint32_t nr_gs_entries;
1251 } urb;
1252
1253 VkShaderStageFlags active_stages;
1254 struct anv_state_stream program_stream;
1255 struct anv_state blend_state;
1256 uint32_t vs_simd8;
1257 uint32_t vs_vec4;
1258 uint32_t ps_simd8;
1259 uint32_t ps_simd16;
1260 uint32_t ps_ksp0;
1261 uint32_t ps_ksp2;
1262 uint32_t ps_grf_start0;
1263 uint32_t ps_grf_start2;
1264 uint32_t gs_vec4;
1265 uint32_t gs_vertex_count;
1266 uint32_t cs_simd;
1267
1268 uint32_t vb_used;
1269 uint32_t binding_stride[MAX_VBS];
1270 bool instancing_enable[MAX_VBS];
1271 bool primitive_restart;
1272 uint32_t topology;
1273
1274 uint32_t cs_thread_width_max;
1275 uint32_t cs_right_mask;
1276
1277 struct {
1278 uint32_t sf[7];
1279 uint32_t depth_stencil_state[3];
1280 } gen7;
1281
1282 struct {
1283 uint32_t sf[4];
1284 uint32_t raster[5];
1285 uint32_t wm_depth_stencil[3];
1286 } gen8;
1287
1288 struct {
1289 uint32_t wm_depth_stencil[4];
1290 } gen9;
1291 };
1292
1293 struct anv_graphics_pipeline_create_info {
1294 bool use_repclear;
1295 bool disable_viewport;
1296 bool disable_scissor;
1297 bool disable_vs;
1298 bool use_rectlist;
1299 };
1300
1301 VkResult
1302 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1303 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1304 const struct anv_graphics_pipeline_create_info *extra,
1305 const VkAllocationCallbacks *alloc);
1306
1307 VkResult
1308 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1309 const VkComputePipelineCreateInfo *info,
1310 struct anv_shader_module *module,
1311 const char *entrypoint_name);
1312
1313 VkResult
1314 anv_graphics_pipeline_create(VkDevice device,
1315 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1316 const struct anv_graphics_pipeline_create_info *extra,
1317 const VkAllocationCallbacks *alloc,
1318 VkPipeline *pPipeline);
1319
1320 VkResult
1321 gen7_graphics_pipeline_create(VkDevice _device,
1322 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1323 const struct anv_graphics_pipeline_create_info *extra,
1324 const VkAllocationCallbacks *alloc,
1325 VkPipeline *pPipeline);
1326
1327 VkResult
1328 gen75_graphics_pipeline_create(VkDevice _device,
1329 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1330 const struct anv_graphics_pipeline_create_info *extra,
1331 const VkAllocationCallbacks *alloc,
1332 VkPipeline *pPipeline);
1333
1334 VkResult
1335 gen8_graphics_pipeline_create(VkDevice _device,
1336 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1337 const struct anv_graphics_pipeline_create_info *extra,
1338 const VkAllocationCallbacks *alloc,
1339 VkPipeline *pPipeline);
1340 VkResult
1341 gen9_graphics_pipeline_create(VkDevice _device,
1342 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1343 const struct anv_graphics_pipeline_create_info *extra,
1344 const VkAllocationCallbacks *alloc,
1345 VkPipeline *pPipeline);
1346 VkResult
1347 gen7_compute_pipeline_create(VkDevice _device,
1348 const VkComputePipelineCreateInfo *pCreateInfo,
1349 const VkAllocationCallbacks *alloc,
1350 VkPipeline *pPipeline);
1351 VkResult
1352 gen75_compute_pipeline_create(VkDevice _device,
1353 const VkComputePipelineCreateInfo *pCreateInfo,
1354 const VkAllocationCallbacks *alloc,
1355 VkPipeline *pPipeline);
1356
1357 VkResult
1358 gen8_compute_pipeline_create(VkDevice _device,
1359 const VkComputePipelineCreateInfo *pCreateInfo,
1360 const VkAllocationCallbacks *alloc,
1361 VkPipeline *pPipeline);
1362 VkResult
1363 gen9_compute_pipeline_create(VkDevice _device,
1364 const VkComputePipelineCreateInfo *pCreateInfo,
1365 const VkAllocationCallbacks *alloc,
1366 VkPipeline *pPipeline);
1367
1368 struct anv_format {
1369 const VkFormat vk_format;
1370 const char *name;
1371 enum isl_format surface_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
1372 const struct isl_format_layout *isl_layout;
1373 uint8_t num_channels;
1374 uint16_t depth_format; /**< 3DSTATE_DEPTH_BUFFER.SurfaceFormat */
1375 bool has_stencil;
1376 };
1377
1378 const struct anv_format *
1379 anv_format_for_vk_format(VkFormat format);
1380
1381 enum isl_format
1382 anv_get_isl_format(VkFormat format, VkImageAspectFlags aspect);
1383
1384 static inline bool
1385 anv_format_is_color(const struct anv_format *format)
1386 {
1387 return !format->depth_format && !format->has_stencil;
1388 }
1389
1390 static inline bool
1391 anv_format_is_depth_or_stencil(const struct anv_format *format)
1392 {
1393 return format->depth_format || format->has_stencil;
1394 }
1395
1396 struct anv_image_view_info {
1397 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1398 bool is_array:1; /**< RENDER_SURFACE_STATE.SurfaceArray */
1399 bool is_cube:1; /**< RENDER_SURFACE_STATE.CubeFaceEnable* */
1400 };
1401
1402 struct anv_image_view_info
1403 anv_image_view_info_for_vk_image_view_type(VkImageViewType type);
1404
1405 /**
1406 * Subsurface of an anv_image.
1407 */
1408 struct anv_surface {
1409 struct isl_surf isl;
1410
1411 /**
1412 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1413 */
1414 uint32_t offset;
1415 };
1416
1417 struct anv_image {
1418 VkImageType type;
1419 const struct anv_format *format;
1420 VkExtent3D extent;
1421 uint32_t levels;
1422 uint32_t array_size;
1423 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1424
1425 VkDeviceSize size;
1426 uint32_t alignment;
1427
1428 /* Set when bound */
1429 struct anv_bo *bo;
1430 VkDeviceSize offset;
1431
1432 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1433
1434 bool needs_nonrt_surface_state:1;
1435 bool needs_color_rt_surface_state:1;
1436
1437 /**
1438 * Image subsurfaces
1439 *
1440 * For each foo, anv_image::foo_surface is valid if and only if
1441 * anv_image::format has a foo aspect.
1442 *
1443 * The hardware requires that the depth buffer and stencil buffer be
1444 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1445 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1446 * allocate the depth and stencil buffers as separate surfaces in the same
1447 * bo.
1448 */
1449 union {
1450 struct anv_surface color_surface;
1451
1452 struct {
1453 struct anv_surface depth_surface;
1454 struct anv_surface stencil_surface;
1455 };
1456 };
1457 };
1458
1459 struct anv_image_view {
1460 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1461 const struct anv_format *format; /**< VkImageViewCreateInfo::format */
1462 struct anv_bo *bo;
1463 uint32_t offset; /**< Offset into bo. */
1464 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1465
1466 /** RENDER_SURFACE_STATE when using image as a color render target. */
1467 struct anv_state color_rt_surface_state;
1468
1469 /** RENDER_SURFACE_STATE when using image as a non render target. */
1470 struct anv_state nonrt_surface_state;
1471 };
1472
1473 struct anv_image_create_info {
1474 const VkImageCreateInfo *vk_info;
1475 isl_tiling_flags_t isl_tiling_flags;
1476 uint32_t stride;
1477 };
1478
1479 VkResult anv_image_create(VkDevice _device,
1480 const struct anv_image_create_info *info,
1481 const VkAllocationCallbacks* alloc,
1482 VkImage *pImage);
1483
1484 struct anv_surface *
1485 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1486 VkImageAspectFlags aspect_mask);
1487
1488 void anv_image_view_init(struct anv_image_view *view,
1489 struct anv_device *device,
1490 const VkImageViewCreateInfo* pCreateInfo,
1491 struct anv_cmd_buffer *cmd_buffer);
1492
1493 void
1494 gen7_image_view_init(struct anv_image_view *iview,
1495 struct anv_device *device,
1496 const VkImageViewCreateInfo* pCreateInfo,
1497 struct anv_cmd_buffer *cmd_buffer);
1498
1499 void
1500 gen75_image_view_init(struct anv_image_view *iview,
1501 struct anv_device *device,
1502 const VkImageViewCreateInfo* pCreateInfo,
1503 struct anv_cmd_buffer *cmd_buffer);
1504
1505 void
1506 gen8_image_view_init(struct anv_image_view *iview,
1507 struct anv_device *device,
1508 const VkImageViewCreateInfo* pCreateInfo,
1509 struct anv_cmd_buffer *cmd_buffer);
1510
1511 void
1512 gen9_image_view_init(struct anv_image_view *iview,
1513 struct anv_device *device,
1514 const VkImageViewCreateInfo* pCreateInfo,
1515 struct anv_cmd_buffer *cmd_buffer);
1516
1517 void anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1518 const struct anv_format *format,
1519 uint32_t offset, uint32_t range,
1520 uint32_t stride);
1521
1522 void gen7_fill_buffer_surface_state(void *state, const struct anv_format *format,
1523 uint32_t offset, uint32_t range,
1524 uint32_t stride);
1525 void gen75_fill_buffer_surface_state(void *state, const struct anv_format *format,
1526 uint32_t offset, uint32_t range,
1527 uint32_t stride);
1528 void gen8_fill_buffer_surface_state(void *state, const struct anv_format *format,
1529 uint32_t offset, uint32_t range,
1530 uint32_t stride);
1531 void gen9_fill_buffer_surface_state(void *state, const struct anv_format *format,
1532 uint32_t offset, uint32_t range,
1533 uint32_t stride);
1534
1535 struct anv_sampler {
1536 uint32_t state[4];
1537 };
1538
1539 struct anv_framebuffer {
1540 uint32_t width;
1541 uint32_t height;
1542 uint32_t layers;
1543
1544 uint32_t attachment_count;
1545 const struct anv_image_view * attachments[0];
1546 };
1547
1548 struct anv_subpass {
1549 uint32_t input_count;
1550 uint32_t * input_attachments;
1551 uint32_t color_count;
1552 uint32_t * color_attachments;
1553 uint32_t * resolve_attachments;
1554 uint32_t depth_stencil_attachment;
1555 };
1556
1557 struct anv_render_pass_attachment {
1558 const struct anv_format *format;
1559 uint32_t samples;
1560 VkAttachmentLoadOp load_op;
1561 VkAttachmentLoadOp stencil_load_op;
1562 };
1563
1564 struct anv_render_pass {
1565 uint32_t attachment_count;
1566 uint32_t subpass_count;
1567 struct anv_render_pass_attachment * attachments;
1568 struct anv_subpass subpasses[0];
1569 };
1570
1571 extern struct anv_render_pass anv_meta_dummy_renderpass;
1572
1573 struct anv_query_pool_slot {
1574 uint64_t begin;
1575 uint64_t end;
1576 uint64_t available;
1577 };
1578
1579 struct anv_query_pool {
1580 VkQueryType type;
1581 uint32_t slots;
1582 struct anv_bo bo;
1583 };
1584
1585 void anv_device_init_meta(struct anv_device *device);
1586 void anv_device_finish_meta(struct anv_device *device);
1587
1588 void *anv_lookup_entrypoint(const char *name);
1589
1590 void anv_dump_image_to_ppm(struct anv_device *device,
1591 struct anv_image *image, unsigned miplevel,
1592 unsigned array_layer, const char *filename);
1593
1594 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1595 \
1596 static inline struct __anv_type * \
1597 __anv_type ## _from_handle(__VkType _handle) \
1598 { \
1599 return (struct __anv_type *) _handle; \
1600 } \
1601 \
1602 static inline __VkType \
1603 __anv_type ## _to_handle(struct __anv_type *_obj) \
1604 { \
1605 return (__VkType) _obj; \
1606 }
1607
1608 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1609 \
1610 static inline struct __anv_type * \
1611 __anv_type ## _from_handle(__VkType _handle) \
1612 { \
1613 return (struct __anv_type *)(uintptr_t) _handle; \
1614 } \
1615 \
1616 static inline __VkType \
1617 __anv_type ## _to_handle(struct __anv_type *_obj) \
1618 { \
1619 return (__VkType)(uintptr_t) _obj; \
1620 }
1621
1622 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1623 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1624
1625 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1626 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1627 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1628 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1629 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1630
1631 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1632 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1633 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1634 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1635 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1636 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1637 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1638 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1639 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1640 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1641 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1642 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1643 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1644 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1645 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1646
1647 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1648 \
1649 static inline const __VkType * \
1650 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1651 { \
1652 return (const __VkType *) __anv_obj; \
1653 }
1654
1655 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1656 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1657
1658 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1659 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1660 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1661
1662 #ifdef __cplusplus
1663 }
1664 #endif