vk/0.210.0: Rework allocation to use the new pAllocator's
[mesa.git] / src / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <i915_drm.h>
32
33 #ifdef HAVE_VALGRIND
34 #include <valgrind.h>
35 #include <memcheck.h>
36 #define VG(x) x
37 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
38 #else
39 #define VG(x)
40 #endif
41
42 #include "brw_device_info.h"
43 #include "util/macros.h"
44 #include "util/list.h"
45
46 #define VK_PROTOTYPES
47 #include <vulkan/vulkan.h>
48 #include <vulkan/vulkan_intel.h>
49 #include <vulkan/vk_ext_khr_swapchain.h>
50 #include <vulkan/vk_ext_khr_device_swapchain.h>
51
52 #include "anv_entrypoints.h"
53 #include "anv_gen_macros.h"
54 #include "brw_context.h"
55 #include "isl.h"
56
57 #ifdef __cplusplus
58 extern "C" {
59 #endif
60
61 #define ICD_LOADER_MAGIC 0x01CDC0DE
62
63 typedef union _VK_LOADER_DATA {
64 uintptr_t loaderMagic;
65 void *loaderData;
66 } VK_LOADER_DATA;
67
68 #define anv_noreturn __attribute__((__noreturn__))
69 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
70
71 #define MIN(a, b) ((a) < (b) ? (a) : (b))
72 #define MAX(a, b) ((a) > (b) ? (a) : (b))
73
74 static inline uint32_t
75 align_u32(uint32_t v, uint32_t a)
76 {
77 return (v + a - 1) & ~(a - 1);
78 }
79
80 static inline int32_t
81 align_i32(int32_t v, int32_t a)
82 {
83 return (v + a - 1) & ~(a - 1);
84 }
85
86 /** Alignment must be a power of 2. */
87 static inline bool
88 anv_is_aligned(uintmax_t n, uintmax_t a)
89 {
90 assert(a == (a & -a));
91 return (n & (a - 1)) == 0;
92 }
93
94 static inline uint32_t
95 anv_minify(uint32_t n, uint32_t levels)
96 {
97 if (unlikely(n == 0))
98 return 0;
99 else
100 return MAX(n >> levels, 1);
101 }
102
103 static inline float
104 anv_clamp_f(float f, float min, float max)
105 {
106 assert(min < max);
107
108 if (f > max)
109 return max;
110 else if (f < min)
111 return min;
112 else
113 return f;
114 }
115
116 static inline bool
117 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
118 {
119 if (*inout_mask & clear_mask) {
120 *inout_mask &= ~clear_mask;
121 return true;
122 } else {
123 return false;
124 }
125 }
126
127 #define for_each_bit(b, dword) \
128 for (uint32_t __dword = (dword); \
129 (b) = __builtin_ffs(__dword) - 1, __dword; \
130 __dword &= ~(1 << (b)))
131
132 #define typed_memcpy(dest, src, count) ({ \
133 static_assert(sizeof(*src) == sizeof(*dest), ""); \
134 memcpy((dest), (src), (count) * sizeof(*(src))); \
135 })
136
137 /* Define no kernel as 1, since that's an illegal offset for a kernel */
138 #define NO_KERNEL 1
139
140 struct anv_common {
141 VkStructureType sType;
142 const void* pNext;
143 };
144
145 /* Whenever we generate an error, pass it through this function. Useful for
146 * debugging, where we can break on it. Only call at error site, not when
147 * propagating errors. Might be useful to plug in a stack trace here.
148 */
149
150 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
151
152 #ifdef DEBUG
153 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
154 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
155 #else
156 #define vk_error(error) error
157 #define vk_errorf(error, format, ...) error
158 #endif
159
160 void __anv_finishme(const char *file, int line, const char *format, ...)
161 anv_printflike(3, 4);
162 void anv_loge(const char *format, ...) anv_printflike(1, 2);
163 void anv_loge_v(const char *format, va_list va);
164
165 /**
166 * Print a FINISHME message, including its source location.
167 */
168 #define anv_finishme(format, ...) \
169 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
170
171 /* A non-fatal assert. Useful for debugging. */
172 #ifdef DEBUG
173 #define anv_assert(x) ({ \
174 if (unlikely(!(x))) \
175 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
176 })
177 #else
178 #define anv_assert(x)
179 #endif
180
181 /**
182 * If a block of code is annotated with anv_validate, then the block runs only
183 * in debug builds.
184 */
185 #ifdef DEBUG
186 #define anv_validate if (1)
187 #else
188 #define anv_validate if (0)
189 #endif
190
191 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
192 void anv_abortfv(const char *format, va_list va) anv_noreturn;
193
194 #define stub_return(v) \
195 do { \
196 anv_finishme("stub %s", __func__); \
197 return (v); \
198 } while (0)
199
200 #define stub() \
201 do { \
202 anv_finishme("stub %s", __func__); \
203 return; \
204 } while (0)
205
206 /**
207 * A dynamically growable, circular buffer. Elements are added at head and
208 * removed from tail. head and tail are free-running uint32_t indices and we
209 * only compute the modulo with size when accessing the array. This way,
210 * number of bytes in the queue is always head - tail, even in case of
211 * wraparound.
212 */
213
214 struct anv_vector {
215 uint32_t head;
216 uint32_t tail;
217 uint32_t element_size;
218 uint32_t size;
219 void *data;
220 };
221
222 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
223 void *anv_vector_add(struct anv_vector *queue);
224 void *anv_vector_remove(struct anv_vector *queue);
225
226 static inline int
227 anv_vector_length(struct anv_vector *queue)
228 {
229 return (queue->head - queue->tail) / queue->element_size;
230 }
231
232 static inline void *
233 anv_vector_head(struct anv_vector *vector)
234 {
235 assert(vector->tail < vector->head);
236 return (void *)((char *)vector->data +
237 ((vector->head - vector->element_size) &
238 (vector->size - 1)));
239 }
240
241 static inline void *
242 anv_vector_tail(struct anv_vector *vector)
243 {
244 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
245 }
246
247 static inline void
248 anv_vector_finish(struct anv_vector *queue)
249 {
250 free(queue->data);
251 }
252
253 #define anv_vector_foreach(elem, queue) \
254 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
255 for (uint32_t __anv_vector_offset = (queue)->tail; \
256 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
257 __anv_vector_offset += (queue)->element_size)
258
259 struct anv_bo {
260 int gem_handle;
261
262 /* Index into the current validation list. This is used by the
263 * validation list building alrogithm to track which buffers are already
264 * in the validation list so that we can ensure uniqueness.
265 */
266 uint32_t index;
267
268 /* Last known offset. This value is provided by the kernel when we
269 * execbuf and is used as the presumed offset for the next bunch of
270 * relocations.
271 */
272 uint64_t offset;
273
274 uint64_t size;
275 void *map;
276 };
277
278 /* Represents a lock-free linked list of "free" things. This is used by
279 * both the block pool and the state pools. Unfortunately, in order to
280 * solve the ABA problem, we can't use a single uint32_t head.
281 */
282 union anv_free_list {
283 struct {
284 int32_t offset;
285
286 /* A simple count that is incremented every time the head changes. */
287 uint32_t count;
288 };
289 uint64_t u64;
290 };
291
292 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
293
294 struct anv_block_state {
295 union {
296 struct {
297 uint32_t next;
298 uint32_t end;
299 };
300 uint64_t u64;
301 };
302 };
303
304 struct anv_block_pool {
305 struct anv_device *device;
306
307 struct anv_bo bo;
308
309 /* The offset from the start of the bo to the "center" of the block
310 * pool. Pointers to allocated blocks are given by
311 * bo.map + center_bo_offset + offsets.
312 */
313 uint32_t center_bo_offset;
314
315 /* Current memory map of the block pool. This pointer may or may not
316 * point to the actual beginning of the block pool memory. If
317 * anv_block_pool_alloc_back has ever been called, then this pointer
318 * will point to the "center" position of the buffer and all offsets
319 * (negative or positive) given out by the block pool alloc functions
320 * will be valid relative to this pointer.
321 *
322 * In particular, map == bo.map + center_offset
323 */
324 void *map;
325 int fd;
326
327 /**
328 * Array of mmaps and gem handles owned by the block pool, reclaimed when
329 * the block pool is destroyed.
330 */
331 struct anv_vector mmap_cleanups;
332
333 uint32_t block_size;
334
335 union anv_free_list free_list;
336 struct anv_block_state state;
337
338 union anv_free_list back_free_list;
339 struct anv_block_state back_state;
340 };
341
342 /* Block pools are backed by a fixed-size 2GB memfd */
343 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
344
345 /* The center of the block pool is also the middle of the memfd. This may
346 * change in the future if we decide differently for some reason.
347 */
348 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
349
350 static inline uint32_t
351 anv_block_pool_size(struct anv_block_pool *pool)
352 {
353 return pool->state.end + pool->back_state.end;
354 }
355
356 struct anv_state {
357 int32_t offset;
358 uint32_t alloc_size;
359 void *map;
360 };
361
362 struct anv_fixed_size_state_pool {
363 size_t state_size;
364 union anv_free_list free_list;
365 struct anv_block_state block;
366 };
367
368 #define ANV_MIN_STATE_SIZE_LOG2 6
369 #define ANV_MAX_STATE_SIZE_LOG2 10
370
371 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
372
373 struct anv_state_pool {
374 struct anv_block_pool *block_pool;
375 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
376 };
377
378 struct anv_state_stream {
379 struct anv_block_pool *block_pool;
380 uint32_t next;
381 uint32_t current_block;
382 uint32_t end;
383 };
384
385 void anv_block_pool_init(struct anv_block_pool *pool,
386 struct anv_device *device, uint32_t block_size);
387 void anv_block_pool_finish(struct anv_block_pool *pool);
388 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
389 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
390 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
391 void anv_state_pool_init(struct anv_state_pool *pool,
392 struct anv_block_pool *block_pool);
393 void anv_state_pool_finish(struct anv_state_pool *pool);
394 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
395 size_t state_size, size_t alignment);
396 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
397 void anv_state_stream_init(struct anv_state_stream *stream,
398 struct anv_block_pool *block_pool);
399 void anv_state_stream_finish(struct anv_state_stream *stream);
400 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
401 uint32_t size, uint32_t alignment);
402
403 /**
404 * Implements a pool of re-usable BOs. The interface is identical to that
405 * of block_pool except that each block is its own BO.
406 */
407 struct anv_bo_pool {
408 struct anv_device *device;
409
410 uint32_t bo_size;
411
412 void *free_list;
413 };
414
415 void anv_bo_pool_init(struct anv_bo_pool *pool,
416 struct anv_device *device, uint32_t block_size);
417 void anv_bo_pool_finish(struct anv_bo_pool *pool);
418 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo);
419 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
420
421
422 void *anv_resolve_entrypoint(uint32_t index);
423
424 extern struct anv_dispatch_table dtable;
425
426 #define ANV_CALL(func) ({ \
427 if (dtable.func == NULL) { \
428 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
429 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
430 } \
431 dtable.func; \
432 })
433
434 static inline void *
435 anv_alloc(const VkAllocationCallbacks *alloc,
436 size_t size, size_t align,
437 VkSystemAllocationScope scope)
438 {
439 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
440 }
441
442 static inline void *
443 anv_realloc(const VkAllocationCallbacks *alloc,
444 void *ptr, size_t size, size_t align,
445 VkSystemAllocationScope scope)
446 {
447 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
448 }
449
450 static inline void
451 anv_free(const VkAllocationCallbacks *alloc, void *data)
452 {
453 alloc->pfnFree(alloc->pUserData, data);
454 }
455
456 static inline void *
457 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
458 const VkAllocationCallbacks *alloc,
459 size_t size, size_t align,
460 VkSystemAllocationScope scope)
461 {
462 if (alloc)
463 return anv_alloc(alloc, size, align, scope);
464 else
465 return anv_alloc(parent_alloc, size, align, scope);
466 }
467
468 static inline void
469 anv_free2(const VkAllocationCallbacks *parent_alloc,
470 const VkAllocationCallbacks *alloc,
471 void *data)
472 {
473 if (alloc)
474 anv_free(alloc, data);
475 else
476 anv_free(parent_alloc, data);
477 }
478
479 struct anv_physical_device {
480 VK_LOADER_DATA _loader_data;
481
482 struct anv_instance * instance;
483 uint32_t chipset_id;
484 const char * path;
485 const char * name;
486 const struct brw_device_info * info;
487 uint64_t aperture_size;
488 struct brw_compiler * compiler;
489 struct isl_device isl_dev;
490 };
491
492 bool anv_is_scalar_shader_stage(const struct brw_compiler *compiler,
493 VkShaderStage stage);
494
495 struct anv_instance {
496 VK_LOADER_DATA _loader_data;
497
498 VkAllocationCallbacks alloc;
499
500 uint32_t apiVersion;
501 int physicalDeviceCount;
502 struct anv_physical_device physicalDevice;
503
504 struct anv_wsi_implementation * wsi_impl[VK_PLATFORM_NUM_KHR];
505 };
506
507 VkResult anv_init_wsi(struct anv_instance *instance);
508 void anv_finish_wsi(struct anv_instance *instance);
509
510 struct anv_meta_state {
511 struct {
512 struct anv_pipeline *color_pipeline;
513 struct anv_pipeline *depth_only_pipeline;
514 struct anv_pipeline *stencil_only_pipeline;
515 struct anv_pipeline *depthstencil_pipeline;
516 } clear;
517
518 struct {
519 VkRenderPass render_pass;
520
521 /** Pipeline that blits from a 2D image. */
522 VkPipeline pipeline_2d_src;
523
524 /** Pipeline that blits from a 3D image. */
525 VkPipeline pipeline_3d_src;
526
527 VkPipelineLayout pipeline_layout;
528 VkDescriptorSetLayout ds_layout;
529 } blit;
530 };
531
532 struct anv_queue {
533 VK_LOADER_DATA _loader_data;
534
535 struct anv_device * device;
536
537 struct anv_state_pool * pool;
538 };
539
540 struct anv_device {
541 VK_LOADER_DATA _loader_data;
542
543 VkAllocationCallbacks alloc;
544
545 struct anv_instance * instance;
546 uint32_t chipset_id;
547 struct brw_device_info info;
548 struct isl_device isl_dev;
549 int context_id;
550 int fd;
551
552 struct anv_bo_pool batch_bo_pool;
553
554 struct anv_block_pool dynamic_state_block_pool;
555 struct anv_state_pool dynamic_state_pool;
556
557 struct anv_block_pool instruction_block_pool;
558 struct anv_block_pool surface_state_block_pool;
559 struct anv_state_pool surface_state_pool;
560
561 struct anv_bo workaround_bo;
562
563 struct anv_meta_state meta_state;
564
565 struct anv_state border_colors;
566
567 struct anv_queue queue;
568
569 struct anv_block_pool scratch_block_pool;
570
571 pthread_mutex_t mutex;
572 };
573
574 void* anv_gem_mmap(struct anv_device *device,
575 uint32_t gem_handle, uint64_t offset, uint64_t size);
576 void anv_gem_munmap(void *p, uint64_t size);
577 uint32_t anv_gem_create(struct anv_device *device, size_t size);
578 void anv_gem_close(struct anv_device *device, int gem_handle);
579 int anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
580 int anv_gem_wait(struct anv_device *device, int gem_handle, int64_t *timeout_ns);
581 int anv_gem_execbuffer(struct anv_device *device,
582 struct drm_i915_gem_execbuffer2 *execbuf);
583 int anv_gem_set_tiling(struct anv_device *device, int gem_handle,
584 uint32_t stride, uint32_t tiling);
585 int anv_gem_create_context(struct anv_device *device);
586 int anv_gem_destroy_context(struct anv_device *device, int context);
587 int anv_gem_get_param(int fd, uint32_t param);
588 int anv_gem_get_aperture(int fd, uint64_t *size);
589 int anv_gem_handle_to_fd(struct anv_device *device, int gem_handle);
590 int anv_gem_fd_to_handle(struct anv_device *device, int fd);
591 int anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
592
593 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
594
595 struct anv_reloc_list {
596 size_t num_relocs;
597 size_t array_length;
598 struct drm_i915_gem_relocation_entry * relocs;
599 struct anv_bo ** reloc_bos;
600 };
601
602 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
603 const VkAllocationCallbacks *alloc);
604 void anv_reloc_list_finish(struct anv_reloc_list *list,
605 const VkAllocationCallbacks *alloc);
606
607 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
608 const VkAllocationCallbacks *alloc,
609 uint32_t offset, struct anv_bo *target_bo,
610 uint32_t delta);
611
612 struct anv_batch_bo {
613 /* Link in the anv_cmd_buffer.owned_batch_bos list */
614 struct list_head link;
615
616 struct anv_bo bo;
617
618 /* Bytes actually consumed in this batch BO */
619 size_t length;
620
621 /* Last seen surface state block pool bo offset */
622 uint32_t last_ss_pool_bo_offset;
623
624 struct anv_reloc_list relocs;
625 };
626
627 struct anv_batch {
628 const VkAllocationCallbacks * alloc;
629
630 void * start;
631 void * end;
632 void * next;
633
634 struct anv_reloc_list * relocs;
635
636 /* This callback is called (with the associated user data) in the event
637 * that the batch runs out of space.
638 */
639 VkResult (*extend_cb)(struct anv_batch *, void *);
640 void * user_data;
641 };
642
643 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
644 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
645 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
646 void *location, struct anv_bo *bo, uint32_t offset);
647
648 struct anv_address {
649 struct anv_bo *bo;
650 uint32_t offset;
651 };
652
653 #define __gen_address_type struct anv_address
654 #define __gen_user_data struct anv_batch
655
656 static inline uint64_t
657 __gen_combine_address(struct anv_batch *batch, void *location,
658 const struct anv_address address, uint32_t delta)
659 {
660 if (address.bo == NULL) {
661 return address.offset + delta;
662 } else {
663 assert(batch->start <= location && location < batch->end);
664
665 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
666 }
667 }
668
669 /* Wrapper macros needed to work around preprocessor argument issues. In
670 * particular, arguments don't get pre-evaluated if they are concatenated.
671 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
672 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
673 * We can work around this easily enough with these helpers.
674 */
675 #define __anv_cmd_length(cmd) cmd ## _length
676 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
677 #define __anv_cmd_header(cmd) cmd ## _header
678 #define __anv_cmd_pack(cmd) cmd ## _pack
679
680 #define anv_batch_emit(batch, cmd, ...) do { \
681 void *__dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
682 struct cmd __template = { \
683 __anv_cmd_header(cmd), \
684 __VA_ARGS__ \
685 }; \
686 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
687 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, __anv_cmd_length(cmd) * 4)); \
688 } while (0)
689
690 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
691 void *__dst = anv_batch_emit_dwords(batch, n); \
692 struct cmd __template = { \
693 __anv_cmd_header(cmd), \
694 .DwordLength = n - __anv_cmd_length_bias(cmd), \
695 __VA_ARGS__ \
696 }; \
697 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
698 __dst; \
699 })
700
701 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
702 do { \
703 uint32_t *dw; \
704 \
705 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
706 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
707 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
708 dw[i] = (dwords0)[i] | (dwords1)[i]; \
709 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
710 } while (0)
711
712 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
713 .GraphicsDataTypeGFDT = 0, \
714 .LLCCacheabilityControlLLCCC = 0, \
715 .L3CacheabilityControlL3CC = 1, \
716 }
717
718 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
719 .LLCeLLCCacheabilityControlLLCCC = 0, \
720 .L3CacheabilityControlL3CC = 1, \
721 }
722
723 #define GEN8_MOCS { \
724 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
725 .TargetCache = L3DefertoPATforLLCeLLCselection, \
726 .AgeforQUADLRU = 0 \
727 }
728
729 /* Skylake: MOCS is now an index into an array of 62 different caching
730 * configurations programmed by the kernel.
731 */
732
733 #define GEN9_MOCS { \
734 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
735 .IndextoMOCSTables = 2 \
736 }
737
738 #define GEN9_MOCS_PTE { \
739 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
740 .IndextoMOCSTables = 1 \
741 }
742
743 struct anv_device_memory {
744 struct anv_bo bo;
745 VkDeviceSize map_size;
746 void * map;
747 };
748
749 /**
750 * Header for Vertex URB Entry (VUE)
751 */
752 struct anv_vue_header {
753 uint32_t Reserved;
754 uint32_t RTAIndex; /* RenderTargetArrayIndex */
755 uint32_t ViewportIndex;
756 float PointWidth;
757 };
758
759 struct anv_descriptor_set_binding_layout {
760 /* Number of array elements in this binding */
761 uint16_t array_size;
762
763 /* Index into the flattend descriptor set */
764 uint16_t descriptor_index;
765
766 /* Index into the dynamic state array for a dynamic buffer */
767 int16_t dynamic_offset_index;
768
769 struct {
770 /* Index into the binding table for the associated surface */
771 int16_t surface_index;
772
773 /* Index into the sampler table for the associated sampler */
774 int16_t sampler_index;
775 } stage[VK_SHADER_STAGE_NUM];
776
777 /* Immutable samplers (or NULL if no immutable samplers) */
778 struct anv_sampler **immutable_samplers;
779 };
780
781 struct anv_descriptor_set_layout {
782 /* Number of bindings in this descriptor set */
783 uint16_t binding_count;
784
785 /* Total size of the descriptor set with room for all array entries */
786 uint16_t size;
787
788 /* Shader stages affected by this descriptor set */
789 uint16_t shader_stages;
790
791 /* Number of dynamic offsets used by this descriptor set */
792 uint16_t dynamic_offset_count;
793
794 /* Bindings in this descriptor set */
795 struct anv_descriptor_set_binding_layout binding[0];
796 };
797
798 struct anv_descriptor {
799 VkDescriptorType type;
800
801 union {
802 struct {
803 union {
804 struct anv_image_view *image_view;
805 };
806 struct anv_sampler *sampler;
807 };
808
809 struct {
810 struct anv_buffer *buffer;
811 uint64_t offset;
812 uint64_t range;
813 };
814 };
815 };
816
817 struct anv_descriptor_set {
818 const struct anv_descriptor_set_layout *layout;
819 struct anv_descriptor descriptors[0];
820 };
821
822 VkResult
823 anv_descriptor_set_create(struct anv_device *device,
824 const struct anv_descriptor_set_layout *layout,
825 struct anv_descriptor_set **out_set);
826
827 void
828 anv_descriptor_set_destroy(struct anv_device *device,
829 struct anv_descriptor_set *set);
830
831 #define MAX_VBS 32
832 #define MAX_SETS 8
833 #define MAX_RTS 8
834 #define MAX_VIEWPORTS 16
835 #define MAX_SCISSORS 16
836 #define MAX_PUSH_CONSTANTS_SIZE 128
837 #define MAX_DYNAMIC_BUFFERS 16
838 #define MAX_IMAGES 8
839
840 struct anv_pipeline_binding {
841 /* The descriptor set this surface corresponds to */
842 uint16_t set;
843
844 /* Offset into the descriptor set */
845 uint16_t offset;
846 };
847
848 struct anv_pipeline_layout {
849 struct {
850 struct anv_descriptor_set_layout *layout;
851 uint32_t dynamic_offset_start;
852 struct {
853 uint32_t surface_start;
854 uint32_t sampler_start;
855 } stage[VK_SHADER_STAGE_NUM];
856 } set[MAX_SETS];
857
858 uint32_t num_sets;
859
860 struct {
861 bool has_dynamic_offsets;
862 uint32_t surface_count;
863 struct anv_pipeline_binding *surface_to_descriptor;
864 uint32_t sampler_count;
865 struct anv_pipeline_binding *sampler_to_descriptor;
866 } stage[VK_SHADER_STAGE_NUM];
867
868 struct anv_pipeline_binding entries[0];
869 };
870
871 struct anv_buffer {
872 struct anv_device * device;
873 VkDeviceSize size;
874
875 /* Set when bound */
876 struct anv_bo * bo;
877 VkDeviceSize offset;
878 };
879
880 enum anv_cmd_dirty_bits {
881 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
882 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
883 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
884 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
885 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
886 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
887 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
888 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
889 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
890 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
891 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
892 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
893 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
894 };
895 typedef uint32_t anv_cmd_dirty_mask_t;
896
897 struct anv_vertex_binding {
898 struct anv_buffer * buffer;
899 VkDeviceSize offset;
900 };
901
902 struct anv_push_constants {
903 /* Current allocated size of this push constants data structure.
904 * Because a decent chunk of it may not be used (images on SKL, for
905 * instance), we won't actually allocate the entire structure up-front.
906 */
907 uint32_t size;
908
909 /* Push constant data provided by the client through vkPushConstants */
910 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
911
912 /* Our hardware only provides zero-based vertex and instance id so, in
913 * order to satisfy the vulkan requirements, we may have to push one or
914 * both of these into the shader.
915 */
916 uint32_t base_vertex;
917 uint32_t base_instance;
918
919 /* Offsets and ranges for dynamically bound buffers */
920 struct {
921 uint32_t offset;
922 uint32_t range;
923 } dynamic[MAX_DYNAMIC_BUFFERS];
924
925 /* Image data for image_load_store on pre-SKL */
926 struct brw_image_param images[MAX_IMAGES];
927 };
928
929 struct anv_dynamic_state {
930 struct {
931 uint32_t count;
932 VkViewport viewports[MAX_VIEWPORTS];
933 } viewport;
934
935 struct {
936 uint32_t count;
937 VkRect2D scissors[MAX_SCISSORS];
938 } scissor;
939
940 float line_width;
941
942 struct {
943 float bias;
944 float clamp;
945 float slope;
946 } depth_bias;
947
948 float blend_constants[4];
949
950 struct {
951 float min;
952 float max;
953 } depth_bounds;
954
955 struct {
956 uint32_t front;
957 uint32_t back;
958 } stencil_compare_mask;
959
960 struct {
961 uint32_t front;
962 uint32_t back;
963 } stencil_write_mask;
964
965 struct {
966 uint32_t front;
967 uint32_t back;
968 } stencil_reference;
969 };
970
971 extern const struct anv_dynamic_state default_dynamic_state;
972
973 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
974 const struct anv_dynamic_state *src,
975 uint32_t copy_mask);
976
977 /** State required while building cmd buffer */
978 struct anv_cmd_state {
979 uint32_t current_pipeline;
980 uint32_t vb_dirty;
981 anv_cmd_dirty_mask_t dirty;
982 anv_cmd_dirty_mask_t compute_dirty;
983 VkShaderStageFlags descriptors_dirty;
984 VkShaderStageFlags push_constants_dirty;
985 uint32_t scratch_size;
986 struct anv_pipeline * pipeline;
987 struct anv_pipeline * compute_pipeline;
988 struct anv_framebuffer * framebuffer;
989 struct anv_render_pass * pass;
990 struct anv_subpass * subpass;
991 uint32_t restart_index;
992 struct anv_vertex_binding vertex_bindings[MAX_VBS];
993 struct anv_descriptor_set * descriptors[MAX_SETS];
994 struct anv_push_constants * push_constants[VK_SHADER_STAGE_NUM];
995 struct anv_dynamic_state dynamic;
996
997 struct {
998 struct anv_buffer * index_buffer;
999 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1000 uint32_t index_offset;
1001 } gen7;
1002 };
1003
1004 struct anv_cmd_pool {
1005 VkAllocationCallbacks alloc;
1006 struct list_head cmd_buffers;
1007 };
1008
1009 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1010
1011 enum anv_cmd_buffer_exec_mode {
1012 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1013 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1014 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1015 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1016 };
1017
1018 struct anv_cmd_buffer {
1019 VK_LOADER_DATA _loader_data;
1020
1021 struct anv_device * device;
1022
1023 struct anv_cmd_pool * pool;
1024 struct list_head pool_link;
1025
1026 struct anv_batch batch;
1027
1028 /* Fields required for the actual chain of anv_batch_bo's.
1029 *
1030 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1031 */
1032 struct list_head batch_bos;
1033 enum anv_cmd_buffer_exec_mode exec_mode;
1034
1035 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1036 * referenced by this command buffer
1037 *
1038 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1039 */
1040 struct anv_vector seen_bbos;
1041
1042 /* A vector of int32_t's for every block of binding tables.
1043 *
1044 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1045 */
1046 struct anv_vector bt_blocks;
1047 uint32_t bt_next;
1048 struct anv_reloc_list surface_relocs;
1049
1050 /* Information needed for execbuf
1051 *
1052 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1053 */
1054 struct {
1055 struct drm_i915_gem_execbuffer2 execbuf;
1056
1057 struct drm_i915_gem_exec_object2 * objects;
1058 uint32_t bo_count;
1059 struct anv_bo ** bos;
1060
1061 /* Allocated length of the 'objects' and 'bos' arrays */
1062 uint32_t array_length;
1063
1064 bool need_reloc;
1065 } execbuf2;
1066
1067 /* Serial for tracking buffer completion */
1068 uint32_t serial;
1069
1070 /* Stream objects for storing temporary data */
1071 struct anv_state_stream surface_state_stream;
1072 struct anv_state_stream dynamic_state_stream;
1073
1074 VkCommandBufferUsageFlags usage_flags;
1075 VkCommandBufferLevel level;
1076
1077 struct anv_cmd_state state;
1078 };
1079
1080 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1081 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1082 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1083 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1084 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1085 struct anv_cmd_buffer *secondary);
1086 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1087
1088 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1089 unsigned stage, struct anv_state *bt_state);
1090 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1091 unsigned stage, struct anv_state *state);
1092 void gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1093
1094 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1095 uint32_t *a, uint32_t dwords,
1096 uint32_t alignment);
1097 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1098 uint32_t *a, uint32_t *b,
1099 uint32_t dwords, uint32_t alignment);
1100 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1101 struct anv_subpass *subpass);
1102
1103 struct anv_address
1104 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1105 struct anv_state
1106 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1107 uint32_t entries, uint32_t *state_offset);
1108 struct anv_state
1109 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1110 struct anv_state
1111 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1112 uint32_t size, uint32_t alignment);
1113
1114 VkResult
1115 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1116
1117 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1118 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1119
1120 void gen7_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1121 void gen75_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1122 void gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1123 void gen9_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1124
1125 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1126
1127 void gen7_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1128 struct anv_subpass *subpass);
1129
1130 void gen8_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1131 struct anv_subpass *subpass);
1132 void gen9_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1133 struct anv_subpass *subpass);
1134
1135 void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
1136 struct anv_subpass *subpass);
1137
1138 struct anv_state
1139 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1140 VkShaderStage stage);
1141
1142 void anv_cmd_buffer_clear_attachments(struct anv_cmd_buffer *cmd_buffer,
1143 struct anv_render_pass *pass,
1144 const VkClearValue *clear_values);
1145 const struct anv_image_view *
1146 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1147
1148 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1149
1150 struct anv_fence {
1151 struct anv_bo bo;
1152 struct drm_i915_gem_execbuffer2 execbuf;
1153 struct drm_i915_gem_exec_object2 exec2_objects[1];
1154 bool ready;
1155 };
1156
1157 struct nir_shader;
1158
1159 struct anv_shader_module {
1160 struct nir_shader * nir;
1161
1162 uint32_t size;
1163 char data[0];
1164 };
1165
1166 struct anv_shader {
1167 struct anv_shader_module * module;
1168 char entrypoint[0];
1169 };
1170
1171 struct anv_pipeline {
1172 struct anv_device * device;
1173 struct anv_batch batch;
1174 uint32_t batch_data[512];
1175 struct anv_reloc_list batch_relocs;
1176 uint32_t dynamic_state_mask;
1177 struct anv_dynamic_state dynamic_state;
1178
1179 struct anv_pipeline_layout * layout;
1180 bool use_repclear;
1181
1182 struct brw_vs_prog_data vs_prog_data;
1183 struct brw_wm_prog_data wm_prog_data;
1184 struct brw_gs_prog_data gs_prog_data;
1185 struct brw_cs_prog_data cs_prog_data;
1186 bool writes_point_size;
1187 struct brw_stage_prog_data * prog_data[VK_SHADER_STAGE_NUM];
1188 uint32_t scratch_start[VK_SHADER_STAGE_NUM];
1189 uint32_t total_scratch;
1190 struct {
1191 uint32_t vs_start;
1192 uint32_t vs_size;
1193 uint32_t nr_vs_entries;
1194 uint32_t gs_start;
1195 uint32_t gs_size;
1196 uint32_t nr_gs_entries;
1197 } urb;
1198
1199 VkShaderStageFlags active_stages;
1200 struct anv_state_stream program_stream;
1201 struct anv_state blend_state;
1202 uint32_t vs_simd8;
1203 uint32_t vs_vec4;
1204 uint32_t ps_simd8;
1205 uint32_t ps_simd16;
1206 uint32_t ps_ksp0;
1207 uint32_t ps_ksp2;
1208 uint32_t ps_grf_start0;
1209 uint32_t ps_grf_start2;
1210 uint32_t gs_vec4;
1211 uint32_t gs_vertex_count;
1212 uint32_t cs_simd;
1213
1214 uint32_t vb_used;
1215 uint32_t binding_stride[MAX_VBS];
1216 bool instancing_enable[MAX_VBS];
1217 bool primitive_restart;
1218 uint32_t topology;
1219
1220 uint32_t cs_thread_width_max;
1221 uint32_t cs_right_mask;
1222
1223 struct {
1224 uint32_t sf[7];
1225 uint32_t depth_stencil_state[3];
1226 } gen7;
1227
1228 struct {
1229 uint32_t sf[4];
1230 uint32_t raster[5];
1231 uint32_t wm_depth_stencil[3];
1232 } gen8;
1233
1234 struct {
1235 uint32_t wm_depth_stencil[4];
1236 } gen9;
1237 };
1238
1239 struct anv_graphics_pipeline_create_info {
1240 bool use_repclear;
1241 bool disable_viewport;
1242 bool disable_scissor;
1243 bool disable_vs;
1244 bool use_rectlist;
1245 };
1246
1247 VkResult
1248 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1249 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1250 const struct anv_graphics_pipeline_create_info *extra,
1251 const VkAllocationCallbacks *alloc);
1252
1253 VkResult
1254 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1255 const VkComputePipelineCreateInfo *info,
1256 struct anv_shader *shader);
1257
1258 VkResult
1259 anv_graphics_pipeline_create(VkDevice device,
1260 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1261 const struct anv_graphics_pipeline_create_info *extra,
1262 const VkAllocationCallbacks *alloc,
1263 VkPipeline *pPipeline);
1264
1265 VkResult
1266 gen7_graphics_pipeline_create(VkDevice _device,
1267 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1268 const struct anv_graphics_pipeline_create_info *extra,
1269 const VkAllocationCallbacks *alloc,
1270 VkPipeline *pPipeline);
1271
1272 VkResult
1273 gen75_graphics_pipeline_create(VkDevice _device,
1274 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1275 const struct anv_graphics_pipeline_create_info *extra,
1276 const VkAllocationCallbacks *alloc,
1277 VkPipeline *pPipeline);
1278
1279 VkResult
1280 gen8_graphics_pipeline_create(VkDevice _device,
1281 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1282 const struct anv_graphics_pipeline_create_info *extra,
1283 const VkAllocationCallbacks *alloc,
1284 VkPipeline *pPipeline);
1285 VkResult
1286 gen9_graphics_pipeline_create(VkDevice _device,
1287 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1288 const struct anv_graphics_pipeline_create_info *extra,
1289 const VkAllocationCallbacks *alloc,
1290 VkPipeline *pPipeline);
1291 VkResult
1292 gen7_compute_pipeline_create(VkDevice _device,
1293 const VkComputePipelineCreateInfo *pCreateInfo,
1294 const VkAllocationCallbacks *alloc,
1295 VkPipeline *pPipeline);
1296 VkResult
1297 gen75_compute_pipeline_create(VkDevice _device,
1298 const VkComputePipelineCreateInfo *pCreateInfo,
1299 const VkAllocationCallbacks *alloc,
1300 VkPipeline *pPipeline);
1301
1302 VkResult
1303 gen8_compute_pipeline_create(VkDevice _device,
1304 const VkComputePipelineCreateInfo *pCreateInfo,
1305 const VkAllocationCallbacks *alloc,
1306 VkPipeline *pPipeline);
1307 VkResult
1308 gen9_compute_pipeline_create(VkDevice _device,
1309 const VkComputePipelineCreateInfo *pCreateInfo,
1310 const VkAllocationCallbacks *alloc,
1311 VkPipeline *pPipeline);
1312
1313 struct anv_format {
1314 const VkFormat vk_format;
1315 const char *name;
1316 enum isl_format surface_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */
1317 const struct isl_format_layout *isl_layout;
1318 uint8_t num_channels;
1319 uint16_t depth_format; /**< 3DSTATE_DEPTH_BUFFER.SurfaceFormat */
1320 bool has_stencil;
1321 };
1322
1323 /**
1324 * Stencil formats are often a special case. To reduce the number of lookups
1325 * into the VkFormat-to-anv_format translation table when working with
1326 * stencil, here is the handle to the table's entry for VK_FORMAT_S8_UINT.
1327 */
1328 extern const struct anv_format *const anv_format_s8_uint;
1329
1330 const struct anv_format *
1331 anv_format_for_vk_format(VkFormat format);
1332
1333 static inline bool
1334 anv_format_is_color(const struct anv_format *format)
1335 {
1336 return !format->depth_format && !format->has_stencil;
1337 }
1338
1339 static inline bool
1340 anv_format_is_depth_or_stencil(const struct anv_format *format)
1341 {
1342 return format->depth_format || format->has_stencil;
1343 }
1344
1345 struct anv_image_view_info {
1346 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1347 bool is_array:1; /**< RENDER_SURFACE_STATE.SurfaceArray */
1348 bool is_cube:1; /**< RENDER_SURFACE_STATE.CubeFaceEnable* */
1349 };
1350
1351 struct anv_image_view_info
1352 anv_image_view_info_for_vk_image_view_type(VkImageViewType type);
1353
1354 /**
1355 * A proxy for the color surfaces, depth surfaces, and stencil surfaces.
1356 */
1357 struct anv_surface {
1358 /**
1359 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1360 */
1361 uint32_t offset;
1362
1363 uint32_t stride; /**< RENDER_SURFACE_STATE.SurfacePitch */
1364 uint16_t qpitch; /**< RENDER_SURFACE_STATE.QPitch */
1365
1366 /**
1367 * \name Alignment of miptree images, in units of pixels.
1368 *
1369 * These fields contain the real alignment values, not the values to be
1370 * given to the GPU. For example, if h_align is 4, then program the GPU
1371 * with HALIGN_4.
1372 * \{
1373 */
1374 uint8_t h_align; /**< RENDER_SURFACE_STATE.SurfaceHorizontalAlignment */
1375 uint8_t v_align; /**< RENDER_SURFACE_STATE.SurfaceVerticalAlignment */
1376 /** \} */
1377
1378 enum isl_tiling tiling;
1379 };
1380
1381 struct anv_image {
1382 VkImageType type;
1383 const struct anv_format *format;
1384 VkExtent3D extent;
1385 uint32_t levels;
1386 uint32_t array_size;
1387 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1388
1389 VkDeviceSize size;
1390 uint32_t alignment;
1391
1392 /* Set when bound */
1393 struct anv_bo *bo;
1394 VkDeviceSize offset;
1395
1396 uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */
1397
1398 bool needs_nonrt_surface_state:1;
1399 bool needs_color_rt_surface_state:1;
1400
1401 /**
1402 * Image subsurfaces
1403 *
1404 * For each foo, anv_image::foo_surface is valid if and only if
1405 * anv_image::format has a foo aspect.
1406 *
1407 * The hardware requires that the depth buffer and stencil buffer be
1408 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1409 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1410 * allocate the depth and stencil buffers as separate surfaces in the same
1411 * bo.
1412 */
1413 union {
1414 struct anv_surface color_surface;
1415
1416 struct {
1417 struct anv_surface depth_surface;
1418 struct anv_surface stencil_surface;
1419 };
1420 };
1421 };
1422
1423 struct anv_image_view {
1424 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1425 const struct anv_format *format; /**< VkImageViewCreateInfo::format */
1426 struct anv_bo *bo;
1427 uint32_t offset; /**< Offset into bo. */
1428 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1429
1430 /** RENDER_SURFACE_STATE when using image as a color render target. */
1431 struct anv_state color_rt_surface_state;
1432
1433 /** RENDER_SURFACE_STATE when using image as a non render target. */
1434 struct anv_state nonrt_surface_state;
1435 };
1436
1437 struct anv_image_create_info {
1438 const VkImageCreateInfo *vk_info;
1439 bool force_tiling;
1440 enum isl_tiling tiling;
1441 uint32_t stride;
1442 };
1443
1444 VkResult anv_image_create(VkDevice _device,
1445 const struct anv_image_create_info *info,
1446 const VkAllocationCallbacks* alloc,
1447 VkImage *pImage);
1448
1449 struct anv_surface *
1450 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1451 VkImageAspectFlags aspect_mask);
1452
1453 void anv_image_view_init(struct anv_image_view *view,
1454 struct anv_device *device,
1455 const VkImageViewCreateInfo* pCreateInfo,
1456 struct anv_cmd_buffer *cmd_buffer);
1457
1458 void
1459 gen7_image_view_init(struct anv_image_view *iview,
1460 struct anv_device *device,
1461 const VkImageViewCreateInfo* pCreateInfo,
1462 struct anv_cmd_buffer *cmd_buffer);
1463
1464 void
1465 gen75_image_view_init(struct anv_image_view *iview,
1466 struct anv_device *device,
1467 const VkImageViewCreateInfo* pCreateInfo,
1468 struct anv_cmd_buffer *cmd_buffer);
1469
1470 void
1471 gen8_image_view_init(struct anv_image_view *iview,
1472 struct anv_device *device,
1473 const VkImageViewCreateInfo* pCreateInfo,
1474 struct anv_cmd_buffer *cmd_buffer);
1475
1476 void
1477 gen9_image_view_init(struct anv_image_view *iview,
1478 struct anv_device *device,
1479 const VkImageViewCreateInfo* pCreateInfo,
1480 struct anv_cmd_buffer *cmd_buffer);
1481
1482 void anv_fill_buffer_surface_state(struct anv_device *device, void *state,
1483 const struct anv_format *format,
1484 uint32_t offset, uint32_t range,
1485 uint32_t stride);
1486
1487 void gen7_fill_buffer_surface_state(void *state, const struct anv_format *format,
1488 uint32_t offset, uint32_t range,
1489 uint32_t stride);
1490 void gen75_fill_buffer_surface_state(void *state, const struct anv_format *format,
1491 uint32_t offset, uint32_t range,
1492 uint32_t stride);
1493 void gen8_fill_buffer_surface_state(void *state, const struct anv_format *format,
1494 uint32_t offset, uint32_t range,
1495 uint32_t stride);
1496 void gen9_fill_buffer_surface_state(void *state, const struct anv_format *format,
1497 uint32_t offset, uint32_t range,
1498 uint32_t stride);
1499
1500 struct anv_sampler {
1501 uint32_t state[4];
1502 };
1503
1504 struct anv_framebuffer {
1505 uint32_t width;
1506 uint32_t height;
1507 uint32_t layers;
1508
1509 uint32_t attachment_count;
1510 const struct anv_image_view * attachments[0];
1511 };
1512
1513 struct anv_subpass {
1514 uint32_t input_count;
1515 uint32_t * input_attachments;
1516 uint32_t color_count;
1517 uint32_t * color_attachments;
1518 uint32_t * resolve_attachments;
1519 uint32_t depth_stencil_attachment;
1520 };
1521
1522 struct anv_render_pass_attachment {
1523 const struct anv_format *format;
1524 uint32_t samples;
1525 VkAttachmentLoadOp load_op;
1526 VkAttachmentLoadOp stencil_load_op;
1527 };
1528
1529 struct anv_render_pass {
1530 uint32_t attachment_count;
1531 uint32_t subpass_count;
1532 struct anv_render_pass_attachment * attachments;
1533 struct anv_subpass subpasses[0];
1534 };
1535
1536 extern struct anv_render_pass anv_meta_dummy_renderpass;
1537
1538 struct anv_query_pool_slot {
1539 uint64_t begin;
1540 uint64_t end;
1541 uint64_t available;
1542 };
1543
1544 struct anv_query_pool {
1545 VkQueryType type;
1546 uint32_t slots;
1547 struct anv_bo bo;
1548 };
1549
1550 void anv_device_init_meta(struct anv_device *device);
1551 void anv_device_finish_meta(struct anv_device *device);
1552
1553 void *anv_lookup_entrypoint(const char *name);
1554
1555 void anv_dump_image_to_ppm(struct anv_device *device,
1556 struct anv_image *image, unsigned miplevel,
1557 unsigned array_layer, const char *filename);
1558
1559 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1560 \
1561 static inline struct __anv_type * \
1562 __anv_type ## _from_handle(__VkType _handle) \
1563 { \
1564 return (struct __anv_type *) _handle; \
1565 } \
1566 \
1567 static inline __VkType \
1568 __anv_type ## _to_handle(struct __anv_type *_obj) \
1569 { \
1570 return (__VkType) _obj; \
1571 }
1572
1573 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1574 \
1575 static inline struct __anv_type * \
1576 __anv_type ## _from_handle(__VkType _handle) \
1577 { \
1578 return (struct __anv_type *)(uintptr_t) _handle; \
1579 } \
1580 \
1581 static inline __VkType \
1582 __anv_type ## _to_handle(struct __anv_type *_obj) \
1583 { \
1584 return (__VkType)(uintptr_t) _obj; \
1585 }
1586
1587 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1588 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1589
1590 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1591 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1592 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1593 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1594 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1595
1596 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1597 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1598 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1599 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1600 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1601 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1602 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1603 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1604 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1605 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1606 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1607 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1608 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1609 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1610 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader, VkShader)
1611 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1612
1613 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1614 \
1615 static inline const __VkType * \
1616 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1617 { \
1618 return (const __VkType *) __anv_obj; \
1619 }
1620
1621 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1622 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1623
1624 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1625 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1626 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1627
1628 #ifdef __cplusplus
1629 }
1630 #endif