anv: Embed isl_surf into anv_surface
[mesa.git] / src / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "util/macros.h"
45 #include "util/list.h"
46
47 /* Pre-declarations needed for WSI entrypoints */
48 struct wl_surface;
49 struct wl_display;
50 typedef struct xcb_connection_t xcb_connection_t;
51 typedef uint32_t xcb_visualid_t;
52 typedef uint32_t xcb_window_t;
53
54 #define VK_USE_PLATFORM_XCB_KHR
55 #define VK_USE_PLATFORM_WAYLAND_KHR
56
57 #define VK_PROTOTYPES
58 #include <vulkan/vulkan.h>
59 #include <vulkan/vulkan_intel.h>
60
61 #include "anv_entrypoints.h"
62 #include "anv_gen_macros.h"
63 #include "brw_context.h"
64 #include "isl.h"
65
66 #ifdef __cplusplus
67 extern "C" {
68 #endif
69
70 #define ICD_LOADER_MAGIC 0x01CDC0DE
71
72 typedef union _VK_LOADER_DATA {
73 uintptr_t loaderMagic;
74 void *loaderData;
75 } VK_LOADER_DATA;
76
77 #define anv_noreturn __attribute__((__noreturn__))
78 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
79
80 #define MIN(a, b) ((a) < (b) ? (a) : (b))
81 #define MAX(a, b) ((a) > (b) ? (a) : (b))
82
83 static inline uint32_t
84 align_u32(uint32_t v, uint32_t a)
85 {
86 return (v + a - 1) & ~(a - 1);
87 }
88
89 static inline int32_t
90 align_i32(int32_t v, int32_t a)
91 {
92 return (v + a - 1) & ~(a - 1);
93 }
94
95 /** Alignment must be a power of 2. */
96 static inline bool
97 anv_is_aligned(uintmax_t n, uintmax_t a)
98 {
99 assert(a == (a & -a));
100 return (n & (a - 1)) == 0;
101 }
102
103 static inline uint32_t
104 anv_minify(uint32_t n, uint32_t levels)
105 {
106 if (unlikely(n == 0))
107 return 0;
108 else
109 return MAX(n >> levels, 1);
110 }
111
112 static inline float
113 anv_clamp_f(float f, float min, float max)
114 {
115 assert(min < max);
116
117 if (f > max)
118 return max;
119 else if (f < min)
120 return min;
121 else
122 return f;
123 }
124
125 static inline bool
126 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
127 {
128 if (*inout_mask & clear_mask) {
129 *inout_mask &= ~clear_mask;
130 return true;
131 } else {
132 return false;
133 }
134 }
135
136 #define for_each_bit(b, dword) \
137 for (uint32_t __dword = (dword); \
138 (b) = __builtin_ffs(__dword) - 1, __dword; \
139 __dword &= ~(1 << (b)))
140
141 #define typed_memcpy(dest, src, count) ({ \
142 static_assert(sizeof(*src) == sizeof(*dest), ""); \
143 memcpy((dest), (src), (count) * sizeof(*(src))); \
144 })
145
146 /* Define no kernel as 1, since that's an illegal offset for a kernel */
147 #define NO_KERNEL 1
148
149 struct anv_common {
150 VkStructureType sType;
151 const void* pNext;
152 };
153
154 /* Whenever we generate an error, pass it through this function. Useful for
155 * debugging, where we can break on it. Only call at error site, not when
156 * propagating errors. Might be useful to plug in a stack trace here.
157 */
158
159 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
160
161 #ifdef DEBUG
162 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
163 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
164 #else
165 #define vk_error(error) error
166 #define vk_errorf(error, format, ...) error
167 #endif
168
169 void __anv_finishme(const char *file, int line, const char *format, ...)
170 anv_printflike(3, 4);
171 void anv_loge(const char *format, ...) anv_printflike(1, 2);
172 void anv_loge_v(const char *format, va_list va);
173
174 /**
175 * Print a FINISHME message, including its source location.
176 */
177 #define anv_finishme(format, ...) \
178 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
179
180 /* A non-fatal assert. Useful for debugging. */
181 #ifdef DEBUG
182 #define anv_assert(x) ({ \
183 if (unlikely(!(x))) \
184 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
185 })
186 #else
187 #define anv_assert(x)
188 #endif
189
190 /**
191 * If a block of code is annotated with anv_validate, then the block runs only
192 * in debug builds.
193 */
194 #ifdef DEBUG
195 #define anv_validate if (1)
196 #else
197 #define anv_validate if (0)
198 #endif
199
200 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
201 void anv_abortfv(const char *format, va_list va) anv_noreturn;
202
203 #define stub_return(v) \
204 do { \
205 anv_finishme("stub %s", __func__); \
206 return (v); \
207 } while (0)
208
209 #define stub() \
210 do { \
211 anv_finishme("stub %s", __func__); \
212 return; \
213 } while (0)
214
215 /**
216 * A dynamically growable, circular buffer. Elements are added at head and
217 * removed from tail. head and tail are free-running uint32_t indices and we
218 * only compute the modulo with size when accessing the array. This way,
219 * number of bytes in the queue is always head - tail, even in case of
220 * wraparound.
221 */
222
223 struct anv_vector {
224 uint32_t head;
225 uint32_t tail;
226 uint32_t element_size;
227 uint32_t size;
228 void *data;
229 };
230
231 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
232 void *anv_vector_add(struct anv_vector *queue);
233 void *anv_vector_remove(struct anv_vector *queue);
234
235 static inline int
236 anv_vector_length(struct anv_vector *queue)
237 {
238 return (queue->head - queue->tail) / queue->element_size;
239 }
240
241 static inline void *
242 anv_vector_head(struct anv_vector *vector)
243 {
244 assert(vector->tail < vector->head);
245 return (void *)((char *)vector->data +
246 ((vector->head - vector->element_size) &
247 (vector->size - 1)));
248 }
249
250 static inline void *
251 anv_vector_tail(struct anv_vector *vector)
252 {
253 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
254 }
255
256 static inline void
257 anv_vector_finish(struct anv_vector *queue)
258 {
259 free(queue->data);
260 }
261
262 #define anv_vector_foreach(elem, queue) \
263 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
264 for (uint32_t __anv_vector_offset = (queue)->tail; \
265 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
266 __anv_vector_offset += (queue)->element_size)
267
268 struct anv_bo {
269 int gem_handle;
270
271 /* Index into the current validation list. This is used by the
272 * validation list building alrogithm to track which buffers are already
273 * in the validation list so that we can ensure uniqueness.
274 */
275 uint32_t index;
276
277 /* Last known offset. This value is provided by the kernel when we
278 * execbuf and is used as the presumed offset for the next bunch of
279 * relocations.
280 */
281 uint64_t offset;
282
283 uint64_t size;
284 void *map;
285 };
286
287 /* Represents a lock-free linked list of "free" things. This is used by
288 * both the block pool and the state pools. Unfortunately, in order to
289 * solve the ABA problem, we can't use a single uint32_t head.
290 */
291 union anv_free_list {
292 struct {
293 int32_t offset;
294
295 /* A simple count that is incremented every time the head changes. */
296 uint32_t count;
297 };
298 uint64_t u64;
299 };
300
301 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
302
303 struct anv_block_state {
304 union {
305 struct {
306 uint32_t next;
307 uint32_t end;
308 };
309 uint64_t u64;
310 };
311 };
312
313 struct anv_block_pool {
314 struct anv_device *device;
315
316 struct anv_bo bo;
317
318 /* The offset from the start of the bo to the "center" of the block
319 * pool. Pointers to allocated blocks are given by
320 * bo.map + center_bo_offset + offsets.
321 */
322 uint32_t center_bo_offset;
323
324 /* Current memory map of the block pool. This pointer may or may not
325 * point to the actual beginning of the block pool memory. If
326 * anv_block_pool_alloc_back has ever been called, then this pointer
327 * will point to the "center" position of the buffer and all offsets
328 * (negative or positive) given out by the block pool alloc functions
329 * will be valid relative to this pointer.
330 *
331 * In particular, map == bo.map + center_offset
332 */
333 void *map;
334 int fd;
335
336 /**
337 * Array of mmaps and gem handles owned by the block pool, reclaimed when
338 * the block pool is destroyed.
339 */
340 struct anv_vector mmap_cleanups;
341
342 uint32_t block_size;
343
344 union anv_free_list free_list;
345 struct anv_block_state state;
346
347 union anv_free_list back_free_list;
348 struct anv_block_state back_state;
349 };
350
351 /* Block pools are backed by a fixed-size 2GB memfd */
352 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
353
354 /* The center of the block pool is also the middle of the memfd. This may
355 * change in the future if we decide differently for some reason.
356 */
357 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
358
359 static inline uint32_t
360 anv_block_pool_size(struct anv_block_pool *pool)
361 {
362 return pool->state.end + pool->back_state.end;
363 }
364
365 struct anv_state {
366 int32_t offset;
367 uint32_t alloc_size;
368 void *map;
369 };
370
371 struct anv_fixed_size_state_pool {
372 size_t state_size;
373 union anv_free_list free_list;
374 struct anv_block_state block;
375 };
376
377 #define ANV_MIN_STATE_SIZE_LOG2 6
378 #define ANV_MAX_STATE_SIZE_LOG2 10
379
380 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
381
382 struct anv_state_pool {
383 struct anv_block_pool *block_pool;
384 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
385 };
386
387 struct anv_state_stream {
388 struct anv_block_pool *block_pool;
389 uint32_t next;
390 uint32_t current_block;
391 uint32_t end;
392 };
393
394 void anv_block_pool_init(struct anv_block_pool *pool,
395 struct anv_device *device, uint32_t block_size);
396 void anv_block_pool_finish(struct anv_block_pool *pool);
397 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
398 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
399 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
400 void anv_state_pool_init(struct anv_state_pool *pool,
401 struct anv_block_pool *block_pool);
402 void anv_state_pool_finish(struct anv_state_pool *pool);
403 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
404 size_t state_size, size_t alignment);
405 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
406 void anv_state_stream_init(struct anv_state_stream *stream,
407 struct anv_block_pool *block_pool);
408 void anv_state_stream_finish(struct anv_state_stream *stream);
409 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
410 uint32_t size, uint32_t alignment);
411
412 /**
413 * Implements a pool of re-usable BOs. The interface is identical to that
414 * of block_pool except that each block is its own BO.
415 */
416 struct anv_bo_pool {
417 struct anv_device *device;
418
419 uint32_t bo_size;
420
421 void *free_list;
422 };
423
424 void anv_bo_pool_init(struct anv_bo_pool *pool,
425 struct anv_device *device, uint32_t block_size);
426 void anv_bo_pool_finish(struct anv_bo_pool *pool);
427 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo);
428 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
429
430
431 void *anv_resolve_entrypoint(uint32_t index);
432
433 extern struct anv_dispatch_table dtable;
434
435 #define ANV_CALL(func) ({ \
436 if (dtable.func == NULL) { \
437 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
438 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
439 } \
440 dtable.func; \
441 })
442
443 static inline void *
444 anv_alloc(const VkAllocationCallbacks *alloc,
445 size_t size, size_t align,
446 VkSystemAllocationScope scope)
447 {
448 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
449 }
450
451 static inline void *
452 anv_realloc(const VkAllocationCallbacks *alloc,
453 void *ptr, size_t size, size_t align,
454 VkSystemAllocationScope scope)
455 {
456 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
457 }
458
459 static inline void
460 anv_free(const VkAllocationCallbacks *alloc, void *data)
461 {
462 alloc->pfnFree(alloc->pUserData, data);
463 }
464
465 static inline void *
466 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
467 const VkAllocationCallbacks *alloc,
468 size_t size, size_t align,
469 VkSystemAllocationScope scope)
470 {
471 if (alloc)
472 return anv_alloc(alloc, size, align, scope);
473 else
474 return anv_alloc(parent_alloc, size, align, scope);
475 }
476
477 static inline void
478 anv_free2(const VkAllocationCallbacks *parent_alloc,
479 const VkAllocationCallbacks *alloc,
480 void *data)
481 {
482 if (alloc)
483 anv_free(alloc, data);
484 else
485 anv_free(parent_alloc, data);
486 }
487
488 struct anv_physical_device {
489 VK_LOADER_DATA _loader_data;
490
491 struct anv_instance * instance;
492 uint32_t chipset_id;
493 const char * path;
494 const char * name;
495 const struct brw_device_info * info;
496 uint64_t aperture_size;
497 struct brw_compiler * compiler;
498 struct isl_device isl_dev;
499 };
500
501 struct anv_instance {
502 VK_LOADER_DATA _loader_data;
503
504 VkAllocationCallbacks alloc;
505
506 uint32_t apiVersion;
507 int physicalDeviceCount;
508 struct anv_physical_device physicalDevice;
509
510 void * wayland_wsi;
511 };
512
513 VkResult anv_init_wsi(struct anv_instance *instance);
514 void anv_finish_wsi(struct anv_instance *instance);
515
516 struct anv_meta_state {
517 struct {
518 struct anv_pipeline *color_pipeline;
519 struct anv_pipeline *depth_only_pipeline;
520 struct anv_pipeline *stencil_only_pipeline;
521 struct anv_pipeline *depthstencil_pipeline;
522 } clear;
523
524 struct {
525 VkRenderPass render_pass;
526
527 /** Pipeline that blits from a 2D image. */
528 VkPipeline pipeline_2d_src;
529
530 /** Pipeline that blits from a 3D image. */
531 VkPipeline pipeline_3d_src;
532
533 VkPipelineLayout pipeline_layout;
534 VkDescriptorSetLayout ds_layout;
535 } blit;
536 };
537
538 struct anv_queue {
539 VK_LOADER_DATA _loader_data;
540
541 struct anv_device * device;
542
543 struct anv_state_pool * pool;
544 };
545
546 struct anv_device {
547 VK_LOADER_DATA _loader_data;
548
549 VkAllocationCallbacks alloc;
550
551 struct anv_instance * instance;
552 uint32_t chipset_id;
553 struct brw_device_info info;
554 struct isl_device isl_dev;
555 int context_id;
556 int fd;
557
558 struct anv_bo_pool batch_bo_pool;
559
560 struct anv_block_pool dynamic_state_block_pool;
561 struct anv_state_pool dynamic_state_pool;
562
563 struct anv_block_pool instruction_block_pool;
564 struct anv_block_pool surface_state_block_pool;
565 struct anv_state_pool surface_state_pool;
566
567 struct anv_bo workaround_bo;
568
569 struct anv_meta_state meta_state;
570
571 struct anv_state border_colors;
572
573 struct anv_queue queue;
574
575 struct anv_block_pool scratch_block_pool;
576
577 pthread_mutex_t mutex;
578 };
579
580 void* anv_gem_mmap(struct anv_device *device,
581 uint32_t gem_handle, uint64_t offset, uint64_t size);
582 void anv_gem_munmap(void *p, uint64_t size);
583 uint32_t anv_gem_create(struct anv_device *device, size_t size);
584 void anv_gem_close(struct anv_device *device, int gem_handle);
585 int anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
586 int anv_gem_wait(struct anv_device *device, int gem_handle, int64_t *timeout_ns);
587 int anv_gem_execbuffer(struct anv_device *device,
588 struct drm_i915_gem_execbuffer2 *execbuf);
589 int anv_gem_set_tiling(struct anv_device *device, int gem_handle,
590 uint32_t stride, uint32_t tiling);
591 int anv_gem_create_context(struct anv_device *device);
592 int anv_gem_destroy_context(struct anv_device *device, int context);
593 int anv_gem_get_param(int fd, uint32_t param);
594 int anv_gem_get_aperture(int fd, uint64_t *size);
595 int anv_gem_handle_to_fd(struct anv_device *device, int gem_handle);
596 int anv_gem_fd_to_handle(struct anv_device *device, int fd);
597 int anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
598
599 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
600
601 struct anv_reloc_list {
602 size_t num_relocs;
603 size_t array_length;
604 struct drm_i915_gem_relocation_entry * relocs;
605 struct anv_bo ** reloc_bos;
606 };
607
608 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
609 const VkAllocationCallbacks *alloc);
610 void anv_reloc_list_finish(struct anv_reloc_list *list,
611 const VkAllocationCallbacks *alloc);
612
613 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
614 const VkAllocationCallbacks *alloc,
615 uint32_t offset, struct anv_bo *target_bo,
616 uint32_t delta);
617
618 struct anv_batch_bo {
619 /* Link in the anv_cmd_buffer.owned_batch_bos list */
620 struct list_head link;
621
622 struct anv_bo bo;
623
624 /* Bytes actually consumed in this batch BO */
625 size_t length;
626
627 /* Last seen surface state block pool bo offset */
628 uint32_t last_ss_pool_bo_offset;
629
630 struct anv_reloc_list relocs;
631 };
632
633 struct anv_batch {
634 const VkAllocationCallbacks * alloc;
635
636 void * start;
637 void * end;
638 void * next;
639
640 struct anv_reloc_list * relocs;
641
642 /* This callback is called (with the associated user data) in the event
643 * that the batch runs out of space.
644 */
645 VkResult (*extend_cb)(struct anv_batch *, void *);
646 void * user_data;
647 };
648
649 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
650 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
651 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
652 void *location, struct anv_bo *bo, uint32_t offset);
653
654 struct anv_address {
655 struct anv_bo *bo;
656 uint32_t offset;
657 };
658
659 #define __gen_address_type struct anv_address
660 #define __gen_user_data struct anv_batch
661
662 static inline uint64_t
663 __gen_combine_address(struct anv_batch *batch, void *location,
664 const struct anv_address address, uint32_t delta)
665 {
666 if (address.bo == NULL) {
667 return address.offset + delta;
668 } else {
669 assert(batch->start <= location && location < batch->end);
670
671 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
672 }
673 }
674
675 /* Wrapper macros needed to work around preprocessor argument issues. In
676 * particular, arguments don't get pre-evaluated if they are concatenated.
677 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
678 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
679 * We can work around this easily enough with these helpers.
680 */
681 #define __anv_cmd_length(cmd) cmd ## _length
682 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
683 #define __anv_cmd_header(cmd) cmd ## _header
684 #define __anv_cmd_pack(cmd) cmd ## _pack
685
686 #define anv_batch_emit(batch, cmd, ...) do { \
687 void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
688 struct cmd __template = { \
689 __anv_cmd_header(cmd), \
690 __VA_ARGS__ \
691 }; \
692 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
693 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
694 } while (0)
695
696 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
697 void *__dst = anv_batch_emit_dwords(batch, n); \
698 struct cmd __template = { \
699 __anv_cmd_header(cmd), \
700 .DwordLength = n - __anv_cmd_length_bias(cmd), \
701 __VA_ARGS__ \
702 }; \
703 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
704 __dst; \
705 })
706
707 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
708 do { \
709 uint32_t *dw; \
710 \
711 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
712 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
713 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
714 dw[i] = (dwords0)[i] | (dwords1)[i]; \
715 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
716 } while (0)
717
718 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
719 .GraphicsDataTypeGFDT = 0, \
720 .LLCCacheabilityControlLLCCC = 0, \
721 .L3CacheabilityControlL3CC = 1, \
722 }
723
724 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
725 .LLCeLLCCacheabilityControlLLCCC = 0, \
726 .L3CacheabilityControlL3CC = 1, \
727 }
728
729 #define GEN8_MOCS { \
730 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
731 .TargetCache = L3DefertoPATforLLCeLLCselection, \
732 .AgeforQUADLRU = 0 \
733 }
734
735 /* Skylake: MOCS is now an index into an array of 62 different caching
736 * configurations programmed by the kernel.
737 */
738
739 #define GEN9_MOCS { \
740 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
741 .IndextoMOCSTables = 2 \
742 }
743
744 #define GEN9_MOCS_PTE { \
745 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
746 .IndextoMOCSTables = 1 \
747 }
748
749 struct anv_device_memory {
750 struct anv_bo bo;
751 VkDeviceSize map_size;
752 void * map;
753 };
754
755 /**
756 * Header for Vertex URB Entry (VUE)
757 */
758 struct anv_vue_header {
759 uint32_t Reserved;
760 uint32_t RTAIndex; /* RenderTargetArrayIndex */
761 uint32_t ViewportIndex;
762 float PointWidth;
763 };
764
765 struct anv_descriptor_set_binding_layout {
766 /* Number of array elements in this binding */
767 uint16_t array_size;
768
769 /* Index into the flattend descriptor set */
770 uint16_t descriptor_index;
771
772 /* Index into the dynamic state array for a dynamic buffer */
773 int16_t dynamic_offset_index;
774
775 struct {
776 /* Index into the binding table for the associated surface */
777 int16_t surface_index;
778
779 /* Index into the sampler table for the associated sampler */
780 int16_t sampler_index;
781 } stage[MESA_SHADER_STAGES];
782
783 /* Immutable samplers (or NULL if no immutable samplers) */
784 struct anv_sampler **immutable_samplers;
785 };
786
787 struct anv_descriptor_set_layout {
788 /* Number of bindings in this descriptor set */
789 uint16_t binding_count;
790
791 /* Total size of the descriptor set with room for all array entries */
792 uint16_t size;
793
794 /* Shader stages affected by this descriptor set */
795 uint16_t shader_stages;
796
797 /* Number of dynamic offsets used by this descriptor set */
798 uint16_t dynamic_offset_count;
799
800 /* Bindings in this descriptor set */
801 struct anv_descriptor_set_binding_layout binding[0];
802 };
803
804 struct anv_descriptor {
805 VkDescriptorType type;
806
807 union {
808 struct {
809 union {
810 struct anv_image_view *image_view;
811 };
812 struct anv_sampler *sampler;
813 };
814
815 struct {
816 struct anv_buffer *buffer;
817 uint64_t offset;
818 uint64_t range;
819 };
820 };
821 };
822
823 struct anv_descriptor_set {
824 const struct anv_descriptor_set_layout *layout;
825 struct anv_descriptor descriptors[0];
826 };
827
828 VkResult
829 anv_descriptor_set_create(struct anv_device *device,
830 const struct anv_descriptor_set_layout *layout,
831 struct anv_descriptor_set **out_set);
832
833 void
834 anv_descriptor_set_destroy(struct anv_device *device,
835 struct anv_descriptor_set *set);
836
837 #define MAX_VBS 32
838 #define MAX_SETS 8
839 #define MAX_RTS 8
840 #define MAX_VIEWPORTS 16
841 #define MAX_SCISSORS 16
842 #define MAX_PUSH_CONSTANTS_SIZE 128
843 #define MAX_DYNAMIC_BUFFERS 16
844 #define MAX_IMAGES 8
845
846 struct anv_pipeline_binding {
847 /* The descriptor set this surface corresponds to */
848 uint16_t set;
849
850 /* Offset into the descriptor set */
851 uint16_t offset;
852 };
853
854 struct anv_pipeline_layout {
855 struct {
856 struct anv_descriptor_set_layout *layout;
857 uint32_t dynamic_offset_start;
858 struct {
859 uint32_t surface_start;
860 uint32_t sampler_start;
861 } stage[MESA_SHADER_STAGES];
862 } set[MAX_SETS];
863
864 uint32_t num_sets;
865
866 struct {
867 bool has_dynamic_offsets;
868 uint32_t surface_count;
869 struct anv_pipeline_binding *surface_to_descriptor;
870 uint32_t sampler_count;
871 struct anv_pipeline_binding *sampler_to_descriptor;
872 } stage[MESA_SHADER_STAGES];
873
874 struct anv_pipeline_binding entries[0];
875 };
876
877 struct anv_buffer {
878 struct anv_device * device;
879 VkDeviceSize size;
880
881 /* Set when bound */
882 struct anv_bo * bo;
883 VkDeviceSize offset;
884 };
885
886 enum anv_cmd_dirty_bits {
887 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
888 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
889 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
890 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
891 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
892 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
893 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
894 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
895 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
896 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
897 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
898 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
899 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
900 };
901 typedef uint32_t anv_cmd_dirty_mask_t;
902
903 struct anv_vertex_binding {
904 struct anv_buffer * buffer;
905 VkDeviceSize offset;
906 };
907
908 struct anv_push_constants {
909 /* Current allocated size of this push constants data structure.
910 * Because a decent chunk of it may not be used (images on SKL, for
911 * instance), we won't actually allocate the entire structure up-front.
912 */
913 uint32_t size;
914
915 /* Push constant data provided by the client through vkPushConstants */
916 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
917
918 /* Our hardware only provides zero-based vertex and instance id so, in
919 * order to satisfy the vulkan requirements, we may have to push one or
920 * both of these into the shader.
921 */
922 uint32_t base_vertex;
923 uint32_t base_instance;
924
925 /* Offsets and ranges for dynamically bound buffers */
926 struct {
927 uint32_t offset;
928 uint32_t range;
929 } dynamic[MAX_DYNAMIC_BUFFERS];
930
931 /* Image data for image_load_store on pre-SKL */
932 struct brw_image_param images[MAX_IMAGES];
933 };
934
935 struct anv_dynamic_state {
936 struct {
937 uint32_t count;
938 VkViewport viewports[MAX_VIEWPORTS];
939 } viewport;
940
941 struct {
942 uint32_t count;
943 VkRect2D scissors[MAX_SCISSORS];
944 } scissor;
945
946 float line_width;
947
948 struct {
949 float bias;
950 float clamp;
951 float slope;
952 } depth_bias;
953
954 float blend_constants[4];
955
956 struct {
957 float min;
958 float max;
959 } depth_bounds;
960
961 struct {
962 uint32_t front;
963 uint32_t back;
964 } stencil_compare_mask;
965
966 struct {
967 uint32_t front;
968 uint32_t back;
969 } stencil_write_mask;
970
971 struct {
972 uint32_t front;
973 uint32_t back;
974 } stencil_reference;
975 };
976
977 extern const struct anv_dynamic_state default_dynamic_state;
978
979 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
980 const struct anv_dynamic_state *src,
981 uint32_t copy_mask);
982
983 /** State required while building cmd buffer */
984 struct anv_cmd_state {
985 uint32_t current_pipeline;
986 uint32_t vb_dirty;
987 anv_cmd_dirty_mask_t dirty;
988 anv_cmd_dirty_mask_t compute_dirty;
989 VkShaderStageFlags descriptors_dirty;
990 VkShaderStageFlags push_constants_dirty;
991 uint32_t scratch_size;
992 struct anv_pipeline * pipeline;
993 struct anv_pipeline * compute_pipeline;
994 struct anv_framebuffer * framebuffer;
995 struct anv_render_pass * pass;
996 struct anv_subpass * subpass;
997 uint32_t restart_index;
998 struct anv_vertex_binding vertex_bindings[MAX_VBS];
999 struct anv_descriptor_set * descriptors[MAX_SETS];
1000 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1001 struct anv_dynamic_state dynamic;
1002
1003 struct {
1004 struct anv_buffer * index_buffer;
1005 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1006 uint32_t index_offset;
1007 } gen7;
1008 };
1009
1010 struct anv_cmd_pool {
1011 VkAllocationCallbacks alloc;
1012 struct list_head cmd_buffers;
1013 };
1014
1015 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1016
1017 enum anv_cmd_buffer_exec_mode {
1018 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1019 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1020 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1021 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1022 };
1023
1024 struct anv_cmd_buffer {
1025 VK_LOADER_DATA _loader_data;
1026
1027 struct anv_device * device;
1028
1029 struct anv_cmd_pool * pool;
1030 struct list_head pool_link;
1031
1032 struct anv_batch batch;
1033
1034 /* Fields required for the actual chain of anv_batch_bo's.
1035 *
1036 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1037 */
1038 struct list_head batch_bos;
1039 enum anv_cmd_buffer_exec_mode exec_mode;
1040
1041 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1042 * referenced by this command buffer
1043 *
1044 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1045 */
1046 struct anv_vector seen_bbos;
1047
1048 /* A vector of int32_t's for every block of binding tables.
1049 *
1050 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1051 */
1052 struct anv_vector bt_blocks;
1053 uint32_t bt_next;
1054 struct anv_reloc_list surface_relocs;
1055
1056 /* Information needed for execbuf
1057 *
1058 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1059 */
1060 struct {
1061 struct drm_i915_gem_execbuffer2 execbuf;
1062
1063 struct drm_i915_gem_exec_object2 * objects;
1064 uint32_t bo_count;
1065 struct anv_bo ** bos;
1066
1067 /* Allocated length of the 'objects' and 'bos' arrays */
1068 uint32_t array_length;
1069
1070 bool need_reloc;
1071 } execbuf2;
1072
1073 /* Serial for tracking buffer completion */
1074 uint32_t serial;
1075
1076 /* Stream objects for storing temporary data */
1077 struct anv_state_stream surface_state_stream;
1078 struct anv_state_stream dynamic_state_stream;
1079
1080 VkCommandBufferUsageFlags usage_flags;
1081 VkCommandBufferLevel level;
1082
1083 struct anv_cmd_state state;
1084 };
1085
1086 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1087 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1088 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1089 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1090 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1091 struct anv_cmd_buffer *secondary);
1092 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1093
1094 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1095 unsigned stage, struct anv_state *bt_state);
1096 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1097 unsigned stage, struct anv_state *state);
1098 void gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1099
1100 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1101 uint32_t *a, uint32_t dwords,
1102 uint32_t alignment);
1103 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1104 uint32_t *a, uint32_t *b,
1105 uint32_t dwords, uint32_t alignment);
1106 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1107 struct anv_subpass *subpass);
1108
1109 struct anv_address
1110 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1111 struct anv_state
1112 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1113 uint32_t entries, uint32_t *state_offset);
1114 struct anv_state
1115 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1116 struct anv_state
1117 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1118 uint32_t size, uint32_t alignment);
1119
1120 VkResult
1121 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1122
1123 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1124 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1125
1126 void gen7_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1127 void gen75_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1128 void gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1129 void gen9_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1130
1131 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1132
1133 void gen7_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1134 struct anv_subpass *subpass);
1135
1136 void gen8_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1137 struct anv_subpass *subpass);
1138 void gen9_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1139 struct anv_subpass *subpass);
1140
1141 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1142 struct anv_subpass *subpass);
1143
1144 struct anv_state
1145 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1146 gl_shader_stage stage);
1147
1148 void anv_cmd_buffer_clear_attachments(struct anv_cmd_buffer *cmd_buffer,
1149 struct anv_render_pass *pass,
1150 const VkClearValue *clear_values);
1151 const struct anv_image_view *
1152 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1153
1154 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1155
1156 struct anv_fence {
1157 struct anv_bo bo;
1158 struct drm_i915_gem_execbuffer2 execbuf;
1159 struct drm_i915_gem_exec_object2 exec2_objects[1];
1160 bool ready;
1161 };
1162
1163 struct nir_shader;
1164
1165 struct anv_shader_module {
1166 struct nir_shader * nir;
1167
1168 uint32_t size;
1169 char data[0];
1170 };
1171
1172 static inline gl_shader_stage
1173 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1174 {
1175 assert(__builtin_popcount(vk_stage) == 1);
1176 return ffs(vk_stage) - 1;
1177 }
1178
1179 static inline VkShaderStageFlagBits
1180 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1181 {
1182 return (1 << mesa_stage);
1183 }
1184
1185 #define anv_foreach_stage(stage, stage_bits) \
1186 for (gl_shader_stage stage, __tmp = (gl_shader_stage)(stage_bits);\
1187 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1188 __tmp &= ~(1 << (stage)))
1189
1190 struct anv_pipeline {
1191 struct anv_device * device;
1192 struct anv_batch batch;
1193 uint32_t batch_data[512];
1194 struct anv_reloc_list batch_relocs;
1195 uint32_t dynamic_state_mask;
1196 struct anv_dynamic_state dynamic_state;
1197
1198 struct anv_pipeline_layout * layout;
1199 bool use_repclear;
1200
1201 struct brw_vs_prog_data vs_prog_data;
1202 struct brw_wm_prog_data wm_prog_data;
1203 struct brw_gs_prog_data gs_prog_data;
1204 struct brw_cs_prog_data cs_prog_data;
1205 bool writes_point_size;
1206 struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1207 uint32_t scratch_start[MESA_SHADER_STAGES];
1208 uint32_t total_scratch;
1209 struct {
1210 uint32_t vs_start;
1211 uint32_t vs_size;
1212 uint32_t nr_vs_entries;
1213 uint32_t gs_start;
1214 uint32_t gs_size;
1215 uint32_t nr_gs_entries;
1216 } urb;
1217
1218 VkShaderStageFlags active_stages;
1219 struct anv_state_stream program_stream;
1220 struct anv_state blend_state;
1221 uint32_t vs_simd8;
1222 uint32_t vs_vec4;
1223 uint32_t ps_simd8;
1224 uint32_t ps_simd16;
1225 uint32_t ps_ksp0;
1226 uint32_t ps_ksp2;
1227 uint32_t ps_grf_start0;
1228 uint32_t ps_grf_start2;
1229 uint32_t gs_vec4;
1230 uint32_t gs_vertex_count;
1231 uint32_t cs_simd;
1232
1233 uint32_t vb_used;
1234 uint32_t binding_stride[MAX_VBS];
1235 bool instancing_enable[MAX_VBS];
1236 bool primitive_restart;
1237 uint32_t topology;
1238
1239 uint32_t cs_thread_width_max;
1240 uint32_t cs_right_mask;
1241
1242 struct {
1243 uint32_t sf[7];
1244 uint32_t depth_stencil_state[3];
1245 } gen7;
1246
1247 struct {
1248 uint32_t sf[4];
1249 uint32_t raster[5];
1250 uint32_t wm_depth_stencil[3];
1251 } gen8;
1252
1253 struct {
1254 uint32_t wm_depth_stencil[4];
1255 } gen9;
1256 };
1257
1258 struct anv_graphics_pipeline_create_info {
1259 bool use_repclear;
1260 bool disable_viewport;
1261 bool disable_scissor;
1262 bool disable_vs;
1263 bool use_rectlist;
1264 };
1265
1266 VkResult
1267 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1268 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1269 const struct anv_graphics_pipeline_create_info *extra,
1270 const VkAllocationCallbacks *alloc);
1271
1272 VkResult
1273 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1274 const VkComputePipelineCreateInfo *info,
1275 struct anv_shader_module *module,
1276 const char *entrypoint_name);
1277
1278 VkResult
1279 anv_graphics_pipeline_create(VkDevice device,
1280 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1281 const struct anv_graphics_pipeline_create_info *extra,
1282 const VkAllocationCallbacks *alloc,
1283 VkPipeline *pPipeline);
1284
1285 VkResult
1286 gen7_graphics_pipeline_create(VkDevice _device,
1287 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1288 const struct anv_graphics_pipeline_create_info *extra,
1289 const VkAllocationCallbacks *alloc,
1290 VkPipeline *pPipeline);
1291
1292 VkResult
1293 gen75_graphics_pipeline_create(VkDevice _device,
1294 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1295 const struct anv_graphics_pipeline_create_info *extra,
1296 const VkAllocationCallbacks *alloc,
1297 VkPipeline *pPipeline);
1298
1299 VkResult
1300 gen8_graphics_pipeline_create(VkDevice _device,
1301 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1302 const struct anv_graphics_pipeline_create_info *extra,
1303 const VkAllocationCallbacks *alloc,
1304 VkPipeline *pPipeline);
1305 VkResult
1306 gen9_graphics_pipeline_create(VkDevice _device,
1307 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1308 const struct anv_graphics_pipeline_create_info *extra,
1309 const VkAllocationCallbacks *alloc,
1310 VkPipeline *pPipeline);
1311 VkResult
1312 gen7_compute_pipeline_create(VkDevice _device,
1313 const VkComputePipelineCreateInfo *pCreateInfo,
1314 const VkAllocationCallbacks *alloc,
1315 VkPipeline *pPipeline);
1316 VkResult
1317 gen75_compute_pipeline_create(VkDevice _device,
1318 const VkComputePipelineCreateInfo *pCreateInfo,
1319 const VkAllocationCallbacks *alloc,
1320 VkPipeline *pPipeline);
1321
1322 VkResult
1323 gen8_compute_pipeline_create(VkDevice _device,
1324 const VkComputePipelineCreateInfo *pCreateInfo,
1325 const VkAllocationCallbacks *alloc,
1326 VkPipeline *pPipeline);
1327 VkResult
1328 gen9_compute_pipeline_create(VkDevice _device,
1329 const VkComputePipelineCreateInfo *pCreateInfo,
1330 const VkAllocationCallbacks *alloc,
1331 VkPipeline *pPipeline);
1332
1333 struct anv_format {
1334 const VkFormat vk_format;
1335 const char *name;
1336 enum isl_format surface_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
1337 const struct isl_format_layout *isl_layout;
1338 uint8_t num_channels;
1339 uint16_t depth_format; /**< 3DSTATE_DEPTH_BUFFER.SurfaceFormat */
1340 bool has_stencil;
1341 };
1342
1343 /**
1344 * Stencil formats are often a special case. To reduce the number of lookups
1345 * into the VkFormat-to-anv_format translation table when working with
1346 * stencil, here is the handle to the table's entry for VK_FORMAT_S8_UINT.
1347 */
1348 extern const struct anv_format *const anv_format_s8_uint;
1349
1350 const struct anv_format *
1351 anv_format_for_vk_format(VkFormat format);
1352
1353 static inline bool
1354 anv_format_is_color(const struct anv_format *format)
1355 {
1356 return !format->depth_format && !format->has_stencil;
1357 }
1358
1359 static inline bool
1360 anv_format_is_depth_or_stencil(const struct anv_format *format)
1361 {
1362 return format->depth_format || format->has_stencil;
1363 }
1364
1365 struct anv_image_view_info {
1366 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1367 bool is_array:1; /**< RENDER_SURFACE_STATE.SurfaceArray */
1368 bool is_cube:1; /**< RENDER_SURFACE_STATE.CubeFaceEnable* */
1369 };
1370
1371 struct anv_image_view_info
1372 anv_image_view_info_for_vk_image_view_type(VkImageViewType type);
1373
1374 /**
1375 * Subsurface of an anv_image.
1376 */
1377 struct anv_surface {
1378 struct isl_surf isl;
1379
1380 /**
1381 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1382 */
1383 uint32_t offset;
1384 };
1385
1386 struct anv_image {
1387 VkImageType type;
1388 const struct anv_format *format;
1389 VkExtent3D extent;
1390 uint32_t levels;
1391 uint32_t array_size;
1392 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1393
1394 VkDeviceSize size;
1395 uint32_t alignment;
1396
1397 /* Set when bound */
1398 struct anv_bo *bo;
1399 VkDeviceSize offset;
1400
1401 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1402
1403 bool needs_nonrt_surface_state:1;
1404 bool needs_color_rt_surface_state:1;
1405
1406 /**
1407 * Image subsurfaces
1408 *
1409 * For each foo, anv_image::foo_surface is valid if and only if
1410 * anv_image::format has a foo aspect.
1411 *
1412 * The hardware requires that the depth buffer and stencil buffer be
1413 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1414 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1415 * allocate the depth and stencil buffers as separate surfaces in the same
1416 * bo.
1417 */
1418 union {
1419 struct anv_surface color_surface;
1420
1421 struct {
1422 struct anv_surface depth_surface;
1423 struct anv_surface stencil_surface;
1424 };
1425 };
1426 };
1427
1428 struct anv_image_view {
1429 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1430 const struct anv_format *format; /**< VkImageViewCreateInfo::format */
1431 struct anv_bo *bo;
1432 uint32_t offset; /**< Offset into bo. */
1433 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1434
1435 /** RENDER_SURFACE_STATE when using image as a color render target. */
1436 struct anv_state color_rt_surface_state;
1437
1438 /** RENDER_SURFACE_STATE when using image as a non render target. */
1439 struct anv_state nonrt_surface_state;
1440 };
1441
1442 struct anv_image_create_info {
1443 const VkImageCreateInfo *vk_info;
1444 bool force_tiling;
1445 enum isl_tiling tiling;
1446 uint32_t stride;
1447 };
1448
1449 VkResult anv_image_create(VkDevice _device,
1450 const struct anv_image_create_info *info,
1451 const VkAllocationCallbacks* alloc,
1452 VkImage *pImage);
1453
1454 struct anv_surface *
1455 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1456 VkImageAspectFlags aspect_mask);
1457
1458 void anv_image_view_init(struct anv_image_view *view,
1459 struct anv_device *device,
1460 const VkImageViewCreateInfo* pCreateInfo,
1461 struct anv_cmd_buffer *cmd_buffer);
1462
1463 void
1464 gen7_image_view_init(struct anv_image_view *iview,
1465 struct anv_device *device,
1466 const VkImageViewCreateInfo* pCreateInfo,
1467 struct anv_cmd_buffer *cmd_buffer);
1468
1469 void
1470 gen75_image_view_init(struct anv_image_view *iview,
1471 struct anv_device *device,
1472 const VkImageViewCreateInfo* pCreateInfo,
1473 struct anv_cmd_buffer *cmd_buffer);
1474
1475 void
1476 gen8_image_view_init(struct anv_image_view *iview,
1477 struct anv_device *device,
1478 const VkImageViewCreateInfo* pCreateInfo,
1479 struct anv_cmd_buffer *cmd_buffer);
1480
1481 void
1482 gen9_image_view_init(struct anv_image_view *iview,
1483 struct anv_device *device,
1484 const VkImageViewCreateInfo* pCreateInfo,
1485 struct anv_cmd_buffer *cmd_buffer);
1486
1487 void anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1488 const struct anv_format *format,
1489 uint32_t offset, uint32_t range,
1490 uint32_t stride);
1491
1492 void gen7_fill_buffer_surface_state(void *state, const struct anv_format *format,
1493 uint32_t offset, uint32_t range,
1494 uint32_t stride);
1495 void gen75_fill_buffer_surface_state(void *state, const struct anv_format *format,
1496 uint32_t offset, uint32_t range,
1497 uint32_t stride);
1498 void gen8_fill_buffer_surface_state(void *state, const struct anv_format *format,
1499 uint32_t offset, uint32_t range,
1500 uint32_t stride);
1501 void gen9_fill_buffer_surface_state(void *state, const struct anv_format *format,
1502 uint32_t offset, uint32_t range,
1503 uint32_t stride);
1504
1505 struct anv_sampler {
1506 uint32_t state[4];
1507 };
1508
1509 struct anv_framebuffer {
1510 uint32_t width;
1511 uint32_t height;
1512 uint32_t layers;
1513
1514 uint32_t attachment_count;
1515 const struct anv_image_view * attachments[0];
1516 };
1517
1518 struct anv_subpass {
1519 uint32_t input_count;
1520 uint32_t * input_attachments;
1521 uint32_t color_count;
1522 uint32_t * color_attachments;
1523 uint32_t * resolve_attachments;
1524 uint32_t depth_stencil_attachment;
1525 };
1526
1527 struct anv_render_pass_attachment {
1528 const struct anv_format *format;
1529 uint32_t samples;
1530 VkAttachmentLoadOp load_op;
1531 VkAttachmentLoadOp stencil_load_op;
1532 };
1533
1534 struct anv_render_pass {
1535 uint32_t attachment_count;
1536 uint32_t subpass_count;
1537 struct anv_render_pass_attachment * attachments;
1538 struct anv_subpass subpasses[0];
1539 };
1540
1541 extern struct anv_render_pass anv_meta_dummy_renderpass;
1542
1543 struct anv_query_pool_slot {
1544 uint64_t begin;
1545 uint64_t end;
1546 uint64_t available;
1547 };
1548
1549 struct anv_query_pool {
1550 VkQueryType type;
1551 uint32_t slots;
1552 struct anv_bo bo;
1553 };
1554
1555 void anv_device_init_meta(struct anv_device *device);
1556 void anv_device_finish_meta(struct anv_device *device);
1557
1558 void *anv_lookup_entrypoint(const char *name);
1559
1560 void anv_dump_image_to_ppm(struct anv_device *device,
1561 struct anv_image *image, unsigned miplevel,
1562 unsigned array_layer, const char *filename);
1563
1564 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1565 \
1566 static inline struct __anv_type * \
1567 __anv_type ## _from_handle(__VkType _handle) \
1568 { \
1569 return (struct __anv_type *) _handle; \
1570 } \
1571 \
1572 static inline __VkType \
1573 __anv_type ## _to_handle(struct __anv_type *_obj) \
1574 { \
1575 return (__VkType) _obj; \
1576 }
1577
1578 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1579 \
1580 static inline struct __anv_type * \
1581 __anv_type ## _from_handle(__VkType _handle) \
1582 { \
1583 return (struct __anv_type *)(uintptr_t) _handle; \
1584 } \
1585 \
1586 static inline __VkType \
1587 __anv_type ## _to_handle(struct __anv_type *_obj) \
1588 { \
1589 return (__VkType)(uintptr_t) _obj; \
1590 }
1591
1592 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1593 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1594
1595 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1596 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1597 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1598 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1599 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1600
1601 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1602 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1603 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1604 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1605 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1606 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1607 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1608 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1609 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1610 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1611 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1612 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1613 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1614 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1615 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1616
1617 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1618 \
1619 static inline const __VkType * \
1620 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1621 { \
1622 return (const __VkType *) __anv_obj; \
1623 }
1624
1625 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1626 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1627
1628 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1629 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1630 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1631
1632 #ifdef __cplusplus
1633 }
1634 #endif